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r)dr =1, consider —Inp(x), —=VInp and —Aln
rRP P P P

Shannon entropy of p
S(p) = —(Inp) = — [ p(z) In p(z)dz

Fisher information measure of p

F(p) = ((VInp)?) = [ L VoF gy

(Isoperimetric) inequality: F > (2me) exp(2S)
(VInz) = 0 and Var(z) = 0? = ((z — (z))*) = an indeterminacy rule
Var(Vinz) = F(p) > 1/0* > 0
Information theory note: p=v*¢ e l? =

(1/0%) < F < 167257 and (4w /5) < (1/+/2me) exp[S] < 0.



Playing with —Inp(z), —V Inp and —A In p, continued:

2 2
—,&lnp:—&p—l-(v’g) ﬁ—{&lnp}:{(vg) )y = Flp).
pp p

For a potential of a "Newton-type force field” we have (V(i’f”g}) = (0 and

Ap'? 1 1 (Vp)z ﬂplfz 1
Apl/? 1 1

—( D12 ) = —ifﬁlﬂﬁ = —F(P) = War(z) >0,

No indication of a specific physical context. However, a number of physically
interesting quantities can be easily related with so-called local conservation laws
for diffusion-type processes and the hydrodynamical formulation of the
Schrodinger picture quantum dynamics.



Quantum hydrodynamics

2m

2

H self-adjoint, H > 0, p(z,t) = |[X(z,t), v = (h/2mi)[(V/¥) — (V" [1*)] =

1
op=—V(pv), s+ %(vs)? +(V+Q)=0=

O + (vVw) = —LV{V + Q)
where v = IVq and Q=0Qp = W ApZ

T 2m plT
Set || = p* . The ground state condition for H reads: V = —I—:ii “;‘T—;f = —Q|p«].
Dennte u(:t.' t) = (h/2m)VInp.  Dynamics arises via {p, s} extremum of

I(p.s) = ft ([ Os + Z(u* +v?) + V])(t)dt.
In terms Df valid solutions p(z,t), s(x,t), we arrive at a strictly positive constant of
motion: —(&;s) = H = ([%(u? +v?) + V]) > 0 (finite energy condition).



Brownian hydrodynamics

. 5
exp(—tH/2mD)Vy =V, — ;¥ = | DA — ! VG
2mD

H self-adjoint, H > 0,1 > 0. Set h =2mD. Let ¥(z,t) — piﬁ as t — o0o. Define
plx.t) =V (x, t)piﬁ(:;-:} withb=DVInp,, u=DVnp,v=b—u=(1/m)Vs.

Lf[: } & 1;’2
2mD =+D

bi’
pt = mlD [E + Vb]

Oip=DAp —V(bp) = dip = —V (vp)

Os +(1/2m)(Vs)? = (V+Q) =0 = dv+ (vVv) = +mi_vw +Q)

Note a compatibility cnndltmn V = —Q[p] The {p,s} extremum
principle for I(p,s) = | ([5}@ + (m/2)(v* —u?) = V]) yields equations
of motion. On dynamically admitted fields p(¢f) and s(x.f), we have

—(Ops) = H = (|F(v* —u*)=V])=0!



Dynamical duality - illusion of ”Euclidean time”

it —t>0; h—2mD

exp(—iHt/h)o = 1y — exp(—tH /2mD) ¥y = U,

Given the spectral solution for H = —A + V', the integral kernel of exp(—tﬁ ) reads

- - P - . o ¥
;L(y 3‘: t) T E Ckp(_fjt) (I)_}'(U)(I)_j (I‘)
J
Remember that ¢y = 0 and the sum may be replaced by an integral in case of a con-
tinuous spectrum, (with complex-valued generalized eigenfunctions). Set V(z) = 0.

k(y.z,t) = [exp(tA)|(y, z) = (fo)_mfexp(pgf) exp(ip(y — x) dp =

(4mt) Y2 exp[—(y — x)?/41]



Consider H = (1/2)[—&4—:1?“2— 1) (e.g. rescaled harmonic oscillator Hamiltonian).
The integral kernel of exp(—tH) is given by the classic Mehler formula:

k(y,z,t) = k(z,y,t) = [exp(—tH)(y,z) =

[m(1 — exp(—2t)) "2 exp[—(1/2)(z? — y?) — (1 — exp(—2t)) ! (zexp(—t) — y)?|

The normalization condition [ k(y,z,t)exp[(y* — 2%)/2]dy = 1 actually defines the
transition probability density of the Ornstein-Uhlenbeck process

p(y, z,t) = k(y,z,t) p}*(x) /p.*(y)

~12exp(—z?). A more familiar form of the kernel reads (note the

with p.(z) =«
presence of exp(t/2) factor)
exp(t/2) (22 + y*) cosht — 2zy

Ky, o.1) = exp |-
(y, 2,1) (QWSinht)lf?e:{p 2sinh




Execute t — it. We get a free Schrodinger propagator

K (1,7,1) = [expit)](0.) = (7)™ [ exp(=ip) explip(y — ) dp =

(4mit) 1% exp[+i(y — x)? /4]
and likewise, that of (here —1 renormalized) harmonic oscillator propagator

exp(it/2) (z* 4+ y?) cost — 2zy
———exp |+i :
(2misint)l/? 2sint

K(y,z,t) =

Learn a standard Euclidean (field) theory lesson concerning multi-time corre-
lation functions:; exemplary harmonic oscillator case, t >t > 0; t — it:

EIX(#)X(t)] = /p*(x’) o' p(a ' x,t) xdzda’ = (1/2) exp[—(t — t')] =

W(t',t) = (o, qu(t)qu(t')e) = (1/2) exp[—i(t — )]

Note: This appealing correspondence breaks down in R®, in the presence of
electromagnetic fields !



Comments on variational extremum principles

1. (Shannon) Entropy extremum principle: Given V = V/(z), fix a priori
(V) = (. Extremize & = —(In p) under this constraint: seek an extremum of

S(p) +a(V) = (—Inp+aV)
where « is a Lagrange multiplier. Outcome: a-family of pdfs p, = A, exp[aV (z)]
arises, provided (A,)~! = [ exp[aV (z)] dz exists; a-value comes from (V), = (.

2. Fisher information extremum principle: Fix a priori (V) = (. Extremize
the Fisher information measure J(p) under that constraint:

Flp)+ MV)=((VInp)? + AV)

Remember that —{éﬂ#} = 2F(p). The extremizing pdf p(z) = p.(x) comes out

from :
_ 2. 4Ap 1(‘?;-’?)2] _ L AAp
A p 2 pi o A\ pll.r’?
Outcome: A-family of pdfs; A gets fixed by (V), = (. Setting A\ = 2/mD?, we
recover the Brownian framework; A = 8m/h? is admitted as a special case.




Hamilton-Jacobi route

H=p2m+V(z), {g=p/m, p=—-VV(q)}; assign po(z) (= S(p) and F(p)).

to
In(p, s) = /t (latf* + i{'V’S)z + V} ) dt => ;s + i(‘VS)2 +V =0

2m 2m
and d;p = —V(vp). Here, v = (1/m)Vs and we have d,v + (vVv) = =VV.

Constrained Fisher information: Fix a priori f;f F(p)(t)dt = (. Extremize

to v 2 ) v 2
Ly(p. s) :/; dt{{@}s + ( 1::) i‘*’l ‘I"J"( ng ) =
1
dp = —V(vp)
v 9 A 1/2
d,s 1\ ﬂ? +V 4 4ry ;1’;.2 )

+V is intended to make a distinetion between confining and scattering potentials.



Outcomes (admissible case of v =0 is left aside):
(i) v = —mD?/2, eventually followed by setting D = h/2m, leads to the D-labelled
quantum hydrodynamics (before, we have referred to +V only)

1
Ohs+—(Vs) )£V 4+Q=0
2m

(ii) v = +mD?/2. with the potential term —V only, leads to the Brownian hy-
drodynamics

Bs + (1/2m)(Vs)* — (V 4+ Q) =0

Note: ¢ — if relationship can be secured for +V, where V' is a confining potential.
1 :
Os+—(Vs) >+ (V+Q)=0
2m

cf. t = it = exp(—tH /2mD)U, = ¥, — exp(—itH /2mD )y, = 1, issue.

We demand H to have a bottom eigenvalue equal zero (to yield a contractive
semigroup). For a bounded from below Hamiltonian this can be always achieved,
like e.g. in case of H = (1/2)(—A + 22— 1).



Hamilton-Jacobi route - a catalogue of "standards”

() £+ = —p [Bis + (m/2)(0? + u2) + V] = s + (1/2m) (Vs + (V + Q) =0
(ii) £ = —p|Os + (m/2v* £ V]| = O;s + (1/2m)(Vs)* £V =0

(iii) £~ = —p [Gis + (m/2)(v* —u?) = V] = Os + (1/2m)(Vs)* — (V + Q) = 0.
On dynamically admitted fields p(¢) and s(z,t), L(t) = [dz L ~ 0,1.e. (O;s) = —H.
The respective Hamiltonians obey:

(i) H* = [dxzp [(m/2)v* + V + (m/2)u*] > 0, (quantum) constant of motion !

(ii) Hy = [dzp [(m/20v* £ V]| = E, E = (p*/2m)=+V/(z), constant on each path
(i) H= = [dxp[(m/2)v* =V — (m/2)u*] = 0, identically (!) in Brownian motion

We emphasize that, from the start, V(x) is chosen to be confining (a class of
continuous and bounded from below functions allows to secure H > 0).



Kinetic theory lore: Brownian analogies and hints

Consider free phase-space Brownian motion in the large friction regime.
W(x,u,t) stands for phase-space (velocity-position) probability distribution with
suitable initial data at ¢ = 0. Denote w(u,t) and w(x,t), the marginal pdfs.

We set D = kgT/mp and observe that actually, in the large friction regime,

w(z,t) = (4rDt)" V2 exp(—22/4Dt) solves Oyw = DAw.

(u) = [duuW(z,u,t) = (u) = (z/2t)w(z,t)

(u), = (u)/w(x,t) = z/2t = —D(Vw)/w

(u?), = (u°) fw(z,t) = (DB — D/2t) + (u);
The Kramers-Fokker-Planck equation

OW +uV,W = BV, (Wu) + qAW
with ¢ = D32, implies the local conservation laws

Oyw + V ((u),w) =0

Oy ((u),w) + Vo ((u?)w) = —B{u),w



Introducing the kinetic pressure Py;,(z,t) = [(u?), — (u)?]w(x,t) we arrive at
O + (u).V)(uw): = —B(u); — VP, /w
In the large friction regime we have

vP'iﬂ vpm;m
— K — ‘|‘3 <u>r -

w u?

where P,.,, = D*wA Inw we name an osmotic pressure in the Brownian motion.

VP =—-wVQ/m  with Q= —ZmD?Tﬂf
Actually —V P, = (D/2t)Vw. Thus, denoting (u), = v(x,t) we arrive at:

VPC"‘;TH ]'
(0 +vV)v = — — = —I—;VQ

w

to be compared with the general Brownian hydrodynamics result
1
dyv + (vVw) = +EV(V +Q)

In the past (1992) I have named all that: ”derivation of the quantum potential from
realistic Brownian particle motions”.



Concerning the pressure terms F;, and P,

In view of —(Alnp) = F(p) > 0, P,sn is predominantly negative-definite. To
the contrary, Fj;, is positive definite, hence the large friction regime is valid for
times # > (23)7!. Let us introduce the kinetic temperature:

P mD
0< 0O, =m ki (kpT — ——) < kT
w 2t
whose (large time limit) asymptotic value, kpT actually is. Since P,g,/w =
D*Alnw = —D/2t, we learn that a (predominantly !) positive-definite quantity
- L Pos::n . 2 L -
Oy = —MN = —mD*Alnw = O, ~ (kT — Oss)

w0
oives account of the deviation from thermal equilibrium in terms of the local
"thermal energy” (agitation) ©,,,.

One more useful identity (not an independent equation) is valid. It expresses the
"thermal energy” conservation law (no thermal currents are hereby induced):

(at + 'l"v)eo&m — _Q(V'v)e"osm — ate’c'sm — _Q(V'l")eosm



Meaning of the pressure term in Brownian hydrodynamics (FP,,,, = P)

v + (vVv) = +%wv +Q) = lF - E_ VP +%‘U’Q; F=-V(-V)

w w

In normal liquids the pressure is exerted upon any control volume (droplet) = a
compression of a droplet. In case of Brownian motion, we deal with a definite
decompression.

Consider a reference volume (control interval, finite droplet) [a, 3] in R' (or
A C R') which at time ¢ > 0 comprises a certain fraction of particles (Brownian
"fluid” constituents).

The time rate of particles loss or gain by the volume [a, 8] at time ¢, is equal
to the flow outgoing through the boundaries

g
5, f o(z.t)dz = p(B.t)u(B,t) — plas t)o(a, )

To analyze the momentum balance, let us slightly deform the boundaries |a, 3] to
compensate the mass imbalance: [a, 8] — [a+v(a, t)At, B+v(8,t)At]. Effectively,
we pass to a locally co-moving (droplet) frame (that is the Lagrangian picture).



(i) The mass balance in the moving droplet has been achieved:

1 ,S-I—T.-_j.-"i".t B
Eimmwﬁ[/ plx, t+ At)dr — / p(z,t)dx] =0

Ju At

(ii) For local matter flows (pv)(z,t), in view of 8,(pv) = =V (pv?)+(1/m)pV(V+Q),

the rate of change of momentum (per unit of mass) of the droplet, reads

1 G+vgist 8 g 1

timan [ (o) t+ 80— [ 0] = [ oV + Qs
t a+v, At v a M
However, VQ/m = —% and P = D?pAlnp. Therefore:

¥ 1 g I}
/ p—V(V +Q)dr = / pVQdr — | VPdr=—E[VV]? + P(a,t) — P(5,t)
o m I ¥ m
(iii) The time rate of change of the kinetic energy of the droplet is:

1 [o B I TAN: 1 5] 1 il 1 )
timan L[ et 80— [ S 0] = [ a(pv)v(v +Q)dx

At +uv, Ot

Note that ff pvVQdr = — fj vV Pdzx (c.f. the notion of power re]ea&e = F.v)



Meaning of the pressure term in quantum hydrodynamics (—FP,,,, = P)

F P
O+ (WV0) = ——V(V +Q) = -~ —
m . p
1 Pﬂ‘?ﬂl . P
Ly Ylom . VP
m p p

which enforces —P,.,,, = —Dgp& Inp =P, D= h/2m, while FF = —VV. If com-
pared to the Brownian hydrodynamics all (V + ()) contributions come with an
mverted sign. That carries over to the mass, momentum and kinetic energy rates.

Contrary to the Brownian P = P,,,. the quantum pressure term P=-P,, is
predominantly positive. We recall that —(Aln p) = (%?—) Flp) = 0.
We note in passing that quantum mechanically derivable heat transfer equation
Vg
(at + 't"v)@ﬂmn — 2? — 2(vﬂ)eﬂ.‘:ﬂﬁ
with O, = —m% — —mD?Aln pand g = —Q-m.sz&-U: reproduces the Brown-

ian form, at least for generic free Schrodinger wave packets with Av = 0. We get
O psm = —2(Vv)O,sm as well. There is no heat current.



Hamilton-Jacobi related hydrodynamics and (Bohmian) trajectory de-
scriptions

Eulerian picture (passive control) vs Lagrangian picture (active control in a
co-moving frame): simply give our previous droplet (co-moving control volume) an
infinitesimal size. We get droplet dynamics along Bohm-type trajectories.

f{I? t) — f[:I(t + ﬂ‘t}:t + ﬂt) ~ [aff + ('E?V)f]&t; r=v= 'U(Iv ﬁ)|:r:|:!::]=:|:

I(t T ’ﬂt} ™~ 'U&tr U= (1/'[m\,]v5 and 5}3 — % — mi_,r? lmp]}r

(i) Classical hydrodynamics: (droplet) paths in the Lagrangian frame

i_’: = —pVv — p(z(t + At),t + dt) ~ exp|—(Vv)At] p(x, 1)

_ 1 2 . dIU _ 5



(i) Brownian hydrodynamics: (droplet) paths in the Lagrangian frame

dp
- PV
ds 1 9 , dv ,
- =5 (Vs)"+(V+Q) = m = +V(V +Q)

Purely random (Wiener) background: dX () = b({ X (#))dt + v2DdW (t) = Op = DAp — V(bp); é_ﬁfg = mD [{% + "FE-]

(iii) Quantum hydrodynamics: (droplet) paths in the Lagrangian frame
— Bohmian trajectories



Back to random paths: diffusion-type processes

Consider a Markovian diffusion process on R, for times t € [0,T]: dX(t)
(X (t),t)dt ++2DdW (t), where W (t) stands for the Wiener noise and X (#3) = xy.

Given p(y, s, z,t).s < t and py(z), we can infer a statistical future of the process:

plz,t) = /p(yﬁ)p(y; s,z,t)dy = O;p = DA — (Vbp)

1

bz, t) = Ein:-u Az /(y —x)p(z. t,y, t + At)dy = v(z,t) + (DVp/p)(x,t)

We can as well reproduce a statistical past of the process, by means of

. , 8
p*(y1 S: I? t) — p(y Svir':t) "D[:y \J :* P(y 5) — fp*(y S:-I:t)p(:r:t)dl“
p(z,1)
_ 1
bov,5) = Jim [ (= ot = 0,90 = o(0,5) — (DY /)09

Making notice of v = (1/2)(b+b,.), we get:
Op = =V (vp) = DAp — (Vbp) = —DAp — V(b.p)



(bi>{’l't o &t)
(X (t+ At),t + At)
bo(X(t — At), t — At)

\\ / ‘\\// (z,t + At)

— X(t) «—

T, e

Incoming random flow Outgoing random flow

Impulsive behavior of drifts in Brownian motion
bo(z,t) — (b)(z,t — At) ~ (b)(z,t + At) — b(x,t) ~ VV At
Impulsive behavior of drifts in stochastic mechanics

bo(z,t) — (b)(x,t — At) ~ (B)(x,t + At) — b(z,t) ~ 2V(V +20Q) A

m



Consider b = DX and b, = D.X as special cases of forward (predictive) and
backward (retrodictive) time derivatives of functions of the random variable X (¢):

(Df)(X(t),t) = (0, +bV + DA)f; (D, f)(X(t),t) = (0, + b.V — DA)f

Analyze acceleration formulas for diffusion-type processes.

[T Newton law in the (local) mean

(1) Brownian motion
(D*X)(t) = (6, +vV)v — 2VQ = (D?X)(t) = +=VV
(ii) Nelson’s stochastic mechanics
(DD, + D.D)X](t) = (8 + vV)v + 1VQ = —LVV

Something is conspicuously missing: set VV = 0, still accelerating | —

=V () contributes to the +Av VE]DClt-} 111{:1“&111&111: as a legitimate force.
Our preference for the I7" Newton law is:

(iii) (0, +vV)v = £LV(Q + V)

T



Brownian impulse (times At)

(D*X)(t) = (DiX)(t) = +5;VV <= 5[(DD. + D.D)X](t) =

?TJ.'

]‘?Iv( —|_ QQ}
Stochastic mechanics impulse (times At)

(D*X)(t) = (D?X)(t) = —+V(V +2Q) —= 3[(DD. + D.D)X](t) = —=VV

ﬂ‘l m

I} 111" Newton law in the mean: :I:%V(V +Q) 1

Impulse-momentum change equations
Brownian impulse in a co-moving frame (given p and v)
Ap=—[(Vv) At] p mAv =+V(V + Q) At
Anti-Brownian impulse in a co-moving frame (given p and v)

Ap=—[(Vv) At]p mAv = =V (V + Q) At



Introducing the ,,Brownian recoil principle”

C.f. physics of firearms (note a recoiless gun) ; | am sorry for military associations




Brownian recoil principle

Consider At < 1. Within [, ¢+ At], let the action-reaction coupling between
"vacuum” and matter particles set rules of the game = (Ap)vacuum~+ (AP) matter = 0.
The "vacuum turbulence” propels matter particles by transferring them an anti-
Brownian (recoil) impulse (set D = h/2m), whose "vacuum” trace (and reason)
is the Brownian impulse (may die out, we track the matter data).

Step I. Given the matter data p(z.t) and v(z.t). At t + At we have p + Ap =
exp[—(Vv) At] p and v — v + Av, where:

Action ("vacuum” impulse)

Av = +1V(V + Q) At (Brownian)

m

2
is paralleled by: (|} - subtract: {} - add: EV(V +Q) !

Reaction (matter impulse)

Av = —ﬁV(V + @) At ( Anti-Brownian, e.g. quantum)

Step II. Update the matter data to p(x.t + At), v(z,t + At), leave aside
those referring to the "vacuum” and to the preceding Brownian impulse, turn to
the next At episode when both impulses are excited anew.



Any physical justification of the Brownian recoil principle needs a double-
medinm picture:

(i) an active "vacuum” (background random field, non-equilibrium reservoir,
zero-point fluctuations) that is generating and supporting Brownian impulses.
These may be interpreted in terms virtual particles

(i1) matter particles, whose dynamics is governed by the 117 4 Newton law and
the resultant recoil effect.

A detailed theory of the "vacuum”-particle coupling is obviously necessary to go
bevond heuristics.

There is plenty of room down there !
- atomic nucleus size: ~ 1071° — 10~ ¥m
- atom size: ~ 107" —107"m: what about its ¥-ness or that of the electron " cloud”?
- electron size (whatever that means): ~ 10~'*m, possibly down to ~ 10~ ¥m

Note: The "vacuum” (not an empty void) functioning in quantum
physics is still an open territory



