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Modular nonlinear Schrodinger equation

TR 2 Al

Y(x,t) complex, [¢] = (¥*¢)'/2, V(z) real, & > 0.
(The standard NLS interaction entry would read [k|t)]?])

If & > 0, the pertinent nonlinear dynamics preserves the L*(R")
norm of any initially given v, but not the Hilbert space scalar prod-
uct (1, ¢) of two different, initially given ¢ and ¢. The dynamics
is non-unitary in L*(R"); unitarity is restored if x = 0.

For all k > 0
Op ==V -]
where p = ¢* and
j = (h/2mi)(Y"Vip — Vi)

. We consider normalized solutions only, which sets a standard
form of j = p- v , where

v = (h/2ma) (V) — (V" /4] = (1/m) Vs

is regarded as a gradient velocity field and p(z,t) = [|*(z,t) is a
probability density on R".



Lagrangian formalism

- stationary action principle 01|, ¥*] = 0

- functional of -functions, their space and time derivatives,
including complex conjugates:

I, 4] = / CL(t)dt

3]

where L(t) = [ L(x,t) dx, (we leave unspecified, possibly infinite,
integration volume).

Pedestrian functional calculus

0L /0 = 0L/OY — Z Vil0L/o(V )]

One ends up with the Euler-Lagrange equations:
HOL/O(0")] = 0L/ oy

HOL/O(Ow)] = 0L/oY
If we properly specify the Lagrangian density £ = L,.:

h h?
Lole,t) = S[0"O) = (@) = 5V - Vo = V(@) o™+
ntver Vel
e

the stationary action principle yields a pair of adjoint modular
equations which comprise the previous one in conjunction with its
complex conjugate:
h? AN
—iho)* = |——A+ V| Y" + /{—M Y.
2m 2m ||



The gradient assumption
v=uv(x,t)=(1/m)Vs

plus the familiar Madelung substitution:

b = || exp(is/h)

where [1)|* = p. yield the Lagrangian density

Lo(x,t)=—p|0s+ %(zﬁ +v?) +V(x) — m%uz
with
u(z,t) = (h/2m)Np/p
Here, 01p, s] = 0 gives rise to

Op =—V(p -v)

1
ats+%(V3)2+V+(1—ﬁ;)Q:0,

where, in view of || = p'/?,

K2 Apl/Q B2

Q:Q('x:t):_% ,01/2 T Am

The modular Schrodinger equation takes the form:

ihOp = [—(R*/2m)A + VI — Q.



Hamiltonian formalism

A symplectic structure; given 1, ¥* and

m = OLO(O) = (ih/2)0"
Ty = OLJO(O") = —(ih/2)1

The subsequent Legendre-type transformation defines the Hamil-
tonian density:

Hy =7y - Op + myee - O™ — L, =

5
v

p[%?ﬂ +V+(1—/f)%u2] = 7,08 — L,

h2
Q—Vzp Vy* +

Yt =

where, this time with respect to the polar fields p(x,t) and
s(x,t), we have:

T, =0L/0(0p) =0
s =0L/0(Os) = —p

/ Hy(z,t) dx
8,58 (t) ,
where, in view of fpd:c =1, we set (Oys) = [ pOysdu.
A proper behavior of p = (Q) = [ Q pdz = +(m/2)(u?) > 0.
On dynamically admitted fields p(x,t) and s(z,t), we have

L(t) =0« (0s) = —H,



Poisson bracket of A = [ A(z,t)dx and B = [ B(x,t) dx.

7 0A 0B  0A 6B
(8= o (5555 5 50 )

Identify A = ¢(z,t) and B = H,(t) —

atw — {wa HFL}
Set A = ¢*

atw* - {¢*7 H/ﬁ} .
We recall e. g. that 7, = —0H,/d1 while = 6H, /6.

The time dependence of H,(t) is realized only through the canon-
ical fields, the Hamiltonian surely is a constant of motion. Thence

(Ops) as well.

The polar decomposition

= p"explis/h) , V" = p/? exp(—is/h)

preserves a symplectic structure.

{A> B} = {A> B}%?ﬁ* = {A> B}P,S

and thence:
— HFL — = ——
Op = 1p, Hi} = - —V(pVs)
@S:{S,Hﬁ}:—a =——(Vs) =V -(1-k,Q.

0p 2m
The result is valid for all kK > 0. Note that generically

dG
G:G(p,S)HE:{G,Hﬁ}.



Reduction to effective x =0, 1 and 2 self-coupling regimes

(i) 0 < k < 1;if Y(x,t) = || exp(is/h) actually is a solution
of modular NLS, then ¢'(2,t") = |¢'| exp(is’/h) with

o=z, t=(1—r)"

V|2 ) =[]z, (1 — &)%)

s'(a' 1) = (1 —k)Y2s(x,t)
automatically solves the linear Schrodinger equation:

, , h? 1 ,
ihoy) = —2—A+—V Y.
m 11—~k

(ii) For the borderline value k = 1 we encounter the formalism
that derives from the wave picture of classical Newtonian mechan-
1Cs.

Note that (ii) is not a naive k — 1 limit of (i).

(iii) In case of K > 1, replace (1 — x)/2 by (k — 1)1/2.
Outcome: o' (x',t") = |¢V'| exp(is’/h) is a solution of the nonlinear
Schrodinger equation

TN h? 4 / h? A’¢,’ /

Note that (ii) is not a naive k — 1 limit of (iii).



For clarity, consider k = 2. If a complex function

(x,t) = [¢b| exp(is/h)

is a solution of the modular NLS with x = 2, then the real
function

0.(x,t) = [¢] exp(—s/h)

is a solution of the generalized (forward) heat equation
h2
2m

Another real function 6(z,t) = || exp(+s/h) is a solution of
the time-adjoint (backwards) version of that equation:

h2
—ho,0 = [—A - V] 0 .
2m

Note that the ill-posed Cauchy problem would possibly become
a serious obstacle. That because of the backwards parabolic equa-
tion.

Invoke the theory of strongly continuous dynamical semigroups.
Choose V(x) to be a continuous function that is bounded from
above, so that V' = —V becomes bounded from below. Then the
contractive strongly continuous semigroup operator exp(—Ht/h)
is well defined

2
2m

together with its time adjoint

2
ho,0 = HO = [—h—A + V’] 0
2m



Dual Hamiltonians

Consider a product F(z,t) = —p(x,t) s(x,t) of conjugate fields
s and g = —p. The time evolution of

F@z/@f@ﬂi%@

looks quite interesting:

Cfi_f = {F, H,)} = —/d:c [3(:13,75) 5(5'{ — p(z, 1)

—/dxp [%UZ—V—(l—ﬁ;)%uQ] :

A new Hamiltonian-type functional has emerged on the right-
hand-side of the above dynamical identity. We denote

0H.|
0p N

K

Hi:/dfﬁp [%ij:Vj:(l—ﬁ;)%zﬁ] :

Note that negative sign has been generated both with respect to
terms (m/2){u?) and (V).

The Hamiltonian motion rule rewrites as
dF

%:{FvH:}:_Hf;(t)a

where H" = H plays the role of the time evolution generator.
H is a constant of motion, while H_ (t) is not.

A complementary relationship is generated by the induced Hamil-
tonian H :

E:{FvH;}:_H/i_(t)'

Presently, H," is a constant of motion, while H_ () no longer is.



Let V(x) be a continuous function, bounded from below. If the
energy operator H = —(h*/2m)A + V is self-adjoint in L*(R"),
then exp(—iHt/h) is unitary on L?*(R) so that ihdp) = H
(k =0).

In case of kK = 1 and k = 2 we introduce two classes of external
potentials £V (x), with +V(x) bounded from below.

We discriminate between the confining and scattering regimes
(we shall mention the case of periodic potentials later).

In case of Kk = 2, a pair of time-adjoint parabolic equations
reads:

A

ho0, = —HO,

ho = H
0.(x,t) = [exp(—Ht/h)6,](x,0) represents a forward dynami-

cal semigroup evolution, while 8(z, T — t) = exp(+Ht/h) 0(z, T)
stands for a backward one.

One should consider the dynamics in a finite time interval [0, 77,
with suitable end-point data. This restriction is generic, although

not always necessary.

The corresponding modular Schrodinger equations (plus their
complex conjugate versions) read:

(i) k = 0 = ihdpp = [—(h*/2m)A + V¢
(i) k = 1 = ihow) = [—(R*/2m)A £V — Q¢

(ili) k = 2 = thopp = [—(h*/2m)A — V — 2Q|¢.



Induced dynamical rules:

the continuity equation
Op=—=V(p -v)

and the Hamilton-Jacobi type equations:

L=—p[s+(m/2)(v*+u’)+V]

Y
Ois + (1/2m)(Vs)* + (V + Q) =0

(ii) kK = 1;
L=—p[s+(m/2v* £ V]

Y
Os + (1/2m)(Vs)* £V =0

(iii) K = 2.
L=—p|ds+(m/2)(v*—u®)—V]

Y
Os + (1/2m)(Vs)* = (V4+Q) =0

On dynamically admitted fields p(t) and s(z,t), L(t) =0, i. e.
(Ors) = —H. The respective Hamiltonians follow:

H™ = /dazp [(m/2)v° + V + (m/2)u’]
H; = /dxp [(m/2)v* £ V]

H™ = /dazp [(m/2)v° =V — (m/2)u”]



Comments:

The evolution equations for F' = —(s), define dual pairs:
F={F H") = —/d:z:p [g‘ : V—%uﬂ — H (1),

F={F, H}:—/dscp [20 +V+§u} = —H"(t)
and
mz
2

cl

F={F Ht z—/dajp[ v}z—H—(t)

F={F H7}= —/dajp [gvuv} — _HI(t).

The motion rules for F () can be given more transparent form
by reintroducing constants H* of the respective motions.

F(t) = —mu)(t) + H*

and

E(t) = —m{u®)(t) + H .

The non-negative term m{v?)(¢) actually represents the (Shan-
non) entropy production time rate.

Since H™ and H~ are constants of respective motions,
F(t)—tH*

are monotonically decreasing in time quantities (Lyapunov func-
tionals ). This property extends to the Hcil generated dynamics
as well.



Physics-related implementations of the dual dynamics:
An illusion of an ”imaginary time”

Harmonic oscillator and its inverted partner

Let us consider a standard classical harmonic oscillator problem,
where

9
. P 1 2 92
H=2 - 1

2m+2qu (1)

is an obvious constant of motion for the Newtonian system p =
mi = —mw’q

q(t) = qocoswt + PO gin wi (2)
mw

p(t) = po cos wt — mwqp sin wt .

Clearly H = p3/2m + (mw?/2)q] is a positive constant.

Instead of a trivial mapping w — iw we follow an over-educated
route of an analytic continuation in time.

Consider the Wick rotation ¢ — —it, paralleled by the transfor-
mation of initial momentum data py — —ipy. We get:

H_,, = —pg/Zm + (mw2/2)q(2) -~ _H

and

Y e — bo .
q—ip,(—it) =q(t) = qo coshwt — o sinh wt
together with

P_ipy(—1t) = +ip(t) = —ipy cosh wt + imwqpsinh wt ,

which simply rewrites as

p(t) = —pg cosh wt + mwqg sinh wt .



We observe that

G(—t> = qpcoshwt + Po sinh wt
mw

—p(—t) = po cosh wt + mwqp sinh wt

are the familiar inverted oscillator solutions, generated by H.

Equations of motion for g(¢) and p(¢) directly derive from the
Hamiltonian H_;,, = —H with
=2
— 1
=2 W
2m 2
They give rise to the (inverted, sometimes interpreted as Euclidean)
Newton equation p = mqg = +mw?q.

However ! the dynamics generated by H is related to that gen-
erated by —H by the time reflection: the latter dynamics runs
backwards, if the former runs forward.

The Euclidean connection goes beyond the confining vs scatter-
ing potential idea of ours and extends to bounded, like e.g. peri-
odic, potentials as well. Examples from the physics of instantons,
(all dimensional units are scaled away):

(i) static localized (kink) solutions ¢(x) = = tanh[(z — ) /v/2]
of the ¢ nonlinear field theory in one space dimension 9%¢/0t* —
0%¢/0x? = ¢ — ¢’ may be interpreted as Euclidean time solutions
q(7) = £ tanh[(7 — 79)/v/2] of the double well potential problem
d*q/dr® = ¢’ — q

(ii) the kink solution ¢(z) = 24 tan™![exp(x — x¢)] of the sine-
Gordon equation 9%¢/0t* — 0°¢/dz* = —sin¢ may be inter-
preted as a Euclidean time solution of a plane pendulum problem
d?q/dr? = sin ¢, where a "normal” choice V(q) = 1 — cos g would
yield § = —sing.



Time duality in classical Hamilton-Jacobi evolutions

We have clear hints on how to connect the dual classical wave
theory evolutions, associated with Hamiltonians Hj

We recall we have the dual Hamilton-Jacobi equations 0;s +
(1/2m)(Vs)? £V = 0 and that there holds 9;p = —V - (pv) with
v(z,t) = (1/m)Vs(x,t).

In the adopted notational convention, we define the initial data
so(r) = —35p(x) and introduce an "imaginary time” transformation

Wz, t) = p % explis/2mD) — (x,t) = Vs (x, —it) =
,01_/590(95, —it) expliS_is, (z, —it)/2mD] =
p?(w, t) exp[—5(w, 1) /2mD].
We note that lims g is_5, (2, —it) = i(—is0)(x, 0) = so(z).

Let us denote v = (1/m)Vs. Accordingly, we have replaced

1} = [ dzpllm/2)e? + v
by
“H = [ dopl-(m/27 + V]
There holds
Op = —V - (pv) — 05 = +V - (77)

which is the time reflected (backwards) evolution. Analogously

Os +(1/2m)(Vs)* £V =0 — 93 — (1/2m)(V3)*+V =0

where ¢ — —t induces an expected form of the dual H-J equation:

035+ (1/2m)(V3)* =V =0.



General notion of time duality

The analytic continuation in time directly extends to the general
pair H* of dual (quantum vs dissipative) Hamiltonians

Hi:/dxp [%Uzi‘/ﬂ:%’tﬂ

If ¢(z, t) actually is a solution of the Schrodinger equation
i(2mD)dp) = Hip
then

Wiy, —it) = "2 (x,t) exp|—5(x, t)/2mD] = 0,(x, 1)

solves a backwards diffusion-type equation

—(2mD)d,6, = HO,

while
0(x,t) = p'*(x,t) exp[+5(z, 1) /2mD]

solves the forward equation

(2mD)d0 = HE |

In the above one may obviously identity D = kgT/mg —
h/2m, but the k scaling possibility should be kept in memory as
more natural tool.

The whole procedure can inverted and we can trace back a non-
dissipative quantum dynamics pattern which stays in affinity (du-
ality) with a given dissipative dynamics.



Diffusion-type processes: Smoluchowski process

The Hamiltonian appropriate for the description of dissipative
processes (strictly speaking, diffusion-type stochastic processes)
has the form

H = /d:vp [(m/2)v* =V — (m/2)u”]

with the a priori chosen, continuous and bounded from below po-
tential V(x). It is the functional form of V' (x) which determines
local characteristics of the diffusion process.

Once the Fokker-Planck equation is inferred

where pg(z) stands for the initial condition, we adopt b = f/msy
in the form f(z) = —-VV.

Coefficients: 7 is a friction (damping) parameter and, instead of
D = h/2m, we prefer to think in terms of D = kgT'/m~ where T
stands for an (equilibrium) temperature of the reservoir.

An admissible form of V — f = —VV must be compatible with
the Riccatti-type equation, provided the potential function V' (x)
has been a priori chosen:

vio=m5(:LY v (L]

The Fokker-Planck equation can rewritten as a continuity equa-
tion 0;p = —V - 7 with the diffusion current j in the form:

Jj=pv= L[f—kBTVIHp] = Lys.
my m

We recall the general definition of the current velocity v = (1/m)Vs.



The time-independent s = s(z) is here admissible, hence we
have actually determined

1
s = —a(V + kT In p)

whose negative mean value F' = —(s) defines the Helmholtz free
energy of the random motion:

V=~F=U-TS§,

S = kp S stands for the Gibbs-Shannon entropy of the contin-
uous probability distribution, U = (V) is an internal energy.

Assuming p and pVv to vanish at the integration volume bound-
aries, we get,

U = —(my) (v*) = —kpT(8)im < 0. (3)

The Helmholtz free energy W decreases as a function of time, or re-
mains constant, hence is a Lyapunov functional in the present case.

S(t) = —(In p) typically is not a conserved quantity. We impose
suitable boundary conditions and consider:

DS:<U2>—<[)-U>.

which rewrites as follows

S - (S)mt + (S)ext

where .
kT (S)int = mry <v2> > ()

stands for the entropy production rate, while

kBT(S)ext = _/f ]dSU = —mry <b ) U>

(as long as negative) may be interpreted as the heat dissipation
rate:— [ f - jdu.



Let us consider the stationary regime S = 0 associated with an
(a priori assumed to exist) invariant density p,. Then,

b=u=DVInp,

and

1
—(1/kgT)VY =V p, = p, = Eexp[—V/kBT] :

Hence
—vSy =V +kgT'lmp, — V, = —kgT'InZ =~F,
with Z = [exp(=V/kgT)dz.

U, stands for a minimum of the time-dependent Helmholtz free
energy V. Because of

Z = exp(=V,/kgT)
we have
ps = exp|(V, = V) /kpT].
Therefore, the conditional Kullback-Leibler entropy H.., of the

density p relative to an equilibrium (stationary) density p, acquires
the form

kTH, = —kgT / pin(L)de =0, — 0.

Px
In view of the concavity property of the function f(w) = —w Inw,
H. takes only negative values, with a maximum at 0. We have
v, <V
and

kpTH, = —U >0

H.(t) is bound to grow monotonically towards 0, while W(¢) drops
down to its minimum W, which is reached upon p,.

Note that properties of the free Brownian motion can be easily
inferred by setting b = 0 in the above discussion. Then, the dif-
fusive dynamics is sweeping and there is no asymptotic invariant
density. nor a finite minimum for W(¢) which decreases indefinitely:.



Reintroducing duality

Once we set b = —2DV® with & = &(x), a substitution:

pla,t) = 0.(x,1) exp[—D(z)]

with 6, and @ being real functions, converts the Fokker-Planck
equation into a generalized diffusion equation for 6,:

Viz),
omD "

and its (here trivialized in view of the time-independence of @)
time adjoint

0.0, = DAG, —

Vi),
2mD

A real solution is 0(x,t) = exp[—®(x)] and there holds (to be
regarded as an identity, not an equation to be solved)

o) = —DAO +

Vir) 1, b B 2
5D~ 5top TV 0 =Dl(VE) — Ad].

Let us note an obvious factorization property for the Fokker-
Planck probability density:

plx,t) =0(x,t) - 0.(x,1)
In view of (we restore an explicit ”overline” notation):
2% (x,t) exp|—3(z,t)/2mD] = 0,(x,t)
we immediately recover
5= (2mD)[® — (1/2)Inp]

If there are no external forces, ® disappears and we are left with
the free Brownian motion associated with s = —mD Inp.

Thank you for attention



