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Excerpt from the original PRE 107 Abstract

The nonequilibrium Fokker-Planck dynamics in an arbitrary force field f(X) in dimension N is revisited
via the correspondence with the non-Hermitian quantum mechanics in a real scalar potential V(X) and in a

purely imaginary vector potential [—iA(%)] of real amplitude A(X).
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Our focus

Fokker-Planck operators of diffusion processes with nonconservative drift fields, in dimension
N > 2, can be directly related with non-Hermitian electromagnetic-type Hamiltonian generators
of motion. The induced nonequilibrium dynamics of probability densities points towards an is-
sue of path integral solutions of the Fokker-Planck equation, and calls for revisiting links between

known exact path integral formulas for quantum propagators in real and Euclidean time, with these
for Fokker-Planck-induced transition probability density functions.

Non-conservativeness, non-Hermicity and the ,magnetic” analogy

Markovian diffusion processes driven by nonconservative (non-gradient) time-independent
drift field F(F). For concretness let us consider

N=3: curlF =V xF #0

dX(t) = F(X(t))dt + V2udW (1)

We rescale to % the diffusion coefficient
diffusion generator reads L = %fl +F.V
Fokker-Planck operator L* = 2A — V - (F-) arises as the L2(R") adjoint of L
the inferred Fokker-Planck equation in N > 2, ean be rewritten in the persuasive Euclidean

"magnetic” form

atp — L*ﬁ — _{H_E'ur_'f + V}P — _H.fj




The transcript of the F-P operator L* = —(Hgy + V) = —H. is paralleled by

L=—-(Hg,u+V)=-H" L actually is named
1 a diffusion generator

HEUCE — _Etﬁ +F}2~

where Hp, ., is the L?(R") adjoint of Hp,,.
The QM analogy arises by formally setting F —iF and t—>it in eCHY (while reintroducing dimensional constants)

There is nothing surprising in connection with (non-Hermitian) adjoint , magnetic’-type entries H,
H*, since the related non-Hermitian operators [.* and I, are intimately related with Markovian
diffusion processes.

We recall that adjoint pairs of parabolic equations actually rule the evolution in time of
transition probability density functions of the diffusion process.

dp =L"p p(Z,t) = [p(F,s,%,t)p(F, s)d
op(7y, s, %,t) = Lip(7, s, T, t) p(7.8,.2.t),0<s <t <T, (T — oo is admissible)
u(i,s) = E[f(X0)| X, = 7] :j F(@p(F, s, 7, 0)dV se[o,1]




Hermitian vs non-Hermitian for conservative diffusion processes : N=1 detour
(Garbaczewski and Zaba, J. Phys. A: Math. Theor. 53 (2020) 315001 (39pp) )

given a stationary density p,(x), one can transform the Fokker—Planck dynamics.

Gp=DAp—-N(b-p)=L"p.

into an associated Hermitian (Schrodinger-type) dynamical problem in L?(R), by means of a factorisation

p(x, 1) = U(x,1)pl *(x) ' > 8,0 = DAV — VI = —HU
’\ ] ! I-":z 2
We demand that Hp!"' = 0. ' D Vix) = DAHTL? — % (b_ + ?b)
p*"_ ¥ ED
Conservativeness:  b(x) = 2DV In p-%(x)

Joint spectral solution for motion generators L, L* and H

H _ _Pi,.f'zLP—l_.f'z — —p;'-"ljf_“pi.-ﬂ _[F = pi_,.szﬂ—J,fz

® s:

Three operators H. L and L* are Hermitian (and eventually self-adjoint) in function spaces

[2(R). L(R. p.) and L*(R, p. ') respectively




Specific meaning of nonequilibrium (existence of steady currents)

The diffusion current notion appears through rewriting the Fokker -Planck equation
Oip = (1/2)Ap—V -(F-p)

Orp = —ﬁ'j= -V - (vp),
v=F— ‘ﬁlﬂplf}z,

where ¥ 1s named a current velocity field.

Let us assume that the Fokker-Planck equation | admits the stationary pdf p, (7)

—_

In view of Oyp. = 0, = = puty, With 05 = F—VIn p.lf-g needs either to vanish, 5*(:?) = (),

or to be divergenceless, V - j, = (.

The choice of the drift field in gradient form F =V piﬂj would secure

—

p(Z,t) — p.(T), with no steady current at all, since 7. = 0 identically.



‘B}rJden{.:-tiing p. = c:-:_p{—?gf:)‘_, (that amounts to plfz = exp(—¢), we are left with

We shall consider nonconservative drifts in the form

comprising —¢ = In pif 2, and the non-gradient entry A
The steady diffusion current j": ip* must be divergenceless. Accordingly,

0=V-(4Ap.) = (A-V)p. +p.(V- A).

This implies that the divergence of the vector field A reads

sl
]
Il
b
=
<1
2

—4

An additional assumption that A itself is divergenceless, i.e. V-A=0

would result in the orthogonality relation A - V¢ = 0, valid for all # € RV.

This orthogonality property may be interpreted as a constraint on the admissible functional form of the stationary pdf,
p. = exp(—2¢)  once the non-gradient vector potential has been a priori selected.



Path integral formulation - hints

The path-wise implementation dX(t) = F(X(t))dt + v2udW (t) of the diffusion process

in question, motivates our interest in transition probability density functions, which actually
are the integral kernels (often named propagators) of motion operators exp(tL*) = exp(—tH),

exp(—tH )po|(Z) = p(Z,t), an thence dyp = —H p, with the initial data pg

The dynamics of the involved transition probability density function

p(7,s,%,t) = [e”H9](7, F)

D<s<t

in principle should be amenable to Feyman path integration routines (note the absence of ,,i”),
albeit well beyond the ramifications of the standard Feynman-Kac formula.

Actually, c.f. Wiegel and Ross, (1981), ,,Path integral solutions for the Fokker-Planck equation with non-conservative forces”,
where the case of N=2 has been studied.

We point out a link (albeit not unrestricted, and demanding some care) with the concept of density matrices in statistical mechanics,
c.f. Feynman’s ,,path integral formulation of the density matrix”, 1961-1972, specifically its (unnormalised) version in the
position representation. Feynman’s (unnormalised) density matrix arises as an integral kernel of e “B®)  with  ~1/ kT, k being the
Boltzmann constant, T labeling the temperature, and the initial condition for p=0 (e.g. Tl o) set in the form of the Dirac delta.
Note that p — o refersto Tl 0. These limiting features get somewhat unexpected ,,flavour”, if a parallelism (e.g.
correspondence) with the time label t is kept in memory. One may think about a thermally singular beginning T infnite at t=0,
which is followed by the monotonic cooling down to T=0 as t approaches infinity.

7



The formula for the ,,propagator associated with the Langevin system” (the integral kernel of the
operator exp(tL*), with L* = —H) reads:

r(T=t )=z t .
ply,0,%,1) = exp(—Hi)(y,T) = ] Dz(7) exp [—f drL(x(7),Z(T))| ,
Z(r=0)=¥§ 0
e M 1 o 2 1= = -, o .
L(Z(1),2(T)) = 2 ( F(z( )}] + 5‘? F(Z(r) = 2Z (1) —Z(1) - F(Z(1)) + V(Z(T)

We recall that the “normal” (e.g. non- Euclldean) classical Lagrangian would have the form
L=T-V with T = 72/2 andV(z,#,t) =V — #-F.

Note that actually employed Euclldean (e.g. diffusion induced) Lagrangian has the form
=T +V. The sign difference has consequences for the functional form of the derived versions
of the second Newton law (e.g. the sign of the derived Lorentz force analogue).

Lagrangian dynamics shows an ,,electromagnetic” affinity

Since we have in hands an explicit Lagrangian , while keeping in memory its relevance for the
evaluation of path integrals in the quadratic case, we ask for the dynamical output in terms of the
Euler-Lagrange equations, still without specifying detailed properties of the vector field F(Z(t),t),
except for tentatively admitting a direct dependence on time.

To compress the resulting formulas we pass to the N=3 notation # = (. x4, 23). so that

Wz, @,t) = V(x.t) — 3, & Fj(z,1).



oL _doc _ V. _d (9T V\_,
or, dior,  om,  di \9x, o

The Euler-Lagrange equations are valid for all i=1, 2, 3, (actually for any N) and imply

OF, OF;

. ay  dF; where i = —
r; = (31‘ ) ZBU FE BIJ 31:; 3;135

We note that nonvanishing components of the ,,magnetic matrix” B = (B;;) define (for N=3)

— 01 F3,00F3 — 0, F)

—

V x F = B = (B = Baz, By = By, B3 = Byy) = (82F3 — 83F», 33 F,

and thence 3. Bijz; = F;""9".  whose vector form looks deceivingly ,,magnetic”

Fmagn _ _ (‘f" % F!j — _¥x B:

as required (up to a sign, which is opposite to that in the ’ Clﬂbblﬂﬂ] Cabﬂ} fI'DlTL the magnetic part
The electric anﬂlegue of this force rcad&.: T‘V é‘F / Et

of the Lorentz force.
For reference, we reproduce the ,,classic” result

and is opposite to that valid in the "classical” case.

; ay E}F
- mﬂj] |




Lagrangian signatures of stationary pdfs

Let us consider F=A- Y_}C} comprising —¢ = In pifz, and the non-gradient entry A

£(a(r),3(7)) = 33(7) — #(r) - F(@(r)) + V{a(r)

t
Theterm #-F inthe action functional [—f d’fﬁ(f{ﬂ:f{’f})] contributes
0

]!

L 7 [-Vo(F(r)) + A(&(T)]dr = - L %@( (7))dr + f £ - A(&(r)dr = §((0)) - $(&(t)) + f £ - A(&(r)dr

0

. . () — [ F . . F(T=t)=F t .
p(7,0,7,t) = e?@ =@ (7.0, 7, 1) k(7,0,%,t) = [ DZF(7) exp [—[ dTﬁmagn{i"(T},f{T)]]

T(r=0)=y§ 0

where the new function (7,0, Z,t) is no longer a transition probability density
but an integral kernel (propagator) exp(—tH g0 )(7,T) = k(7,0,Z,t) of a new motion generator

—

. 1o .
(VAP +V, V=V 4 _-A° V(T) = 5[{%)2 — Adg.

Hiagn = €*He @ = —

o | =

—

Lonagn (8(7), #(r)) = 53(7) = & - A(F(r) + V(3(7)) = 5 |3(r) -

b

10




What is it about, ifweskip A in F=A-V¢, ?

F=Vhp/*=-V¢ p(7,0,7,t) = e?@=2F) (7,0, 7, 1)
- =\ = 1.y r(=
L=L,+7 Vo Lo(Z(7),Z(7)) = 57 () + V(Z(7)

H,=e¢’He 9= —-A+V Feynman-Kac framework directly applies

Link with Schrodinger semigroups exp(- tHy;), and the transformation of the Fokker-Planck equation into the Schrédinger-type
equation 11



A detour: (phase-space) Brownian motion in a magnetic field
versus spatial nonconservative processes - explicit N=3 examples
(Czopnik, Garbaczewski: Phys Rev. E 2001, Physica A 2003)

We skip the original phase-space derivations of Phys. Rev. E 63, 0121105, (2001) , and adopt (albeit with suitable adjustments)
the arguments of Physica A 317, 448, (2003).

Example 1: curl (.) # 0 drift dX (t) = A(X(t))dt + dW (t)

where the former drift f[f} is replaced by _i'{i’} = (B/2)(—x2,21,0)

We infer Oy p = éi\p — V(Ap),

A(Z(t)) = +AZ(t) A=

CDEE-CD
)
oo ™
o R e Y o

The transition probability density function reads

p(F.s,%,1) = (;)” exp [_{i"— U(t — 5)7)°
8, 1) = |

2m(t — s 2(t — s)
cos(Bt/2) —sin(Bt/2) 0
U(t)= | +sin(Bt/2) ecos(Bt/2) 0
0 0 1

Fully compatible with (tedious, technically demanding) N=2 path integration outcome of Wiegel and Ross, (1981) 1



The above transition pdf solves a pair of adjoint quations

with V = A% = (B2/4)(2? + ).

Accordingly, the Lagrangian entering the path integral formula for the Fokker-
Planck transition pdf, reads

L=

b | =
L

while the related Markovian semigroup exp (- Ht) has the (non-Hermitian) generator

H= —é[f*__i’)hl.i?_ L* =—H.

13



Example 2:  Relaxation with steady current

FA_7=A-Vo A = (B/2)(-y,2.0), T = (z,y,2) and ¢ = 37/2|

L(#(),#(r)) = 53(7) — &(r) - F(@(r) + V(&(7)

p75.2.0) = 1 — e 200)] 7 e (L= U9

(1 _ E—Z[t—sj}

The Fokker-Plack operator L* appears in the functional foom L* = —H.

L*:%a_ﬁ'-ma:%(ﬁ_ﬁ')?—‘v
y=21_3 Sl
—5{ —}——+§(1-—)

Since A = (B/2)(—y,z,0), we have V - A =0, in conjunction with o(F) = 72/2

Hence, we have the stationary pdf : po(T) = 732 exp(—7?)

Il
n-“-‘*L

HL

and the coexisting |divergenceless steady current | Fal

) = A(T) p.(Z).

14
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Example 3: No A . F=—V¢=-7 L=LYEF—F)p?+V.F

(I

¢(T) = 72 /2, we can rewrite £ in the form £ = %(f + )% - 3.

Since now F = —F, we have VF = —3, and hence V = (1/2)%% — 3/2

L*:%&—F-ﬁ'—(ﬁ'-ﬁ):%(‘@'—ﬁ}z—v
. = o—(t—s)m2
p(7,s,7,t) = [n(t — 5)]—#2 exp (_ {ELl _i_zu_?} ) (Ornstein-Uhlenbeck)

This transition pdf is intimately intertwined with the integral kernel of exp( —tH ), where H is

(rescaled) quantum harmonic oscillator Hamiltonian

S ooy (=82 L . = P1(z)
py,&z,ﬂ?,t = € 'I"y:‘S'.-m:lt o3
ey 5w

where ®,(F) = 7 3/2 exp(—72), is the ground state function, while the factor 3/2 in the exponent
is the lowest eigenvalue of | H = (1/2)(—A + 72).

The function k(7, s, T, t) is the integral kernel of exp[—(t — s)H|.  Setting s=0 we may write

.o —3/2 1 42 -9 (T — f—“’ﬂ)z'
k(7,2,t) = exp(=3t/2)(m[L — exp(=2)]) > exp | 5(F* - ) - 1) |
) - =2 T ht — 27 -
= (2rsinht)™/2 exp _E Aty }C?El Ty
I 2sinht | 15
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In Example 1, we have associated the random dynamics dX (t) = A(X(t))dt + dW (1)

with exp(- tH), where g = —E(f’ A2+ 112 while remembering that L* = —H.
2 2
* ]- = T 2 ]_ — ]_ -
Hpye = — [L —|—]/j 3[?—1—1) - 3&4_4 V — ;,_1
HE?.:CI_[L_FPJ %[ﬁ‘F!‘TjE:—é&—diﬁ %i’g

non-Hermitian Hamiltonians |can be mapped into each other by changing the sign of A

Hp, and Hj. , are Euclidean analogues of standard Hermitian operators, appropriate

for the quantum Schriodinger dynamics with the minimal electromagnetic coupling:

Hf o = —(1/2)(V +iA)? and  H,,,, = —(1/2)(V — id)?

quarnt

Note: Formally replacing A by —iA in the above operators, we arrive (respectively) at

1 = -
[\T + ‘-1:] HEHCE = _3['\7 — *"'1:'2

#
HEL:-:I - -

B2 | =

Both quantum mechanical operators are Hermitian, and actually refer to different QM problems (sign difference
of vector potentials can be related to the sign of involved charges). They belong to the functional analytic
inventory of ,,Schrodinger operators with magnetic fields” and related operator semigroups, c.f. Avron,
Herbst, Simon (1978), with a numer of independent derivations of their integral kernels.

The pertinent semigroup ntegral kernels have been first derived as (unnormalized) ,,density matrices™ in the
study of the diamagnetism of free electrons, c.f. Sonderheimer, Wilson (1951), c.f. also Glasser (1964) for an
explicit path integral derivation. r



—

(V — A)?), to resistortogivein ?

2| =

Path integral temptation (handle Hpua= —

We are interested in transition probability solutions of Fokker-Planck equations (with Dirac delta
initial data). They need to be positive definite functions. If interpreted in conjunction with
propagators of Markovian semigroups (e.g. with Hamiltonian-type generators), the latter need to be
positive as well. (The nonnegative case is more intricate and is not considered here.)

Given the quantum mechanical motion operator exp(-iHt) (up to scaled away dimensional constants) .
Its ,,naive” Euclidean version is exp(-Ht). In the thermally-rescaled form exp(-BH) with  ~1/ kT,
the corresponding propagator is interpreted as an (unnormalized) ,,density matrix”. Such functions
not necessarily are positive, and may even be complex ! Then, no link can be established with
transition probability densities of the (anticipated as Fokker-Planck related) diffusion process.

An archival retour — ,,Diamagnetism of free electrons”, 1951- 1964

2:1. The Schrodinger equation for the stationary states E, of a free electron in
a constant magnetic field H is

ht eh €2A?
87r2mv 27nch grad+—— Yy(r) = E;fry(r) (1)

HY(r) =1{—

where 5 is the Hamiltonian operator, A = $H x r is the vector potential, —¢ is the
charge and m the mass of an electron, and the remaining symbols have their usual

meanings. T



Consider the expression e~*/k7 ., which is to be interpreted as

BT = 3 R

Now put y = 1/k7T', and let
(', 1,7) = ZYdr) e 1y (),
so that 2 = J‘ Y(r,r,y)dr.

The calculation of Z is thus reduced to the calculation of the quantity ¥ (r’, r,y),
which is known as the density matrix. It satisfies the Schrodinger equation

— oY /oy = HY, (5)
as is obvious by differentiating (3) and noting that 5# operates on i/;(r) only. Further,
¥(r',1,0) = T(r')* y(r) = 8(r—r’), (6)

2:3. If the magnetic field is taken along the z axis, the vector potential is
—3Hy, }Hz, 0), and the equation for W (r’, r,y) takes the form
b 4 h? ehH 0 6\ e‘H?
= . SRR, kil sove s A 2 2
oy {87r*‘mV 4m'mc(x8y -"ax) 8mce smc2® 1Y )} (8)
When H = 0, this equation is formally identical with the differential equation of
conduction of heat

_6—t = szv 18



W(r',r,¥)g_0 = (_2_1r_m) [

The general solution is therefore
21rm)’
h*y

h*y

o[-

_mlHy o
sinh (xo Hy)

¥(r',r,y) = (

2mm
h"y {2' OHY(xy yx)

M (P (y—y P (o= |

+hoHy coth (i HY) (242 + (4 =9/ + =)} |, (12

where u, = €h/(4mme) is the Bohr magneton.
volume, it follows that

Z is the pa.rtltlon functlon per unit

¥ Hy
Z = Y(r,r, ) Fo 13
) /f*y sinh (uo Hy) " o
1 )l.-'?
H(j}=_%(ﬁ_fj)z- el fH{A}] x y}_élﬂ' sinh( jBf) [-.27-"3;
A={—(B/2)x,.+(B/2)x;.0} | B (B
X expy — E[Ig_}’g}z_ Icoth( Ef]
Borrowed from PRE 55 (2), o
1401, (1997), P.G. et al. X[(x—y2) 2+ (x1—v1)?]
B
Explicit complex term ! > = f?(xlyﬂ_xl}fl]}- (28)




We recall: given H(4)=-31V—-i4)’. replacing A by [—id(F)]

HEL:::'E - —

ba | =

(V—A)?. Since 4

by setting —iB instead of B inthe previous propagator formula. Accordingly:
formally acquires the functional form

one arrives at

| —(B/2)x,.+(B/2)x,.0}, the replacement may be accomplished

E}&p[_ tHfqu]tf ﬂ)

B

kG5 2 (1 )"
(y.5.x.f)= — ;
L El]J.['i‘.H{EL_S:I]IZT'F{EI_E:II
1 . . B 'I‘E. - T . )
KEK}]N—m{_::;j_}'3]'—?DT'IIZ—H—E}Ill[{A’:—}'j]'—{xl—}'l]']—E{A'Ll'l—lll'l:lj

This function is defective from our point of view (positive kernel requirement !) since may take

negative values beyond the time interval 0< t-s

For reference:
c. f. Avron Herbst,Simon,
(1978)

f — it

c. f. Feyman-Hibbs (1965)

< 7/B.

exp(—tH quant ) (¥, T)

B

~ 4wsinh(Bt/2)

exp { (iB/2)(—z1y2 + Tayy ) —

B

(

) 1,2
2t '

7 [ —21)* + (32 — 22)%] coth(Bt/2) -

(ya —

{‘-\'I-"f—??-Hquum 1' fi? r: = (

[ \3/2
2mrit

exp {f!’s"?} {Bi—-iwg + zay1) — [(y1 — 1) + (3 — 22) 7]

B/2
sin( Bt /2)

B/2

taulfo_;"E‘_l -

20




An explicit (detailed) path integral derivation of

E}{p[—tH,l-_: i'.é-:’![]{f' y"]
can be found inin P. Garbaczewski and M. Zaba, arXiv: 2302.10154

To evaluate the propagator of exp(—Hg.,.t)(¥,T) = k(7,0,Z,t), with Hg,q = —%[f’ — ;—T}:’
we choose A = [y, z,0], so that B = 1 (‘C’ ,I) = (0,0,1)
)
T o
Lrucd =——T-A.
Eucl B r

Path integrals associated with quadratic Lagrangians can be evaluated analytically.

. 1 ( 1 1/2 1 o . \ 3 {U;j, — ;3'51-3
E(y. 0,7 t) = eXp 4 —T1Ys +Toly — = [(y —21)° + (Yo — 2o)°| cOtEt — = -7
7 ) Sl sn(0)] xi?-m‘) p 1 Y2 a1 — ; [.,h 1) (Y2 2) ] 57

fff[b:". 0,7, s\k(7, s, T, t)d°y =

p}r

-

1 sins sin(t—s) 1 o s 1 (24 — 24)? + (25 — 29)?] cot t (23 — 23)2
(2m)3/2 |/t | sin s| | sin(t — s)| sint TR TR T BT w2 '

Obstacles: (i) the kernel is positive, but |sin(t)] and cott create serious problems,

(ii) the semigroup composition rule is valid only when simultaneously sin s and
sin(t-s) are positive . 21



First conclusion:
A consistent path integral analysis of nonconservative diffusion processes cannot be performed for

the ,,bare” generator (1/2)(VFA)? : —Hgua (e.g. L* —V) . We have no link with a legitimate
Markovian diffusion scenario valid for all times t > 0.

Qiery:
The path integration approach proves to be consistent for

; ; 1 = -
Hmr:r,gﬂ =ec"He ¥ = —3(1?' — :—’ljz + V.

e

and its adjoint partner. Is there anything more general in existence ?

Answer (second conclusion):

Yes, but it derives from the general framework of so-called Euclidean Quantum Mechanics due
to J.- C. Zambrini (1986 — 2023), specifically Cruzeiro, Zambrini (1991).

More details can be found in: P. Garbaczewski and M. Zaba,  arXiv: 2302.10154



One more N=1 detour: Schrodinger’s two-gate interpolation problem

problem, originally due to Schrodinger : given two strictly positive (on an open
interval) boundary probability distributions po(z), pr(z) for a process with the

time of duration 7" > 0. Can we uniquely identify the stochastic process interpo-
lating belween them?

m(A, B):Ldm_[gdym(a:,y)
[ dvta,n) = pota)
memw:mm

m(z,y) = O,{z,0) k(2,0,y,T) Oy, T)

A Markovian diffusion can be uniquely retrieved from the two-gate formula , if we have at
our disposal a bounded strictly positive (semigroup) integral kernel function  k(z, s, y, 1)

Gﬁ(x,t):fk(ﬂ,y,m,i)&(y, 0)dy O(z, s) =/k(-€,r,y, T)O(y, T)dy

p(z,1) = (0.0) te{0,1]

23




Sketchy outline of the more general framework (N=3)

We generalize previous adjoint pairs of equations with non-Hermitian generators

f),
f).

hp(y, s, T, t) = —Hzpl(y, s
dsp(¥, 8, Z.t) = Hyp(, s,

. T,
T,

Consider perturbations of ,,bare” Euclidean generators by scalar potentials

H!'.'ur:n! — H = H.f'.'i'.',f'f + U,
H?".'rf,{'f — H" = H;‘k'_'n,{'f +U,

which might guarrantee, through a suitable choice of 7 (encompassing i =V ) that the operator H
induces a legitimate (contractive ?) semigroup exp[-(t-s)H] in the time interval [O,T], with s<t.
Actually, we presume that exp[—(t — s)H](7, T) = k(s,7,s,7.t)Is jointly continuous, strictly positive
and obeys the semigroup composition law (the Chapman-Kolmogorov relation analog).

To establish a direct link with Cruzeiro, Zambrini (1991) paper, we must account for their form of
the Euclidean mapping : A — iA  results in Hyuane = —2(V —id)? = Hp, .y = —2(V + 4)%
hence we need to change the sign of A , so that the roles of H-generators do interchange

0% (7, 1) [.9* (7,0)k(7,0,F.t)d°y = 0,0*(Z.t) = —H" 0*(Z.1),

:tt‘,l—/l, .7, T)0(7, T)d*y = 0,0(%.t) = H O(Z, ).
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The outcome, actually a solution of the Schrodinger interpolation and boundary-
data problem, s (reflects the change of sign of the vector potential in the analysis of Cruzeiro,
Zambrini,), compare e.g. P. G. etal., Phys. Rev E 55(2), 1401, (1997)).

| VeX (), t)

dX(t) = + A(X(t))| dt +dW(t
(t) 0X (.0 (X (1)) (t)
Diffusion pdf p=0°0 b(7,t) = VIno(z,t) + A(7), forward drift
Oip = —'ﬁ’-[{E—ﬁﬁ]p”z)p(f,tj] F-P equation
— _V(pik
0P ?E’m? o diffusion current
8,7+ (7-V)o=—5xB+VU
. _ l—. # - :
B=VxA 7= E‘Fln o +A current velocity
- == —+ — g{ft ey .
p(¥,s,Z,t) = k(¥,s, T %(ﬁ SJ} transition pdf
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Appendix on the
current non-
Hermitian fashions
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Review
Non-Hermitian Physics
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bﬂf’?ﬂ'?“ﬂﬂfﬂf af Physics, University of Tokyo, 7-3-1 Hongo, Bunkye-ku, Tokye 113-0033, Japan
RIKEN Cenrer for Emergent Maner Science (CEMS), Wako, Sairama 351-0198, Japan

A review is given on the foundations and applications of non-Hermitian classical and
quantum physics. First, key theorems and central concepts in non-Hermitian linear
algebra, including Jordan normal form, biorthogonality, exceptional points, pseudo-
Hermiticity and parity-time symmeiry, are delineated in a pedagogical and mathemat-
ically coherent manner. Building on these, we provide an overview of how diverse
classical systems, ranging from photonics, mechanics, electrical circuits, acoustics
to active matter, can be used to simulate non-Hermitian wave physics. In particular,
we discuss rich and unigue phenomena found therein, such as unidirectional invisi-
bility, enhanced sensitivity, topological energy transfer, coherent perfect absorption,
single-mode lasing, and robust biological transport. We then explain in detail how
non-Hermitian operators emerge as an effective description of open quantum sys-
tems on the basis of the Feshbach projection approach and the quantum trajectory
approach. We discuss their applications to physical systems relevant to a variety of
fields, including atomic, molecular and optical physics, mesoscopic physics, and nu-
clear physics with emphasis on prominent phenomena‘subjects in quantum regimes,
such as quantum resonances, superradiance, continuous quantum Feno effect. quan-
tum critical phenomena, Dirac spectra in quantum chromodynamics, and nonunitary
conformal field theories. Finally, we introduce the notion of band topology in com-
plex spectra of non-Hermitian systems and present their classifications by providing
the proof, firstly given by this review in a complete manner, as well as a number of
instructive examples. Other topics related to non-Hermitian physics, including non-
reciprocal transport, speed limits, nonunitary quantum walk, are also reviewed.

Kevwords: non-Hermitian systems; nonunitary dynamics; photonics; mechanics:
acoustics; electrical circuits; open gquantum systems: quantum optics; quanfum many-
body physics: dissipation; topology: bulk-edge correspondence; topological invari-
ants; edge mode: nonreciprocal transport; quantum walk
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Table 1. A wide vamety of classical and quantum systems described by non-Hermétian matrices/operators together with their
physical origins of non-Hermiticity, peesenied in order of appearance in the present review.

Systems / Processes Phiysical origin of non-Hermmiticity Theoretical methods
Photonics (ain and loss of photons Maxwell equations [12, 13]
Mechanics Friction Mewton equation [14, 15]
Electrical circuits Joule heating Circuit equation [ 16]
Sochastic processes MNonreciprocity of stale transitions Fokker-Planck equation [17, 18]
Soft matter and fwid MNonlinear instability Linearmred hydrody namics [19-21]
MNuclear reactions Radiative decays Projection methods [4-&]
Mesoscopic systems Finite lifetimes of resonances Scatering theory [22, 23]
Ohpen quantum systems Dissipation Masier equation [24, 25]
Chaantum measurement Measurement backaction Quantum trajectory approach [26-31]
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