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Brownian motion and its descendants according to Schrodinger
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We revisit Schrédinger’s original suggestion of the existence of a special class of random processes, which have their origin in
the Einstein-Smoluchowski theory of Brownian motion. Qur principal goal is to clarify the physical nature of links connecting
the realistic Brownian motion with the abstract mathematical formalism of Nelson and Bernstein diffusions.

The original analysis [1] due to Schridinger of the
probabilistic significance of the heat equation and of
its time adjoint in parallel remained unnoticed by
the physics community and since then has been for-
gotten. It reappeared however in the mathematical
literature [2-5] as an inspiration to generalize the
concept of Markovian diffusions to the case of Bern-
stein stochastic processes. But, without conse-
quences for a deeper understanding of possible phys-
ical phenomena, which might underlie the
corresponding abstract formalism.

Schridinger’s objective was to initiate investiga-
tions of possible links between quantum theory and
the theory of Brownian motion, an attempt which
culminated later in the so-called Nelson’s stochastic
mechanics [6,7] and its encompassing formalism of
refs. [8-10] in which the issue of the Brownian im-
plementation of quantum dynamics is placed in the
framework of Markov-Bernstein diffusions (see refs.
[11-13]).

Schrodinger’s discussion [1] of the analogy be-
tween wave mechanics and random phenomena of
classical statistical physics, starts with recalling an
obscurity present in the notion of probability (Born’s
postulate ) adopted in quantum theory. For the pur-
poses of the probabilistic interpretation it seems that
one should decide in advance whether one is con-
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sidering a probability after one knows what has hap-
pened or rather a probability of what is to happen.
The quantum mechanical density p(x, t)=
(vw) (x, t) follows from introducing two symmet-
rical systems of y~-waves propagating in the opposite
directions of time. Therefore (Eddington, cited in
ref. [1]): “one of these must presumably correspond
to probable inference from what is known (or is
stated) to have been the condition at a later time”.
To conform with the classical notion of probabil-
ity (an event i.e. sample space is needed to define
the probability space of the axiomatic definition) the
most natural way is to look at a classical probabilistic
system, which structurally is as close as possible to
the wave (Schridinger) equation of quantum me-
chanics. In case of free (¥’'=0) propagation, the heat
equation with its time adjoint well fits the purpose:

i0,y=—=DAy
10,y=D Ay

4,6,=DAS,,
d,0=—DAE6, (1)

-1

where the familiar imaginary time transformation is
indicated as the recipe to pass from quantum theory
to statistical physics.

Here v, ¥ are complex while 6,, 6 are real func-
tions and the diffusion constant D is left unspecified
(D="%/2m gives rise to the Schrodinger equation in
its standard form).

Let us now consider, basically following Schrédin-
ger [1] and Jamison [5], the transition probability
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density (heat kernel) A(x, s, v, t) for the Brownian
motion {Y,, t,<t<t} on an interval [¢,, £,], i.c.

)2
h(x,s,y,t)=[4rnD(t—s)]~'/? exp(_ 4%’7?5) ,
(2

where Y, takes values in R! (Brownian motion in one
spatial dimension ).

If we prescribe the initial particle distribution p, (x)
for the random variable Y,, then all intermediate dis-
tributions of {Y,, ¢, <t<{,} are determined in terms
of p,(x) and A(x, s, y, t) including the terminal one
as well. We have indeed

pix, t)= Jh(z, t,x, ) (z)dz, t=t. (3)

Starting from the classical Brownian law of random
displacements (2) we can ask the following ques-
tion: Assuming that a test particle originates from x,
at t, and terminates its route in (about) x, at t,, what
is the probability to find it in-between x and x+ Ax
at the intermediate time t, t;<t<t,?

The pertinent intermediate probability distribu-
tion is given [ 1] by the conditional transition prob-
ability density formula (identified as the Bernstein
transition density in refs. [5,8-10]

p(xa t)=P(xl’ zl;x’ t; X2, ZZ)

_ h(xl’ tla X, t)h(xa t: X2, t2)
h(xls tl’ X2, t2)

(4)

It is then obvious that this formula for p(x, t) can
always be rewritten as a product of the solutions 6(x,
t) and 6,(x, t) of the heat equation and its time ad-
joint p(x, t)=(66,)(x, t) provided ¢, <t<t,.

Let us now define p(x, #,) =po(x) and p(x, T) =
pr(x) to be the initial and final probability distri-
butions determined by the Bernstein transition den-
sity (4) with ¢, <ty<T<t,. Although we know the
general Brownian transition mechanism (the law of
random displacements) as given by (2), the condi-
tioning present in (4) allows one to formulate a new
probabilistic problem. In fact we are now revisiting
Schrodinger’s original question [1,5,13], i.e.: What
is the most likely way for the particles to evolve as t
goes from t, to T once we have prescribed in advance
both the initial po(x) and terminal p(x) probability
densities for the process (given the prior transition
mechanism (2))?
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The answer is given by deriving from the original
(prior) process {Y, f,<t<t,} a new one {X,
L <tyo<t<T<t,}, which is presently known as the
Markov-Bernstein process [8-10]. Two remarks can
be made immediately.

Remark 1. The above discussion can be rephrased
in more phenomenological terms. Suppose that the
observer is measuring a coordinate x of the event (a
particle entering the observation area 4, the mea-
surement accuracy does not matter) at time £, viewed
as the initial time in a repeatable series of one-par-
ticle experiments. Accumulating the data one arrives
at the empirical distribution, which asymptotically is
found to approximate a probability distribution
Po(x). It is then taken to characterize the “state of
the system” at time £,.

Assume also that the observer is collecting the co-
ordinate data of these repeatable events (entering
particles) in the detection area B at a later time 7.
Let them approximate the terminal probability dis-
tribution pr(x). If pr(x) is far from what it should
be according to the law of large numbers (i.e. when
pr(x) is much different from [dy A(x, t;, y, T)po(y),
with A4 given by (2)), then we arrive at the core of
the original Schrodinger discussion: What are the in-
termediate probability distributions p(x, t) and what
is the particular transition mechanism responsible for
the probabilistic evolution from po(x) to pr(x) if no
external forces are affecting the particle except for the
Brownian noise?

Remark 2. The stochastic process connecting po(x)
with p(x) is Markovian, if and only if py = 6,6, and
pr=0:8,r holds, where the functions 8,(x),
6. (x)(i=0, T) come out as the boundary data for
solutions of the (dual) heat equations (1). Then, the
transition probability densities for the Markovian
(interpolating) diffusions are defined as follows [ 8-
10],

_ 0y, 1)
p(x,S,y, t)—'h(x: S,y, t) e(x, S) s
O, (x, 5)
* b 3 ’t =h 2 3 ?t b
DX, 8, ¥, ) (xsy)e*(y,t)
t0<S<z<T. (5)

h is given by (2), p is the forward and p, the back-
ward transition density of the interpolating diffusion
process.
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Let us stress that if the role of p(x, s, y, t) is to
allow for statistical predictions about the future, given
the present p(y, t)=/p(x, s, y, t)p(x, s)dx, then
D.(x, s, y, t) allows one to reproduce the past sta-
tistical data of the process, given the present p(x,
$Y=/p.(x, 5, p, )p(y, t)dy, s<t. If, in case of re-
peatable processing with single (sample) Brownian
particles, p(x, s, y, t) represents a microscopic trans-
port mechanism for the diffusion process, then quite
on the contrary, the backward “transport” executed
by means of p,(x, s, y, ) is merely a mathematical
device allowing one to reveal the statistical history
preceding the present data. Such a process should not
be confused with any realistic particle transport going
opposite to the time arrow.

Let us proceed with the further analysis as follows.
The Bernstein transition density (4) plays a fun-
damental role in the stochastic process construction
of refs. [2-5,8-10]. Once the moments ¢, <ty<T<t,
are fixed and the primary transition mechanism (A
of (2)) is known, then the particular form of the
boundary probability distributions po(x), pr(x) is
uniquely determined by the choice of the boundary
points x, and x,: they are the endpoints of the Bern-
stein “bridge” to be travelled in the time interval [¢,,
t,]. All intermediate densities p(x, t), to<t<T, are
then uniquely determined as well.

It thus appears that Schrodinger’s problem of de-
ducing a probabilistic evolution from py(x) to p(x)
requires the identification of an appropriate “bridge”,
i.e. x|, t; and x,, ¢, as a substantial ingredient.

This can be applied to specific situations induced
by the conventional Brownian motion.

Case 1. Following ref. [8] we can ask for a prob-
abilistic interpolation between the coinciding
boundary distributions:

p(xs tO) =p(x9 T)

( )l/ ( )

in the time interval [¢,, T].

As emphasized in ref. [8], no physicist would ex-
pect such an evolution while having the traditional
picture of the Brownian motion in memory. How-
ever (6) immediately follows from (2), (4). In-
deed, let us set f{p=—Bf=—T and t;,= —a=—1,,
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0< f<a and choose x; =0 as a source of particles.
If we confine attention to these Brownian particles
only, which after a time 2« from their emission are
bound to be back at (or at least not far away from)
the initial location x;, =0=Xx,, then (4) reduces to

0~(mes) oo~ )
PED=\Tb@i=)) P\~ (ar=r)
=(8nDa)'?h(0, —a, x, t)h(x, 1,0, ) , (7)
where the transition densities

h(0, —a, x, 1)

=[4nD(t+a)]~'72 CXP(‘ ZB(XT-HT))’

h(x, t,0,a)
B X
=[4nD(a—1)]~ "2 exP(‘ 4D(a—l)> ®

solve the system of heat equations in duality (1) in
the time interval [ — ¢, o] a¢. The Bernstein “bridge”
which induces the boundary data (6) is thus estab-
lished and the forthcoming analysis of the process in
terms of (5) becomes possible.

Case 2. Let us set x; =0, ;=0 in (4). Then

P 1/2
2
p(x, t)=<41tD(tz—t)t)

X2 (xp=x)? | x3 )
X exp(‘ 4Dt~ aD(5,—1) T aDr, )’

O<t<t,, 9

refers to the Bernstein “bridge” which comprises
particles originating from the source x; =0 at £;,=0
and whose destiny is to reach a terminal point x, after
the flight time ¢,.

Assume ¢ to run over the interval [0, T], T<t,,
and x, to be a distant spatial location (one can set
Xx;=V1t,, with | V| not too small). It is apparent that
for such a terminal regime the Bernstein “bridge”
effectively degenerates into the usual Brownian tran-
sition density

p(x,1)~h(0,0,x,1),
x;large, t,>T, te[0,T]. (10)

The infinite x5, ¢, limit is under control here as well.
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This tells us that if particles emanating from x, =0
at t,=0 are bound to reach a distant point x, after
a sufficiently long flight time #,, then their proba-
bility distribution p(x, t) on a short (relative to ¢,)
time scale is given by the heat kernel (10).

We have thus created a situation where the Bern-
stein “‘bridge” effectively accounts for Brownian
particles outgoing from x, =0 at t, =0 (while on their
route towards a distant terminus X, to be reached at
the remote time 7,).

Case 3. Quite analogously one arrives at the de-
scription of particles incoming to a terminal point x.,
when the Brownian source X, is distant enough and
the flight time appropriately large. Indeed, the choice
X,=0, t,=0 implying t,<t<0, yields
(t=ti=1t|=1t], —t=|¢])

14 2
- 1
”(x”)‘(4nD|r| (n =111 ))

( x2 (x=x)? x3? )
X exp| — - + .
4Btt|  ADH—tt]) AP |
(11)
If |x,| is sufficiently large and ¢, < <0 we imme-

diately arrive at the approximate formula (with a
controllable infinite x,, ¢, limit)

x2
~ —1/2 -
p(x, t)~(4nDjt|) eXp< 4D|t|>

=h(x,10,0). (12)

Compare, e.g., (8) and account for T<¢<0, t, < T.
Formula (12) refers to the particles incoming to
x,=0, which originate from a distant Brownian
source, at the remote emission moment ¢,.

Remark 3. In case 2 the boundary distributions
Po(x), pr(x) would reveal the spreading phenome-
non, quite consistent with the standard intuitions.
However, the exactly opposite (shrinking, implo-
sion) effect arises in case 3, which is by no means
surprising once the problem is analyzed in terms of
Bernstein “bridges”. While looking like a time re-
versal of the (irreversible according to the folklore
understanding) Brownian evolution, it is simply a
degenerate case of the Bernstein “bridge” with a dis-
tant source of particles, which are bound to reach a
fixed terminal point.

If we have given transition probability densities
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characterizing a Markovian diffusion, then the drifts
(local mean velocities) of the stochastic flow can be
evaluated as follows [7,14]. We can write

b(x, At~ J. dyp(x, t,y, t+A)y—x,
b, (x, 1)At~x— ‘[dzp*(z, t—At, x, t)z, (13)

where At is a small time increment, b is the forward
(mean velocity of particles outgoing from x at ¢)
while b, is the backward (mean velocity of particles
incoming to x at ¢) drift of the diffusion, f,<t<T.
The drifts (13) stand [7] for the substitutes of time
derivatives, non-existent [6,7] in the naive sense for
Wiener paths. Here (D, X) (t) =b(x, t) is the left
time derivative in the conditional mean, while
(D_X)(¢t)=b,(x, t) is the right one.

In case 1 both formulas (13) can be immediately
evaluated by means of (5). Up to the irrelevant mul-
tiplicative constants we can set (6, refers to the for-
ward, 8 to the backward evolution (1))

9*(x7 t)~h(09 —Q, X, t) ’

0(x7l)~h(x’t909a)7 -ﬁ<t<ﬂ<a’ (14)
and consequently (see, e.g., ref. [8]) there holds
2DVe X x(a+t)
b(x, t)= 0 T a T ol p? =u+tv,
_ 2DV, x _x(a=t)
bo(x,t)=— T atis o =—utv.
(15)

We have here a natural decomposition into two
terms, one of which (i.e. v) is odd, while the other
(i.e. u) is even with respect to time reversal. More-
over (compare, e.g., the exponents in formulas (6),
(8)) the following relations hold,

u=2DVR, v=2DVS,

x? x2 S
X _R-S, ——— = R+S,
4D(a+1t) R-S, 4D(a—t)
Re__ox* o
TTaD(a?-1?)’ °T T AD(a?—t?)’

6, ~exp(R—-S), O~exp(R+S),
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p(x,t)=(60,)(x,t) ~exp(2R)

In the above v is called the current velocity, while u
is called the osmotic one. The osmotic velocity is in-
variant under time reversal and is intimately related
to the concept [6,15,16] of osmotic transport: u=
DVp/p. Indeed, a macroscopic intuition of the os-
motic diffusion [15] tells us that if one has set a par-
ticle concentration (area of higher density) some-
where, then the Brownian noise induces an expansion
of particles and a continual lowering of the concen-
tration as a consequence. In fact, if the concentration
is given by p(x, t), then the purely osmotic (Brown-
ian) escape rate of particles from the area of higher
density is defined [15] by the amount crossing a
given point per time At:

—DVp(x, t)At=—u(x, t)p(x, t)At, (17)

which implies that p is a solution of the heat equa-
tion d,p=DAp. Notice that the actual flow of escap-
ing particles is opposite to «, hence proportional to
—u.

This situation is drastically different from the one
Jor flows consistent with the conditioning underlying
case 1. Formula (15) tells us [14] that b,(x, ?) is
the mean velocity evaluated over all sample paths
which reach the point x at time ¢, while b(x, ¢) is the
mean velocity evaluated over all sample paths which
emanate from x at time z. The average flow through
X at time ¢ is thus

1(b+b,) (x, t)=v(x, 1) . (18)

Let us compare this outcome with the degenerate case
2. Then 6,(x, t)~h(0, 0, x, t)=p(x, t) and there
holds [8]

b(x,1)=0, b.(x,t)=— 22 _X (19)
0, !

so that

Fo+b) (e =tbx =3 =- 2L, (20)

which is the well-known mean particle flow char-
acterizing the standard Brownian motion. See, e.g.,
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ref. [16] where the phase-space discussion of the is-
sue is given.

In case 3 the roles of the drifts are reversed, and
we get (6~h(x, ¢, 0,0)=p(x, 1), t<0)

bu(x,1)=0, (21)
so that

X Vp
b+b, W)= 7T =—, 22
Hb+b) (== g == (22)

which is an exact reversal of the standard formula
(20).

Let us recall that we refer to degenerate Bernstein
“bridges™ here, so that (20) is an average over par-
ticles emitted by a Brownian source at {=0 and
bound to reach a distant terminus, while (22) is an
average over particles coming from a distant Brown-
ian source to a terminus x=0 to be reached at the
time t=0.

If we take 1 (b+b,)(x, t)=v(x, t) as the general
current velocity definition, which applies to the de-
generate cases 2 and 3 as well (in ref. [16] we have
derived the mean velocity {(u),.=v(x, t)=—-DVp/p
= —u(x, t) by phase-space arguments), we observe
[14,8] that this implies

dp=—V(pv), dv+vVv=-VQ,

=—1—/2L2’ (23)
P)

Q
whenever p(x, t) has the form (4), degenerate cases
included. The momentum balance equation (second
equation in (23)) is an equivalent expression for
Nelson’s stochastic acceleration formula
im(D,D.+D_D_)X(t)=0 (see, e.g., refs. [8§-10]
and refs. [6,7] for a further discussion).

An extension of the above analysis to more com-
plex statistical problems (Bernstein “bridge” imple-
mented interference of Brownian flows) and to the
possible Brownian origin [16] of the stochastic
(Nelson’s) reformulation of quantum mechanics will
be a subject of a subsequent paper.
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Let us observe that for a Bernstein “bridge” (4)
with arbitrary finite spacetime endpoints x,, ¢, and
X», t, the choice of the new spatial coordinate origin
at 1 (x;+x,) and the shift of the time scale origin to
the point 1 (z,+¢,) allows one to replace (4) by the
fully symmetric expression (when written in relative
coordinates)

xl=—X2=—X, t|=—t2=—"T, (A.l)
where

p(X, t)=P(_Xa _T; X, t; Xs T)

= [4nD(T?—1?) ]2 (2T)\/2 exp(i%?)

(X+x)3(T—1)+ (X—x)2(T+z)>
2D(T*—1%)

X exp( -

(A.2)
and

hW—-X,-T,x,t)=[4nD(t+T)] /2
xexp( - SEILTZ0)

4D(T*—1?)
h(x,t, X, T)=[4rD(T—1)]~"/?
(X—x)2(T+1)
e - i) (Aa3)

which in case of X=0 reduces to the previously con-
sidered example (6)-(8). By defining

p(x,t)= (exp2R)(x, 1),

h(x,t, X, T) >

S(x,t)=%ln(h(_X’ T x D) (A4)

we realize that
p(x, 1)=(06,)(x, 1) . (A.5)

Here the solutions of the dual system (1) have the
form

0.(x, t)=exp(R-S)

2

X
—_ 1/4 — —_
=(27) exp(4DT)h( X, -T,x1),
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0(x, t) =exp(R+S)

2

X
_ 1/4
=(27) exp(4DT)h(X, LX, T),

(X+x)(T—t)+ (X—x)*(T+1)

R(x)=— 8D(T2—17)

X2 2T
*apr T l“(4nD(T=—t2))’
(XHx)H(T=1) = (X=x)*(T+1)
Stx )= 8D(T2—17)

T+t
+1 .
4 ln(T t) , (A6)

where the x-dependent contributions have a canon-
ical form allowing one to demonstrate that

2DV,
bu(x, )=~ Zg—* = ~2DV(R-S)
=(v—u)(x,1),
2DV8

b(x, )= T =2DV(R+YS)

=(v+u)(x,1) (A.7)

consistent with Nelson’s definition of the drifts in
terms of the gradient (current and osmotic) velocity
fields u(x, t), v(x, t).

Notice that the time reversal of (A.6) is accom-
plished by the simultaneous ({— —¢, X— —X) map-
ping: the time label inversion is accompanied by the
interchange of the spatial endpoints, the time scale
endpoints are kept fixed.
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