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Abstract 

Following Stratonovich, we make a general analysis of the external force manifestations in the dynamics of Markov diffusion 
processes. The transformation connecting transition densities of the process with the respective (unique) Feynman-Kac kernels 
induces the local field of accelerations, which equals the gradient of the Feynman-Kac potential and enters the straightforward 
analog of the Ehrenfest theorem. The latter encompasses not only Nelson's or Zambrini's diffusions but also the familiar non- 
equilibrium statistical physics processes, like the standard Brownian motion in the external force field (Smoluchowski diffusions). 

Let us consider [ 1,2] a Markovian diffusion X( t )  
in R 1 (space dimension one is chosen for simplicity) 
confined to the time interval te [0, T], with the point 
o f  origin X ( 0 )  =Xo. The individual (most  likely, 
sample) particle dynamics is symbolically encoded 
in the It6 stochastic differential equation, which we 
choose in the form 

dX( t )=b(  X( t), t) dt + x ~  dW(  t ) , (1) 

with X( 0 ) = Xo, D a diffusion coefficient, W(t)  a nor- 
malised Wiener noise, and where the drift field 
b(x, t) is assumed to guarantee the existence and 
uniqueness o f  solutions X( t ) .  They are then non-ex- 
plosive, i.e. the sample paths o f  the process cannot 
escape to spatial infinity in a finite time. The rules o f  
It6 stochastic calculus imply that the transition prob- 
ability density o f  the process (its law of  random dis- 
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placements) p(y, s, x, t), s<~t, solves the Fokker-  
Planck equation with respect to x ,  t, 

Otp=DAxp-- Vx(bp) , 

l irnp(y,s ,x,  t ) = ~ ( x - y ) ,  s<~t. (2) 
t ~ s  

Following Stratonovich [ 3 ] let us transform (2) by 
means of  a substitution 

p(y, s, x, t) =h(y, s, x, t) exp ~ ( y ,  s) 
exp ~ ( x ,  t) ' (3)  

which under an assumption that b(x, t) is the gra- 
dient field, 

b(x, t ) = - 2 D V ~ ( x ,  t) =, 

½ (b2/ZD+ Vb) = D [  (V~)  z -  ~q ) ]  (4) 

allows one to replace (2) by the generalised diffusion 
equation 

Oth=DAxh-  ( -  Ot~+ D[ - A q)+ (Vq)) 2 ] }h, 

lim h(y, s, x, t) = O ( x - y ) .  (5)  
t ~ s  
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Its solution (to be strictly positive) can be repre- 
sented in terms of the Feynman-Kac (Cameron- 
Martin) formula, which integrates contributions 
exp[ - f tg2(x ,  u)du/2mD] from the auxiliary po- 
tential t2(x, t), 

12/m=2D{-Ot~+D[ - A ~ +  (VI~)2] } 

= -2DOtqb+DVb+ ½b 2 , (6) 

with respect to the conditional [4] Wiener measure 

h(y ,s ,x , t )  

= f e x p ( - - -  2mD1 i I2(x' u) du) dW[y[x] 
$ 

(7) 

Since, as a consequence of ( 1 ), (2), h (y, s, x, t) must 
be strictly positive, we recognize it as the integral ker- 
nel of the dynamical semigroup operator 

1 t 

exp ( - -~ - -~  ~ (2mD2A-~2) du) ,  
$ 

with the appropriate restrictions (continuity, bound- 
edness from below) on ~2(x, t), and hence • implic- 
itly. All that is valid under an assumption that the 
process respects the natural [ 16] boundary data 
where the density of the diffusion (hitherto not ex- 
plicitly introduced) vanishes, with boundary points 
at infinity. 

Given p(y, s, x, t), we can utilise the It6 formula 
[ 1,2,5,8 ] which for any smooth function of the ran- 
dom variable states that its forward time derivative 
in the conditional mean reads 

l i m l  (~ p(x, t, y, t+ At)f(y, t + A t ) d y - f ( x , t ) )  
a,o At 

= (D+f) (X(t), t) = (Ot+bV+DA)f(X(t ) ,  t ) ,  
(8) 

with X(t)=x.  Then, for the second forward deriva- 
tive (in the conditional mean) of the diffusion pro- 
cess X(t), in virtue of (4), (6) we have 

(D2+X) (t) = (D+ b) (X(t), t) 

= (Otb+bVb+DAb) (X(t), t) 

1 
_ V~2(X(t), t ) .  (9) 

m 

This formula is a precise embodiment of the second 
Newton law (in the conditional mean) governing a// 
Markovian diffusions consistent with (1) - (7) ,  al- 
beit it is "Euclidean looking". The auxiliary potential 
(2(x, t) plays here the role of the corresponding force 
field potential: a somewhat surprising outcome for 
anyone familiar with the large friction (Smolu- 
chowski) limit of the phase space Brownian motion, 
however definitely [ 15 ] an inevitable one. 

Our previous discussion refers to the individual 
(sample) features of a particle propagation in con- 
tact with the randomly perturbing environment: the 
Wiener noise is superimposed on the systematic field 
b(x, t) of local drifts. By attributing an initial prob- 
ability distribution po(x)=p(x, 0) to the random 
variable X(t), we pass to the statistical ensemble 
(hence collective) analysis. Because of (1), (2) the 
forward dynamics of the densityp(x, t) =fPo(Y)P(Y, 
0, x, t) dy is uniquely defined. The microscopic law 
of random displacements p (y, s, x, t), s ~< t, generates 
all possible random propagation scenarios (sample 
paths) from each chosen point of origin X(0) =Xo, 
for the flight duration times t > 0. The statistical out- 
come (prediction about the most likely future of an 
individual particle) is casually considered as inde- 
pendent of the assumed probability distribution 
p(xo). However, once introduced, this density sets a 
statistical correlation between individual members of 
the ensemble, even if there are no mutual interac- 
tions to be accounted for. An interesting ensemble 
characterisation of the random motion is here possi- 
ble by introducing (for Markov processes only) the 
transition density p.(y, s, x, t), 

p (x , t )p . (y , s ,x , t )=p(y , s ,x , t )p(y , s )  , (10) 

which allows one to trace back the most likely statis- 
tical past of particles conditioned to comprise the 
evolving statistical ensemble with the distribution 
p (x, t). One should consult Refs. [ 6,7 ] to realize that 
any realistic diffusion (the free Brownian motion in- 
cluded!) admits (10): it has nothing to do with a 

physically realizable reversal of the generally irrever- 
sible process. In this case [5,8] we can define the 
backward time derivative of the process X(t) (now 
supplemented by the distribution p(x, t)), which in 
the jointly conditional and ensemble [6,7] mean 
reads 
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1 x dy)  12tmo~t( -- f p . (y , t - -At ,  x , t ) y  

= (D_ X) (t) = b.(X(t) ,  t ) ,  (I I ) 

with the corresponding It6 formula forf(x,  t), 

(D_J) (X(t) ,  t) 

= ( O t + b . V - - D A ) f ( X ( t ) ,  t ) .  (12) 

Because of (10) the drifts b(x, t) and b.(x, t) are not 
mutually independent, and indeed [5,8,9] on do- 
mains free of nodes (p vanishing at the boundaries) 
we have 

b.(x, t )=b(x ,  t ) - 2 D V l n p ( x ,  t ) .  (13) 

Consequently, the current velocity [ 5 ] field 

v(x, t) = ½ (b+b.)  (x, t) (14) 

can be viewed as the one supplementary to p(x, t) (it 
induces the osmotic velocity [5] notion u(x, t ) =  
DVlnp(x,  t )= ½ ( b - b . )  in turn) characteristic of the 
stochastic flows. This time elevated to the macro- 
scopic (statistical ensemble) level. In terms of the lo- 
cal velocity fields u(x, t), v(x, t), both of which are 
gradient fields, one can explicitly [ 10-12] demon- 
strate that 

(D2+ X) ( t) = Otv+ vVv+ 1 VQ= (D 2_ X) ( t ) ,  
m 

Q(x, t )=2mD 2 Aflt/2 
p l / 2  ' ( 1 5 )  

which extends the identity (9) to (D~X) ( t ) .  With 
the density p (x, t) in hands we can evaluate the mean 
(ensemble expectation) values of ( 15 ) and (9), 

E[ (D2+ X) (t) ] =E[  (D z _ X) (t) ] 

1 
- E[Vg2(X(t), t) ] (16) 

m 

where because of (cf. the original version of the 
Ehrenfest theorem [ 13,14 ] in quantum mechanics, 
which exploits the previously mentioned property that 
the probability density vanishes at the boundaries of 
the integration volume) 

E[VQ(X( t ) ,  t) ] =0  (17) 

a classical Liouville equation in the mean holds, with 

the "Euclidean looking" potential (in view of the ab- 
sence of a minus sign) 

E[ (Otv+vVv) (X(t) ,  t) ] 

1 
- E[(Vf2)(X( t ) ,  t ) ] .  (18) 

m 

On the other hand, in virtue of the continuity equa- 
tion, we have 

E[X( t )  ] = f xp(x, t) dx =~ 

d 
dt E[X( t )  ] = ½ (E[D+ X] + E[D_ X] ) 

=E[v(X( t ) ,  t) ] ,  

and furthermore (see also Ref. [ 15 ] ) 

d 2 d 
- ~  E[X( t )  ] = ~ E[v(X( t ) ,  t) ] 

(19) 

=E[ (O,v+ vVv) (X(t), t) ] 

1 
- E[Vg2(X(t), t) ] .  (20) 

m 

Hence the "Euclidean looking" second Newton law 
is found to be respected by the diffusion process ( 1 ) 
both in the conditional ( (9) )  and the ensemble 
((15), (20)) mean. 

Notice that the auxiliary potential in the form 
g2=2Q- Vwhere Vis any Rellich class (to allow for 
the Feynman-Kac formula for the semigroup ker- 
nel) representative, defines drifts of Nelson's diffu- 
sions, for which E[VQ] =0 =~ E[Vg2] = -E[VV],  i.e. 
the "standard looking" form of the second Newton 
law in the mean arises. 

Our previous discussion associates an a priori given 
drift (control) field b(x, t), te [0, T], with a poten- 
tial g2(x, t). Clearly, we encounter here a fundamen- 
tal problem of what is to be interpreted by a physicist 
(external observer) as the external force field mani- 
festation in the diffusion process. Let us invert our 
previous reasoning and take not b(x, t) but g2(x, t), 
t6 [0, T], to be given a priori as aprimary dynamical 
control for the Markovian diffusion ( 1 ), (2), which 
in principle we are capable to manipulate (the role 
attributed to the external observer). Then we shall 
say that the diffusion respects the second Newton law 
in the conditional mean, if 
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( D 2 X ) ( t ) =  1 VI2(X(t), t) (21) 
m 

holds true. 
The evolution in time of the gradient drift field b(x, 

t) and that (given a priori) ofg2(x, t) are compatible 
if 

Otb+bVb+DAb= 1Vg2 , 
m 

bo(x )=b(x ,O) .  (22) 

It is a sufficient compatability condition, which al- 
lows one to derive the drift dynamics from that of 
I2(x, t). In the time-independent case there is no real 
freedom in the choice of the initial Cauchy data for 
Eq. (22), and an identity g2o(X) = m (DVb0 + ½ b 2)(x) 
=t2(x,  0) must be satisfied. 

Eq. (22) sets a well defined Cauchy problem for 
b(x, t) in terms oft2(x,  t). If we associate an initial 
probability distribution po(X) with X(0),  then our 
(sufficient) compatability condition (22) can be 
equivalently (!) written as the coupled Cauchy 
problem 

O,p=-V(pv) ,  O,v+vVv= I V ( 1 2 - Q ) ,  
m 

po(x)=p(x ,O) ,  Vo(X)=V(X, 0 ) ,  (23) 

where bo(x)=Vo(X)+DVlnpo(x),  with the initial 
data essentially unrestricted, except for the time- 
independent case. 

Remark 1. One should not be misled by the seem- 
ingly complicated form of the nonlinear coupled 
Cauchy problem (23 ). It is precisely Eq. (22) which 
guarantees its solvability. Indeed, in virtue of the 
standard path integral identity [ 1 ] 

p ( y , s , x , t ) =  lim | dz~ ... t dz, (4~DAt) -"/2 , 
Ate0  ¢ , /  

exp(  4rtbAtl n-I tk) At]2) , k~=o [Zk+ l -- Zk -- b(Zk, 

At= t - s  , zo=y, zn=x, to=s, tn=t ,  (24) 
n 

it suffices to know the time development of the drift 
b (x, t) to have uniquely specified the time evolution 
of p(x, t) = f  p(y, s, x, t)p(y, s) dy, once po(x) is 
given. 

Remark 2. Since 

p ( y , s , x , t )  

f f = lira dzi ... dz~ 1-I P(Zk, tk, Zk+l, &+l) , 
At.t0 k = 0  

(25) 

we can perform the Stratonovich substitution (3) for 
each entry separately, and observe [ 3 ] that 

p(y, s, x, t) =exp [~(y ,  s) - q~(x, t )]  

X lim d z  1 . . .  dz~ [I  h(Zk, tk, Zk+l, tk+l) . 
At,~0 k =  0 

(26) 

The semigroup composition property is here clearly 
seen. It in turn justifies the procedures of Refs. [ 10- 
12]. 
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Appendix. Hydrodynamic representation of Markov 
diffusions 

At this point it seems instructive to comment on 
the essentially hydrodynamical features (compressi- 
ble fluid/gas case ) of problem (23), where the "pres- 
sure" term VQ is quite annoying from the traditional 
kinetic theory perspective. Although (23) has a con- 
spicuous Euler form, one should notice that if the 
starting point of our discussion would be a typical 
Smolochowski diffusion, whose drift is given by the 
Stokes formula (i.e. is proportional to the external 
force F =  - V V  acting on diffusing molecules), then 
its external force factor is precisely the one retained 
from the original Kramers phase-space formulation 
of the high friction affected random motion. In the 
Euler description of fluids and gases the very same 
force which is present in the Kramers (or Boltzmann 
in the traditional discussion) equation should reap- 
pear on the right-hand side of the local conservation 
law (momentum balance formula) (23). Except for 
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the harmonic oscillator example in view of (4) this 
is generally not the case in application to diffusion 
processes. 

Following the hydrodynamic tradition let us ana- 
lyze the issue in more detail. We consider a reference 
volume (control interval) [a,  fl] in R ~ (or A c R l ), 
which at time t~ [0, T] comprises a certain fraction 
of particles (fluid constituents), for an instant of 
course. Since we might deal with a flow (propor- 
tional to the current velocity v(x, t) ) the time rate of 
particle loss by the volume [or, fl] at time t is equal 
to the flow outgoing through the boundaries, i.e. 

# 

-Ot  f p (x , t )  dx 
ot 

=p(fl, t )v(fl, t ) - p (  ot, t )v( ot, t ) ,  (27) 

which is a consequence of the continuity equation. 
To analyze the momentum balance, let us allow for 
an infinitesimal deformation of the boundaries of 
[a, fl] to have entirely compensated the mass (par- 
ticle) loss (27), 

[ ot, fl] --, [ ot + v( a, t )At, fl+ v(fl, t)At] . 

Effectively, we then pass then to the locally co-mov- 
ing frame. This implies 

/0+i#At fl ) 
a ,  oliml(At p(x, t+ At) d x -  f p(x, t) dx 

ot + v a A t  ot 

1( 
Ol + v t~ A1  C~ 

# 

Let us investigate what happens to the local flows 
(pv) (x, t) if  we proceed in the same way (leading 
terms only are retained), 

B +  v # A t  # 
o # 

j (av) (x, t+ At) _ J (pv) (x, t) dt 

-- (pv 2) ( a, t )At+ (pv 2) (/3, t )At 
# 

+At  J Ot(pv) dx .  (29) 

Because of (23) we have 

dt(pv) = - V(pv 2) + p V ( f 2 -  Q) (30) 

and the rate of momentum change associated with the 
control volume [c~, fl] is 

( p v ) ( x , t + A t ) -  f ( pv ) ( x , t ) )  
ot + vo~At ot 

# 
P 

= jpV(O-Q) dx. (31) 

However 

VQ=VP/p,  p=D2pA l np ,  (32) 

and consequently 

p ~ p 

o/ 19l ot 
=E[VI2]~ +P(ot, t ) -P( f l ,  t ) .  (33) 

Clearly, VI2 refers to the Euler-type volume force, 
while VQ (or more correctly P) refers to the "pres- 
sure" effects entirely due to the particle transfer rate 
through the boundaries of the considered volume. The 
latter property can be consistently attributed to the 
Wiener noise proper: it sends particles away from the 
areas of larger concentration. See, e.g., also Ref. [ 7 ] 
for a discussion of the Brownian recoil principle, 
which reverses the original Wiener flows. 

As it appears, the validity of the stochastic differ- 
ential representation of the diffusion implies the va- 
lidity of the hydrodynamical representation (23) of 
the process. This in turn gives a distinguished status 
to the auxiliary potential 12 (x, t). We encounter here 
a fundamental problem of what is to be interpreted 
by a physicist (observer) as the external force field 
manifestation in the diffusion process. Should it be 
dictated by the drift form following Smoluchowski 
and Kramers, or rather by VI2 entering the evident 
(albeit "Euclidean looking") second Newton law, re- 
spected by the diffusion? In the standard derivations 
of the Smoluchowski equation the deterministic part 
(force and friction terms) of the Langevin equation 
is postulated. What, however, if the experimental data 
pertain to the local conservation laws like (23) and 
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there  is no  d i rec t  ( e x p e r i m e n t a l )  access to  the  mic ro -  

scopic  d y n a m i c s ?  
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