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We demonstrate that Brownian motion in the Smoluchowski approximation generates a rich class of Markovian diffusions in
the framework of Zambrini’s “Euclidean quantum mechanics”. The role of dynamical semigroups in this formalism is made

explicit.

A mathematical idealisation [1-3] of the individ-
ual Brownian particle dynamics, in case of free evo-
lution in the high friction regime, is provided by the
configuration space (Wiener) projection of the phase
space (Ornstein—Uhlenbeck ) process. One deals then
with the stochastic differential equation

dx(1)=/2Ddw (1),
X(0)=x,eR3, 1e[0,T], D>0, (1)

which is a symbolic expression representing an en-
semble of possible [3] instantaneous values (sample
locations in space), generated by the random noise
W(t) according to a definite statistical law. Equa-
tions (1) is known (via the stochastic Itd calculus)
to imply the Kolmogorov equation for the transition
probability density (heat kernel here), ie. a fun-
damental law of random displacements of the pro-
cess, which gives rise to the Fokker-Planck (heat)
equation for the time development of the probability
distribution of diffusing particles,

dp=DLp, p(x,0)=po(x). (2)

Then p(x, t) is the probability distribution of the
random variable X(¢), given the distribution p,(x)
of its initial values X(0) in R3,
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By introducing the (irrotational, rotv=0) local
velocity field,

V,
v=—D7” = 3,p=—V(pw), (3)

for all conceivable choices of the smooth function
po(x), the heat equation, if combined with assump-
tion (3), inevitably gives rise [4] to the local con-
servation law (the momentum balance equation in
the kinetic theory lore [5])

1
d,v+ (vV)v=— EVQ ,

ap'’? Voo
A I (4
p'z > ° Po )

Q= 2mD?

where m stands for the hitherto absent (albeit in-
cluded in the definition of the diffusion constant D
via the fluctuation—-dissipation theorem) mass pa-
rameter of diffusing particles, while the potential Q
is recognized to have the standard functional form
of the familiar de Broglie-Bohm “quantum poten-
tial”, except for the opposite [4,5] sign.

In case of an arbitrary non-symmetric distribution
po(x) we have the following property, which is
maintained in the course of the diffusion process
(X()eR?),
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! | coincide with the previously prescribed boundary
—3,0=-Y 9,P,, P,=D%3.9,Inp, (5) data for random propagation in the interval [0, 7'}.
m pi=1

where V=(4d,, d,, d3) and i, j=1, 2, 3. Apparently,
P,;=38,D*p A Inp in the totally isotropic case (see e.g.
ref. {5]). The unconventional ‘‘pressure” term
(—(1/m)VQ) in (4) is a distinctive characteristic
of all diffusions derivable (via conditioning as ex-
ample [6]) from the Brownian motion proper and
i1s a collective, statistical ensemble measure of the
momentum transfer per unit of time and per unit of
volume: away (—VQ corresponds to the conven-
tional Brownian propagation with the obvious ten-
dency of a particle to leave the area of higher con-
centration) or towards (+V(Q, see e.g. ref. [5]) the
infinitesimal surrounding of the given spatial loca-
tion xeR? at time ¢, at the very same rate.

The conventional Brownian dynamics is a very
special solution of the general Cauchy problem com-
posed of the mass conservation law (2) and the mo-
mentum balance equation (4) with the initial data
Po(x), v9(x) in principle unrelated, in contrast to as-
sumption (3). Then we arrive {6-8] at the rich fam-
ily of Markovian diffusions, all of which are the des-
cendants of the Brownian motion, the Brownian
motion itself included.

To be more specific, let us consider the boundary
probability distributions po(x)=p(x, 0), pr(x)=
p(x, T) for a stochastic diffusion process in R, con-
fined to the time interval [0, T]>¢. We realise that
the dynamical semigroup operator exp(tDA ) pro-
vides us with the probabilistic semigroup transition
mechanism, in the sense that the strictly positive se-
migroup (heat in our case) kernel is given,

h(3,0,x,t)=(4xDt) "2 exp[ — (x—v)?/4Dt]
=[exp(tDA)](y, x) . (6)

Following Schrodinger {6-9], we look for the joint
probability distribution

m(x, y)=0,(x,0)h(x,0,y, T)0(y, T), (7)
whose marginals

dem(x,y)=pr(y) ,

_[dym(x,y)=po(X), (8)

It is clear that for arbitrarily chosen (not necessarily
disjoint) areas A and B in R?, the probability to find
in B a particle which originated from A at time 0 and
was subject to the random (Brownian, e.g. Wiener)
perturbations in the whole run of duration 7, reads

m(A,B):dejdym(x.yy (9)
B

A

The existence of m(x, y) 1s guaranteed by the major
mathematical demonstration [9] that the solution
of the Schrédinger system (7), (8) in terms of pos-
itive functions €, (x, 0) and 8(y, T) is unique and
can always be found.

With the data 6, (x) and 6r(x) we can construct
respectively the forward and backward diffusive
propagation by means of kernel (6),

3,0,=DAO, . 3,0=—DA0,
0*()(‘,0):0*0()() ’ 0(‘7 T):(j'[‘(-x) E
te [0, 77 . (10)

where

0, 0x 0= [ A0, 08,0(0)dy

0(x,t)= J. hix, 1y, T)0p(y)dy, O<i<T.
(1)

The local conservation laws (2) and (4) are satis-
fied by

p(X,Z):(GB*)(X,l) 5
vix, t)=DVIn(6/6,) (x. 1),
xeR? 1[0, 7). (12)

Complete statistical information about the most likely
way the individual particles propagate, is provided
by the transition density p(y, s, x, t) =h(y, 5, x, 1) 0(x,
t)/8(y, s) which solves the Kolmogorov (Fokker—
Planck) equation associated with the (individual
particle motion recipe) stochastic differential
equation

dX(t)=b(X(1),1)dt+/2DdW (1),
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b(x,)=(u+v)(x,t), u(x,t):D—Zﬁ, (13)
see e.g. refs. [7,6,10,11]. Notice that in notation (8)-
(12) the standard Brownian motion is found in a
trivial way by substituting 6, =p(x, t), 8=1 for all
times te [0, T7].

Our previous discussion was entirely devoted to
the free Brownian evolution, and it is quite natural
to address the issue of the effects of external force
fields on the random propagation. In the high fric-
tion regime, like in case of (2), we should consider
the Brownian motion in a field of force, in the Smo-
luchowski approximation [1-3,12].

The Fokker-Planck equation governing the time
development of the spatial probability distribution
in case of phase space noise with high friction, in the
Smoluchowski form reads

1
b(x,t)= /_?F(x) s Po(x)=p(x,0), (14)
where S is the friction constant and the external force
we assume to be conservative,

F(x)=—-V®(x) . (15)
It is well known [12,13] that the substitution
p(x,1)=0,(x, t) exp[ —P(x)/2DB], (16)

converts the Fokker-Planck equation (14) into the
generalised diffusion equation for 6, (x, ) (our no-
tation is motivated by that of refs. [6,10] and for-
mulas (8)-(12)),

V(x)

610,‘=DA0*— 2m—D

0, , (17)
where (the mass m was here introduced per force,
but with the very concrete purpose of embedding our
discussion in the formalism of the “Euclidean quan-
tum mechanics™ [7])

V(x)= % (F?/2f+ DVF) . (18)

Since F?, D, B are positive, a sufficient condition for
the auxiliary potential V(x) to be bounded from be-
low (its continuity is taken for granted) is that the
source term g(x) in the familiar Poisson equation
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VF=—A®=g (19)

is bounded from below: g(x) > —c¢, ¢>0, c is finite.
Under this condition of boundedness, we know
[7,10,11] that eq. (17) defines the fundamental se-
migroup transition mechanism underlying the Smo-
luchowski diffusion. Indeed, by (17) we have in
hands the well defined semigroup operator
exp[—t(—DA+V/2mD)], whose integral kernel is
a strictly positive solution of (17) with the initial
condition lim,_oA(y, 0, x, t)=6(y—Xx).

The kernel is defined by the Feynman-Kac for-
mula (in terms of the conditional Wiener measure,
which sets an obvious link with the Brownian
propagation )

h(y, s, x,t)=h(V;y,s,x,1)
2

= lim (4nDAt)3"/2J dx - J - ‘e"p[ DA

- Z (— V(y+x;, t)At+ —(x"“—x")z)],

4DA¢
At=(t=s)/n, t;=jAr, j=0,1,2,..,n
o=s, t,=t, X()=x;, Xxo=Yy,
X=X, S<t. (20)

It is trivial to check that A(y, s, x, t) propagates
8,0(x) into a solution of (17),

0,0(x) =po(x) exp[P(x)/2DB] -

0,(x,t)= jh(y, 0,x,1)0,(y,0)dy, (21)
while apparently,
0(x,t)=exp[—P(x)/2Dp]

= [ hx 3 D) dy=0,x) (22)
for all 1e [0, T]. Indeed 8(x, t) (22) solves
3,6= DO+ ——49. (23)
B 2mD

where d,0=0 and

_((v9)? AD\,  V
DAG_W Zﬂ)e 2 DO (24)

as it should be. Since the deterministic evolution
governed by the Smoluchowski equation gives rise to

9
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a definite terminal (in the interval [0, 7']) outcome
pr(x), given po(x), a straightforward inspection
demonstrates that the Schrédinger system (7), (8)
1s solved by 8,4(x) (21) and 0,(x) (22) with the
kernel A(V; v, s, x, 7). As a consequence, we have
completely specified the unique Markov-Bernstein
diffusion interpolating between py(x) and p,(x),
which is identical with the Smoluchowski diffusion
itself. We know here [7,10] the transition probabil-
ity density (e.g. the law of random displacements
modified by the presence of external force fields)
p(_v.s,x,t):h(yw,x,t)w, (25)
8(y,s)

which is responsible for the most likely particle prop-
agation scenario. We have also automatically satis-
fied [7.10] the local conservation laws

dp==Y(pv), du+ (V)= 7:7‘7‘ 10y .

P(x.0)=po(x), v(x,0)=v, (xX). (26)

where p(x, t), v(x, t) are defined by formula (12).
Notice that in the detailed derivation, the above mo-
mentum balance equation does not appear directly,
but in the indirect way by taking the gradient of the
much weaker (Hamilton-Jacobi) identity

V—Q=2mD[3,S+D(VS)?*] .

S(x, 1)=41n(6/6,) . (27)
In our case, apparently,
v
v(x, 1) =DV (—®/Df—Inp) = — /%VCD—I);/—)
dp=V[{1/BY(V@)pl+DAp, (28)

to be compared with the Smoluchowski equation.
The above discussion admits various generalisa-
tions. For example, by choosing a definite (refer-
ence) Smoluchowski force potential and then the
auxiliary (induced) one V, we have fixed the strictly
positive kernel A(}; y, s, x, 1). By playing with dif-
ferent choices of the boundary data p,, p; (unrelated
to those initially considered) and seeking a solution
of the Schrédinger system (7), (8), we can generate
a rich class of (conditional) random motions, all of
which are governed by conservation laws (26) with
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the potential . However, their forward drifts b(x,
t) would have a functional form completely di-
vorced from the simple Smoluchowski expression.

We can as well start form the general Cauchy prob-
lem (26) with completely arbitrary V' (except for
being continuous and bounded from below). Then
the corresponding Smoluchowski problem can be re-
produced only if the potential allows one to decouple
from eq. (18) the force field F. The task can be for-
midable, since even in the simplest, one-dimensional
case, ( 18) becomes the well known Riccati equation
[14].

Let us emphasise that our analysis heavily relies
on the phase space (Langevin) formulation of
Brownian motion as the problem of random accel-
erations in the presence of friction [1-3]. It lends
support to the conjecture that the quantum mechan-
ical looking evolution of statistical particle ensem-
bles (nonlinear Nelson diffusions, which according
to ref. [15] are governed by the Brownian recoil
principle) are derivable from the phase space ran-
dom motions as well.
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