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The mean acceleration formulas introduced by Nelson in his investigation of links between quantum theory and Markovian
diffusions are necessary but insufficient conditions for a unique specification of the process. The resolution of Schridinger’s
probabilistic conjecture in terms of Markov-Bernstein processes and the related (induced) dynamical semigroups resolves this
problem and sets the uniqueness criteria. We discuss the role of analytic time continuation in this formalism and demonstrate
that on the appropriate level of description, the imaginary time transformation executes a mapping between two physically dis-
tinct families of Markovian diffusions, both proceeding in real time.

In the long history of investigations of possible
links between quantum theory and the theory of the
Brownian motion, and more generally of Markov
diffusion processes, a special role is played by the so-
called Nelson stochastic mechanics [1,2], which
aimed at establishing the definite equivalence prin-
ciples between solutions of the Schrédinger equation
and Markov diffusions. Although mathematically
consistent it was criticised on physical grounds and
especially the role of the mean acceleration formulas
(we call them the Nelson—-Newton laws) was at best
disputable.

The original analysis [3] due to Schrodinger of the
possible probabilistic significance of the heat equa-
tion in the quantum context (unfortunately unno-
ticed and forgotten since then) has inspired the ge-
neralisation [4,5], see also refs. [6,7] where another
standpoint is favoured, which places the issue of the
Brownian implementation of quantum dynamics in
the framework of Markov-Bemstein processes. Then,
Nelson’s formalism is derivable from first principles
as one of the alternative realisations of the Schré-
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dinger programme (Zambrini’s “Euclidean quan-
tum mechanics” is another).

Although not expilicit in the original formulations
of stochastic mechanics, the kinetics theory descrip-
tion of the statistical ensemble dynamics is hidden
behind the Nelson mean acceleration formulas.

We deal in fact with the Cauchy problem for the
coupled system of nonlinear equations, which is
composed of the probability conservation law

dp=—V(pv) (h

and one of the momentum balance equations (we
quite intentionally use the kinetic theory lore here)

(0, +vV)v= iV(V—Q) (Zambrini) (2)
or
(0, +vV)v= %V(Q—V) (Nelson ) , (3)

where (diffusions in one spatial dimension are con-
sidered throughout the paper for simplicity of
arguments )

Q=2mD*(Ap'/?)/p'/? (4)

and Q,= — @ is immediately recognized as the fa-
miliar de Broglie-Bohm *“‘quantum potential”. Its
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statistical origin in the present context was discussed
elsewhere [8-11].

In the above formulation the initial data po(x),
vo(x) give rise to the purely deterministic evolution
of p(x, t) and v(x, ¢t). D is the diffusion constant,
while V is the continuous potential of the conserv-
ative force field bounded from below.

If we introduce the mean local velocity field (for-
ward drift of the diffusion process)

b(x,t):v(x,t)+D%i (v+u)(x, 1), (5)

then the individual particle dynamics which might
underlie either the system (1), (2) or (1), (3) is
governed by the stochastic differential equation

dX(0)=b(X(2), 1) dt+ \/2DdW (1),
X(t)=Xo, (6)

where W(t) stands for the Wiener noise, while X(¢)
is the random variable of the diffusion process, in-
terpreted as the idealised picture of position of the
particle affected by the random environment at time
t (usually belonging to a certain finite time interval
{t5» T] whose boundaries under appropriate restric-
tions on the drift might be extended ). Equation (6)
is in fact the major assumption in the stochastic for-
malism devised by Nelson, since it explicitly takes
the random sample path concept as the primordial
entity in the theory. Accordingly, the random dis-
placements are generated by the Wiener noise W(t),
which superimposes probabilistic fluctuations upon
the deterministic contribution b(x, ¢) d¢. The latter
is a typical path ensemble input, since it includes the
mean velocity evaluated over all sample paths orig-
inating from x at time ¢, in the repeatable series of
single particle trials: b(x, t) encodes the mean ten-
dency of motion of individual members of the given
(via the initial state preparation procedure) ensem-
ble, which remains basically unidentifiable unless
sufficiently many sample flight data are accumulated.

Via the stochastic Itd calculus eq. (6) implies the
validity of the Kolmogorov (for the transition prob-
ability density of the process) and the Fokker—Planck
equations. Since we have given the initial probability
distribution po(x) its subsequent evolution is con-
trolled by

dp=DAp-V(bp), p(x, to)=po(x), (7
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which in view of (6) coincides with (1). However
(1) or (7) alone cannot be utilized to reconstruct
the random dynamics in full detail. Indeed, if we as-
sume the forward drift b(x, ¢) in (7) to be a priori
given for all times of interest (like ze [¢,, T']), then
the forward transition probability density for short
times in virtue of (7) takes the form

p(y, t, x, t+ At)

_ [x—y—b(y,t)At]z)
~ (4 1/2 exp| —
(4nDAt) exp( ADAL ,

O<Atxt, (8)

and via the chain rule (with the Chapman-
Kolmogorov equation consecutively utilized) gives
rise to the standard path integral expression for the
transition density,

p(y, s, x,t)= lim | dz, .. J dz, (4nDA¢)—"/?

At—0

1 n—1
chp(— ZD_Atk;o [Zk41 — 2z —b(2, tk)At]Z) ’

At=(t=5)/n, zZp=y, zZ,=X. (9)

Hence something specific must be assumed about the
time developement of b(x, t) to make the stochastic
picture complete. There is no way to generate b(Xx,
t+ At) from the earlier data by means of the purely
stochastic processing. For this purpose we must know
d,b=0u+0dv. d,u is provided by the Fokker-Planck
equation for the density, d,u= —DAv— V(uv), hence
the only freedom left in the formalism to account for
the random medium and particle response to exter-
nal force fields pertains to d,v.

By now it is well known that the only way to in-
corporate restrictions defining the dynamics of b(x,
t), is through the formulas (we take here an appar-
ent lesson from the original derivations of ref. [5]
to present the Nelson-Newton laws in the form mak-
ing explicit the induced semigroups intervention)

D% X=D2% X= Loy
m

«3(DyD_+D_D,)X= %V(V—ZQ) (10)
or
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D2 X=D? X= - (20-V)
m

@%(D+D_+D_D+)X=—%VV, (11)

whose equivalent versions are (2) (for (10)) and
(3) (for (11)).

We assume a given pair of diffusion equations in
duality (i.e. mutually time adjoint) for real func-
tions & and 6,,

3,6,=DA6,—V8,/2mD
3,6=—-DAG+VO/2mD, (12)

where D is the diffusion constant, m the mass of a
particle subject to diffusion. The potential V is as-
sumed to be continuous and bounded from below,
which implies the existence of the strictly positive
semigroup kernel generated by the operator H=
—2mD?A + V. Below we shall identify D=7/2m; the
space dimension is reduced to one for clarity of
discussion.

Let h=h(x, s, y, t), s<t, be the fundamental so-
lution of the diffusion equations (12). Then the ini-
tially chosen function 6,(x, —17), T=0, is propa-
gated forward,

6.05.00= [ 6.z —4TIh(z, —4T,x, 1) 8

IZ—%T,

while the final choice of &(x, 1T), T>=0, allows us
to reproduce the past data 6(x, ), t< 4T, through
the backward propagation

6(x.0)= [ hx 1,3, 4T) 60,1 dy.

In virtue of the semigroup property of the kernel 4
we have also

6,.(x, t)= j 8.(z,5) h(z,s,x,t)dz,

O(x,s)= Jh(x, 5,z,1) 0(z,t) dz,

—iT<s<t<giT, (13)

hence a solution of (12) with the prescribed bound-
ary data at 17 might be given.
By using ref. [4] we have here determined the
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Markov-Bernstein process, which allows one to
propagate (hence both predict the future and repro-
duce the past given the present) the probability
distribution

P(x 1) =0(x,1)0,(x, 1), (14)

respectively forward and backward in time. Statis-
tical predictions about the future can be accom-
plished by means of the forward transition proba-
bility density

ey,

O(x,s)’ (13)

p_(x’ 8, ), t)=h(-x’ S ¥, t)
while the past can be reproduced statistically by
means of the backward density

6,(x, )
é*(ys t)

for the diffusion with fixed boundary probability
distributions g(x, —17T) and g(x, i T).

With g and p, in hand, we can straightforwardly
[8,9] evaluate the conditional expectation values,
which are necessary to establish the mean forward
and backward derivatives in time for functions of the
random variable X(f)eR'. The backward,
(D_X)(t)=b,(x,t), and forward, (D,X)(f)=
b(x, 1), drifts of the Markovian diffusion (15), (16)
read thus {4,5]

b(x,t)=2DV6/6, b.(x,t)=—2DV8,/8,,

Pulx, 8,3, 1)=h(x,5,y,1) (16)

so that the continuity equation follows,

p=31(b+b,),
d,p=—V(pp)=DAp-div(ph)
=—DAp—div(pb,) . (17)

If we define @=exp(R+S) and 8,=exp(R-S5),
with R, S real functions, then there holds

9=2DVS, da=4%(b-5b,)=2DVR (18)
and (17) can be rewritten as

(1/2D)3,R=—4{AS—(VR)(VS) —

d,4i=—DAD—-V (D), (19)

the gradient form of (17) being due to Nelson [1,2].
If (17) (respectively (19)) holds, then the nec-
essary consequence of (12) is [4-7]
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V=2mD{3,S+D(VS)*+D[(VR)>*+ AR]}, (20)
where (14) implies that

A pl/ 2
7= = ¢
holds. Except for the sign inversion O has the fa-
miliar functional form of the Bohm-Vigier “quan-
tum potential”, see e.g. ref. [10].

We can here argue in reverse (we adopt the stronger
version of Nagasawa’s argument [6,7]): given (17)
and (20) then the system (12) follows.

By evaluating the forward and backward time de-
rivatives of b(x,t) and b,(x, t) we can verify that
the gradient form of (20),

9, 0=2DAG+ Va2 + Vi + (1/m)VV, (22)

2mD?[(VR)?+ AR]=2mD? (21)

implies the validity of the Nelson—-Newton law with
the (sign) inverted potential

tm(D.D,+D_D_)X(1)=VV, (23)

which was primarily rejected by Nelson as the phys-
ically relevant characteristics of the Markovian dif-
fusion (see e.g. ref. [1]).

Notice that (23) can be rewritten in the form

(8, +0V)o=(—-1/m)V(Q—V)
=(1/m)V(V-0), (24)

reminiscent of the momentum balance equation in
the kinetic theory of gases and liquids, which should
in principle apply to all conceivable osmotic diffu-
sions (we are just dealing with one [10,11]).

Let us now introduce another pair of diffusion
equations in duality,

3,6,=DA6, — (20-V)6,/2mD ,
3,6=—_DAO+(20-V)6/2mD, (25)

where V is the same as before, while Q=2mD?
X (Ap'/2) /p'/? and p(x, t) =O(x, 1)6,(x,t) differ
from the previously utilised objects by the absence
of overbars, which is to distinguish solutions of (12)
from those of (25).

All previous arguments can now be repeated by re-
placing the kernel A(x, s, y, t) of (12) by k(x, s, y,
t) of (25). The transition probability densities (no
overbar!) p and p,, respectively, allow one to arrive
at the new drifts b(x, ¢) and b,(x, t). The continuity
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equation in form (17) holds, d,p= —V(pv), and as
a consequence of (25) we then arrive at the identity
(compare with (20))

2Q-V=2mD[d,S+D(VS)*]+Q, (26)
where apparently

(Q—V)/2mD=9,S+D(VS)* —>

@, +vV)v=(-1/m)V(V=-Q), (27)

to be compared with (11). Here @ (x, ¢) = —Q(x,¢)
is identifiable as the previously mentioned Bohm-
Vigier “quantum potential” [8,10].

Let us observe that the identity (26) implies
2Q=2V+4mD|[34,S+D(VS)?], hence

(20-V)/2mD=V/2mD+29,S+2D(VS)?, (28)

which allows one to replace the system (25) by the
equivalent one where the original potential ¥/2mD
of (1) acquires a correction 29,S+2D(VS)% While
(25) was utilised by Zambrini [4,5], the system with
the corrected potential was utilised by Nagasawa
[6,7], however without notifying that the equiva-
lence is established when the diffusions with crea-
tion and annihilation are replaced by Markov-
Bernstein diffusions.

It is well known that the equations of continuity
and (26) uniquely (Madelung representation) de-
termine solutions of the Schrédinger equation

2imDo yw=[(—=mD?*/2)A+V)y,
w(x, t)=exp(R+iS)(x, 1), (29)

but now solutions of the system (25) determine R
and S,

R=}{1In(66,), S=1In(6/6,). (30)

For a discussion of the multiply connected (due to
nodal surfaces) configuration space see ref. [5].

The previous argument holds also in reverse, since
the standard Madelung route applies, and then we
know that the continuity and Hamilton-Jacobi (26)
equations imply [6,7] the coupled system of diffu-
sion equations (25).

One immediately verifies that [5] the gradient
form of (26) implies the Nelson—-Newton law in the
form

Ym (DoD_+D_D,)X(t)=—~VV, (31)
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adopted by Nelson [1,2] to characterise diffusions
underlying quantum mechanical phenomena.

Stochastic acceleration formulas play the role
[10,11] of momentum balance equations (in the
mean!) for stochastic flows, and by finite difference
arguments [9,12] they give an insight into random
transport phenomena. However, the knowledge of
gradient velocity fields u, v (&, #, respectively) is in-
sufficient for a unique reconstruction of the under-
lying stochastic theory. A good example is provided
by Nelson’s own discussion (ref. {1], p. 100) of the
harmonic oscillator ground state, where the expres-
sions for the drifts read

(DL X)(1)=—px, (D_X)(t)=yx,

x=X(1), (32)
which allows one to evaluate
\m(DyD_+D_D,)X(t)=—my>x,
im(D.D,+D_D_)X(t)=my*x, (33)

with the outcome that both Nelson-Newton laws
seemingly apply to the same Schrodinger wave func-
tion. This obstacle generally appears in the discus-
sion of quantum mechanical stationary states.

As well there is no obvious reason to postulate
[1,2] the validity of (23) against (31) in case of
freely diffusing particles, when

Im(D,D_+D_D,)X(1)=0
=im(D,D, +D_D_)X(1), (34)

unless the acceleration formulas are derived from
(12) and (25) instead of being postulated.

To exemplify the above discussion, let us take ad-
vantage of the '=0 analysis of ref. [ 10]. The solution

p(x,t)=(4nDt)~ "% exp(—x?/4Dt) (35)
of the heat equation d,p0=DAp satisfies
v=—DVp/p=x/2t, Q=m(x*/8t>~D/2t),

1_~ DVp X
——VO0=—--"=—~ —

m ¢ 2t p 4r?
3 p= —V(pb), (6,+17V)t7=~%VQ_. (36)

We have here the V=0 version of (1) and (2), so
we are automatically led to the diffusion system (12},
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which evidently reduces to (23) once we define

8,=exp(R-S)=p, =1 -
R=—S=In(p""?). (37)

In this case the Markov—-Bernstein process is irre-
versible and characterised by the backward drift
b,=—-2DVB,/B,. The process coincides with the
very traditional (Einstein-Smoluchowski) Brown-
ian motion of particles originating at time /=0 from
the source at x=0. Let us mention that in a different
notation and with no special physical motivations,
this example appears in section III of ref. [4].

The corresponding quantum mechanical problem

1d,w=—DAy,
w(x,0)=(na?) *exp(—x?/2a?), (38)
refers to the =0 version of (31) with
px, )= 1wl*(x, 1)
={a/[r(a*+4D%*) ]V}
xexp{ —x2a?/(a*+4D%?) ],
v(x, t)=4D%tx/(a*+4D*?) . (39)

The corresponding potentials R and S come from the
explicit solution of the Schrédinger equation. With
[10] a given forward transition probability density
implying (39)

p(»,0,x,1)=(4nDt)~'/?

Xexp(— (x—y+2Dyt/a2)2> (40)

4Dt

and knowing R, S (hence ® and 8, ) one can easily
reproduce the kernel & and then p,, see formulas
(15), (16), without overbars and & instead of /. This
diffusion is a reversible process.

Let us consider the harmonic oscillator potential
V(x)=4myx2. The ground state process of Nelson’s
stochastic mechanics was identified in refs. [13-15]
as the Markov process of the Euclidean (i.e. ima-
ginary time) image of the harmonic oscillator, but
an analysis in terms of (25) has never been per-
formed. There is a real subtlety involved since so-
lutions of the diffusion equations (12) and (25)
quite sensitively depend [16-18] on the energy re-
normalisation: the operation V't E, E being a con-
stant, looks quite innocent from the point of view of
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Nelson-Newton laws since V(VXE)=VV. It has
however quite dramatic consequences for the solu-
tions of (12) and (25). This point was overlooked
in refs. [14,15,4,5] where the gradient formulas were
supposed to be sufficient to define the stochastic the-
ory completely, while they are the necessary condi-
tions for its derivation.

For quantum mechanical stationary states we have
(via (28))

20-V=V-2E,
w(x, t)=wo(x) exp(—iEt/2mD) . (41)

Then for the once chosen potential V system (25)
differs from system (12) merely by the additive re-
normalisation of the potential V- V'—2E. What are
the consequences of such a change of the reference
level for the potential on the stochastic processes
involved?

It is well known (ref. [1], section I; ref. [17],
theorem 1.5.10; ref. [18], ch. 5) that the Markov
process of Nelson’s stochastic mechanics, which is
associated with the harmonic oscillator ground state

Wo(x)=(y/2nD)'? exp(—yx?/4D)

has [13,14,1] the forward transition probability
density

p(y, s, x,t) = (y/2rD{1 —exp[ - 2y(t—s)]})'/?

_ z{,)g.—_zgxp[;ut:m}f)
Xexp( 2Bt =expf - 2y(1—5)1}/’

s<t, (42)

which solves the forward Fokker-Planck equation
[18,9]

d,p=DAp—V.(bp)=DA,p+yV,.(xp), (43)

where b(x, t) = —px. It is however equally well known
that the semigroup kernel k from which (via for-
mulas (13)-(16)) the density can be derived is a
solution of the diffusion equation

3,k=DA k- (1/2mD)(V-Ey)k,
Ey=mDy. (44)

Hence, on the basis of the previously outlined der-
ivations, we have the following consistent choice of
the Schrodinger equation,
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2imDd = —imD*Ay+ (V+Ey)y, (45)

as then only (45) would yield (44).

It however amounts to considering system (12)
with V- V+E| as the alternative to realisation (44)
of the Schrodinger-Bernstein-Markov diffusion
problem. The consequence is dramatic, since

d,h=DA h—(1/2mD)(V+E,)h (46)

implies [18] the forward transition probability
density

by, 8, x,t)=(y/2nD{1— exp[ —2y(t—s)1})"/?

y{xexp[—y(t—s)]1—y*}
Xe""(‘ 2D{1— exp| —2y<t—s>1})

xexp[—-y(t—5)], (47)

which solves d,p=DA ,p—yV,.(xP) and does not al-
low for stationary solutions at all.

Let us notice that we can pass from (42) to (47)
by means of the y— —y transformation, which to ex-
ploit the phase space derivation [19,10] of the
Smoluchowski equation,

d,p=(w?/B)V.(xp) +DAP,
y=w?/B, B>2w, t>p"', (48)

for a harmonically bound particle in a thermal bath,
amounts to passing from the standard attractive har-
monic potential to the inverted [20] (repulsive) one,
w—iw= w*x?> —w2x? with obvious physical
implications.

The above analysis justifies the correctness of
Nelson’s guess that the mean acceleration formula
(20) is a necessary condition for the derivation of
the diffusion process underlying Schrodinger wave
mechanics, albeit it is not a sufficient condition: one
must invoke (12) and (25) to resolve ambiguities.
On the basis of the previous discussion (see also refs.
[10,14,15]) we decline the intuition of imaginary
time diffusions. Both considered Markov-Bernstein
processes are undoubtedly the real time diffusions:
the physically relevant distinction lies in the inver-
sion of the mean accelerations for the stochastic
flows. The imaginary time transformation (like the
imaginary frequency transformation connecting two
oscillator problems) on the appropriate level of de-
scription plays the role of the technical device map-
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ping one diffusion into another, compare e.g. espe-
cially our V=0 discussion both in the present note
and in ref. [10].

At the moment we leave aside the fundamental
problem of the nature (origin and properties) of the
random environment, whose material presence is in-
dispensable on physical grounds [24], together with
the possible phase-space implementation [10,21,25]
of the configuration space diffusions. Some hints in
the essentially probabilistic direction can be found
in refs. [26-28], these linked to the kinetic theory
concepts (hydrodynamical limit of the Boltzmann
equation) in refs. [29,30]. The purely deterministic
approach to the Brownian motion might be prom-
1sing as well [31-33].

I would like to thank Professors J. Kupsch, J.P.
Vigier, J.C. Zambrini for discussions, Professor
Nagasawa for giving access to unpublished material
(ref. [7]), and Professors R. Kerner and J.P. Vigier
for hospitality in Paris.

References

[1] E. Nelson, Dynamical theories of the Brownian motion
(Princeton Univ. Press, Princeton, 1967).

[2]1E. Nelson, Quantum fluctuations (Princeton Univ. Press,
Princeton, 1985).

[3] E. Schrodinger, Ann. Inst. Henri Poincaré 2 (1932) 269.

[41J.C. Zambrini, Phys. Rev. A 33 (1986) 1532.

[5]1J.C. Zambrini, J. Math. Phys. 27 (1986) 2307.

{6] M. Nagasawa, Probl. Th. Rel. Fields 82 (1989) 109.

214

PHYSICS LETTERS A

4 January 1993

[7] M. Nagasawa, The equivalence of diffusion and Schrédinger
equations: a solution to Schridinger conjecture,
unpublished.

[8] P. Garbaczewski, Phys. Lett. A 143 (1990) 85.

[9] P. Garbaczewski, Phys. Lett. A 147 (1990) 168.

[10] P. Garbaczewski, Phys. Lett. A 162 (1992) 129, sce also
[21-23].

[11]P. Garbaczewski, Nelson’s stochastic mechanics as the
problem of random flights and rotations, in: Nonlinear
fields: classical, random, semiclassical, eds. P. Garbaczewski
and Z. Popowicz (World Scientific, Singapore, 1991 ).

[12] J.P. Vigier, Astron. Nachr. 303 (1982) 55, see also [24].

[13] F. Guerra, Phys. Rep. 77 (1981) 263.

[14] F. Guerra and P. Ruggiero, Phys. Rev. Lett. 31 (1973) 1022.

[15]S. Albeverio and R. Heegh-Krohn, J. Math. Phys. 15 (1974)
1745.

[16] LM. Gelfand and A.M. Yaglom, Usp. Mat. Nauk 11 (1956)
77.

[17]J). Glimm and A. Jaffe, Quantum physics - a functional
integral point of view (Springer, Berlin, 1987).

[18] H. Risken, The Fokker-Planck equation (Springer, Berlin,
1989).

[19] G.E. Uhlenbeck and L.S. Ornstein, Phys. Rev. 36 (1930)
823.

[20] G. Barton, Ann. Phys. (NY) 166 (1987) 322.

[21 ) P. Garbaczewski, Phys. Lett. A 164 (1992) 6.

[22] P. Garbaczewski and J.P. Vigier, Phys. Lett. A 167 (1992)
445,

[23] P. Garbaczewski and J.P. Vigier, Phys. Rev. A, in press.

[24] L. de la Peia and A.M. Cetto, Found. Phys. 5 (1975) 355.

[25] P. Garbaczewski, J. Math. Phys., in press.

[26] L. de la Pefa and A.M. Cetto, J. Math. Phys. 18 (1977)
1612.

[27] A-M. Cetto and L. de la Pefia, Phys. Rev. A 37 (1988) 1960.

[28] G. Gaeta, Phys. Lett. A 155 (1991) 73.

[29] H. Spohn, Rev. Mod. Phys. 53 (1980) 569.

[30] R. Marra, Phys. Lett. A 148 (1990) 41.

[31]} T. Geisel and J. Nierwetberg, Phys. Rev. Lett. 48 (1982) 7.

[32] C. Beck, Physica A 169 (1990) 324.

[33] G. Trefan et al., Phys. Rev. A 45 (1992) 1249.



