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We extend to special relativity the nonrelativistic arguments by which the phase space Brownian motion of an ensemble of
massive particles in the diffusion regime (the problem of random flights) is governed by the Schrédinger equation. The corre-
sponding relativistic dynamics is governed by the Klein—-Gordon equation.

A satisfactory relativistic generalisation of Nelson’s stochastic mechanics [1,2] (see also refs. [3-7]) still
remains an open question despite the numerous attempts [8,9] to solve it. Apparently by imposing the Markov
property on diffusions in Minkowski space, one is led either to the violation of causality, or to purely deter-
ministic motion [10-13]. On the other hand it is well known [12,13] that the phase space of a particle is a
natural arena for the construction of a relativistic stochastic process. We have given before [1] a phase-space
stochastic derivation of Nelson’s theory in the case of free motion (see also ref. [3] for a more general dis-
cussion ), hence it is rather tempting to examine the relativistic extension of the given arguments and eventually
to analyse possible links with the relativistic invariant field equations like e.g. the Klein—-Gordon or (once ran-
dom rotations are incorporated into the formalism) the Dirac ones.

In contrast to Minkowski space considerations [8,9,14-17], the passage to relativistic theory is free of con-
ceptual difficulties on the phase-space level (a more extended discussion of this issue can be found in ref. [18]).

We are additionally motivated by our previous attempt [4,7] of placing a stochastic description of spin-1
in the relativistic setting, which in fact enforces the phase-space approach to stochastic mechanics (and even-
tually to quantum theory). However, a consistent phase-space derivation (not a formulation! that would place
the problem in the Wigner function approach) of Nelson’s stochastic mechanics is not available in the liter-
ature. Although some partial arguments in this direction can be found in ref. [19] (see also ref. [ 18] for more
references).

Our hunch is that once the physical reality of particle trajectories [1,4,20] is accepted as the essential the-
oretical input in the quantum context, then there is no escape from the deepened phase-space discussion. Quite
in analogy with the analysis of the Einstein-Smoluchowski versus the Ornstein-Uhlenbeck-Kramers descrip-
tion of the Brownian motion, we look for realistic physical phenomena (like e.g. energy—-momentum transfers
with strictly observed conservation laws) which are responsible for the particle destiny in for example the single
particle interference experiments [20].

Before proceeding to a further phase-space discussion, let us mention the apparent problem arising in this
approach (raised by a referee of the present paper): regular quantum mechanics suggests that, as long as the
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dynamics is represented by canonical transformations which are linear in position and momentum (i.e. qua-
dratic Hamiltonians, Gaussian case ), the phase-space approach is very convenient since the quantization pro-
cedure uses nothing but the classical information available on the system. The basic difficulty with the phase-
space approach to stochastic mechanics is that even in the simpler Gaussian cases, it is not possible to exhibit
a diffusion of Fenyes-Nelson without solving first the associated Schridinger equation. No algorithm using
exclusively the classical information on the system is known. This “strange” feature is due to the fact that the
classical potential ¥ (x) is not, as suggested by stochastic mechanics, sufficient to characterise this diffusion.
Hidden behind Nelson’s formalism is the Bohm—-Vigier quantum potential essential for this purpose. This is
known for several years. It is however possible to present Nelson’s approach without even mentioning the role
of this quantum potential. This was the way followed by Nelson himself since 1966 in good faith. But this way
drove him into inextricable difficulties regarding the lack of “locality” of stochastic mechanics, a hardly sur-
prising feature for anyone familiar with the effects of the quantum potential.

In fact, motivated by refs. [1,3] we advocate a “physical rehabilitation” of the role of the quantum potential
in Nelson’s theory. In particular, we wish to understand the two kinds of well-defined diffusions known today
as being associated with quantum mechanics, namely the Fenyes—Nelson (in real time) and Schrédinger—
Bernstein ones, constructed in 1985 and 1986 [21] in the “Euclidian quantum mechanics” as two different
manifestations of physical phenomena taking place in the real time only, with the notion of complementary
(mutually compensating to satisfy the action-reaction principle by particle interacting with the diffusive me-
dium) diffusions involved [3].

To illustrate the concept of complementarity let us exploit the following example due to Vigier: for an analogy
one can consider a droplet of ink whose constitutive elements undergo Brownian motion in a diffuse medium
(say a bucket of milk). The elements of the medium also undergo stochastic motions. Both fluids interact and
undergo separately both drift and osmotic motions in general (these concepts are explicitly borrowed from the
theory of osmotic diffusion whose example is provided by Nelson’s stochastic mechanics). In equilibrium the
milk is tainted. In terms of two types of diffusion (see refs. [1,3]), the ink elements undergo diffusion analysed
in quantum terms, while the diffusion of milk elements is governed by most standard diffusion processes re-
specting the osmotic law of diffusion and it might be irreversible like in the case of the canonical free Brownian
motion {1].

There is no phase-space theory of osmotic diffusion in the literature, as well as there is no phase-space der-
ivation of Markov-Bernstein diffusion which seem to be the most general osmotic diffusions associated with
Schrédinger wave mechanics. Therefore, our discussion must remain at the moment partly heuristic, with the
goal to identify possible lines of attack for the completion of the phase-space programme.

Let us recall that for a particle with mass m following the relativistic phase-space Brownian motion in the
course of which all energy-momentum fluctuations are of purely elastic origin (the problem of random ac-
celerations in special relativity), the particle four-momentum remains on the hyperboloid p —p?=m?c? for
mass m. This means that the pertinent random motion is a diffusion process on the pseudo-Riemannian man-
ifold [13,22,23] selected by demanding p, to be positive. In fact it is the well-known Lobachevsky space with
a natural Lorentz invariant metric, where one-half of the Laplace-Beltrami operator serves as the diffusion
generator. )

In the nonrelativistic discussion of ref. [1], while reconciling the Brownian motion of a single particle with
that of the particle ensemble, we have exploited certain concepts of the kinetic theory of gases. Elements of
the relativistic kinetic theory [24,25] will be utilised below to some extent.

In the nonrelativistic situation, the classical dynamical system (we generalise here the discussion of ref. [1]
by passing from R!XR! to R*XR? and incorporating external conservative forces from the very beginning)
dx »p dp

G h g=F=-W. V=V (1)

is replaced by the white noise Langevin problem with friction. Below we shall admit both signs ( ) of the
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external forces, which is motivated by our previous discussion [1,3] on links of Brownian motion with quan-
tum dynamics and the resulting concept of complementary diffusions: the relevant physical characteristic is here
the reversal of the involved stochastic acceleration.

c_2 G _,

dt " m dr

It implies the evolution (Fokker-Planck-Kramers) equation for the joint position—-momentum distribution
associated with the statistical ensemble of diffusing particles:

3,9+ (p/m)-V.PLF-V, 0=V, ({pP)+ 1A, D, D=D(x,p, 1) . (3)

Like in the case of the Boltzmann equation, the Cauchy or boundary problem (3) is not easy to solve and
information about the statistical features of (2) is usually drawn from the hierarchy of the local conservation
laws (moment equations) induced by (3).

By introducing the local moments of @(x, p, t),

1
w(x, 1)

Prx= o [ @)@, wn=[ap o), (4)

the first two conservation laws take the form
. o Fio 1 -
d,w=—-V-(wb), (0, +0-V)0,=%F E—;V,»P,-j—év[, (5)

where the local velocity and the pressure tensor for the flow are given by

G (P« , P = (.%sz%‘ _ﬁiﬁj)w . (6)

m

It is a crucial observation of ref. [1] (established through analysing the explicit solution for free Brownian
propagation) that in the diffusion regime when we pass to the problem of random flights, the dominant con-
tribution to the pressure tensor divergence equals —E&w so that the friction term is cancelled. The remainder
of — (1/w)V,P; is then surprisingly

1

—;VjPi}s’“=—V,—Q, (7)
where

- AWI/Z
PE™ =D?w(x, 1)V,V; In w(x, 1), Q=2D2W, (=D&, (8)

and J(x, t) except for the opposite sign displays the functional dependence on w(x, ¢) which is characteristic
for the familiar Bohm-Vigier quantum potential arising in connection with the hydrodynamical (Madelung)
description of quantum dynamics.

Accordingly, the momentum balance equation in the diffusion regime takes the form of the frictionless problem

~, V
(8, +0-V)0,=-V,; (Qi ;), (9)
where both J and ¥ might appear with signs opposite to what would conventionally happen in the case of the

classical potential V and (Bohm-Vigier) quantum potential Q.
At this point we shall invoke the complementarity hypothesis [1] (whose validity was explicitly verified for
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the free Brownian diffusion) that, given the diffusion problem (5), (9), automatically defines the comple-
mentary diffusion-against-the-flow problem

d,p=—V-(pv), (6,+v-V)v=—V(¢ ;E - Q), (10)
where

A 1/2
Qq=—Q=—2D2%2——. (11)

In ref. [1], in the context of free Brownian propagation, we established the existence of a nontrivial link be-
tween these two (e.g. complementary) diffusions: through scaling the current velocity by the time dependent
factor s=s(¢) we introduce a new local clock for the diffusion and in addition map (9) into (10), (11). The
compensating (exactly opposite) effects of complementary diffusions become then manifest. Since such ve-
locity scaling appears in the study [26] of ergodic systems in thermal equilibrium with the reservoir, the above
mapping might have quite deep roots worth a further analysis.

Let us stress that complementary diffusions in fact appear quite naturally in the discussion of Markov-
Bernstein processes [21] but we augment the original Zambrini discussion by demanding the existence of the
mapping linking (9) with (10) in general. The two types of diffusion then no longer deserve an independent
existence and once we know (5), (9), the diffusion (10) is automatically defined and in reverse, both taking
place in real time.

Let us pass to the relativistic generalisation of the above observations. In the finite difference approximation
with small time increments we can evaluate the net change of @ due to noise as follows:

P(x+ (p/m)At, pT FAL, t+ At) — P (x,p, t) =~ (3{A , P)AL+EV- (pD) At . (12)

In the case of the relativistic invariant [24,25] phase-space distribution f(x, p), the role of Af is taken by the
proper time increment cAt=yAt with p=(1-v%/c?)~'/2, p=p/m. Then (12) should be replaced by

S(x+ (p/m)At, pE FAT) —f(x, p) ~ (noise term) Az, (13)
where

x=(ct,x), p=(po,P), P.P*=p5—P*=m*?,

p=mcu=mdx/dr, Do=mc,, p=m,u, F=dp/dz, F,u*=0. (14)
Apparently the noise term in (13) must be a relativistic invariant expression coming from the assumption that
a Markovian random walk is taking place on the hyperboloid for mass m. As mentioned previously it amounts
to studying diffusion on the pseudo-Riemannian differential manifold with the one-half Laplace—Beltrami op-

erator [27] as the generator of diffusion.
Let us set py>0 on p, p*=m3c? and introduce the hyperbolic parametrisation [23]

p.p*=R?>  po=Rchr, p'=Rshrsinfcos¢, p?=Rshrsinfsing, p>=Rshrcosé,
0<R<oo, 0<r<oo, 0<f<m, 0<o<2n. (15)

It is instructive to notice that (15) emerges from the general polar parametrisation [28] {R, v,, v,, 03} upon
formal identifications v, =ir, v,=0, v3=¢, where i is the imaginary unit effecting the map cosir=chr, sinir=ishr.

By adopting the general formulas of ref. [28] to the hyperbolic case, we find that the Lorentz invariant dif-
ferential operator — [, = A, —382%/3p3 has a natural decomposition

1 8 pad 1

—U=-mr g T g2 81> (16)
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where the Laplace-Beltrami operator A, g on the three dimensional {r, 6, ¢} manifold u,u*=1 reads (compare
e.g. also ref. [13])

1(0 ,8. 1 8. .9 1 8
ALB_sth(arShrar-*-s1n()(')9s 0@+sin205q7')' (17

The invariant volume element on u,u“=1 is given by

h®r sin 0 dr d0 dp= d3u/u°, ug=(1+u®)"2. (18)

Remark 1. Given a representation g—L(g) of the Lorentz group on the domain of A;p, we have the fol-
lowing invariance property: L(g) A g=AsL(g) where L(g)/(&)=f(g~'&).

By referring to the hyperbolic coordinates (7) we immediately realise that an explicit dependence on R of
any function f(p) is automatically eliminated once we pass to functions depending on p/R instead of p. Then

S06 D) p/me) =%, 1), ~ D, )= —35 Acafix,u) (19)

The above property comes from the coordinate independent definition

w. 0 )
LBf ( ga£>’ xl=r’ x2=¢a x3=05 g= {det(gij)]l/za (glk)—l=(gik),
sh’r

sin%0 (20)

8;=0 (i#j), gu=1, 822 =sh’r, 833 =
The Lorentz invariant analogue of the friction term needs some care. Apparently, we can at once introduce
the coordinate independent object div[B(&)f], where the divergence of a given vector field on the manifold
M reads

: 14 i i Ri
divy X= 2% (gX*), X'=B'({u)f(x u). (21)

It is however useful to recall that the nonrelativistic velocity increment leading to (12) has the form
Av= — [&v— (F/m)]At+ B(At), with B(At) representing the white noise contribution. When passing to special
relativity, we need u*u, =1 to be satisfied, hence the general (infinitesimal ) four-velocity increment must obey
u*Au,=0.

Obviously we expect F*u,=0 to hold true for the Minkowski force, therefore the analogue B*(¢, u) of the
friction term u must obey B*u,=0 as well. A convenient choice of B#(¢&, u) is suggested by the general con-
struction of the Minkowski (Lorentz) force, and we set

B#*(& u)=B* (& u)u,, B# = _ B B°"=—B"°=($v’, (22)
other components of the antisymmetric tensor B*¥ vanish. Then B*=PB"y, can be written as

B°=¢&w*/c, B=&w, y=(1-v*/c?)"'2, (23)
so that B*u,=0 and the correct nonrelativistic limit is guaranteed in the manifestly relativistic invariant dif-
fusion equation generalising (3)

i e ) £ =L wy = S A ) + 5o (B (6 1) (24)

10
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The random noise amplitude { and the friction coefficient ¢ are relativistic scalars and appear in conformity
with the nonrelativistic formulas (2)-(4).

Remark 2. Eq. (3) can be recovered from (24) in the nonrelativistic regime |v| <« ¢. By consulting refs.
[24,25] one learns that the left-hand-side of (22) gets transformed into that of (3). The strong operator limit
properties of the Laplace-Beltrami operator for |»|/c—0 can be deduced from the heuristic argument sh r~
jv|/c< 1, hence r=~|»|/c. Since then ch r~1 we realise that A g—m?c?A,. The R® Laplacian arises explicitly
in the spherical coordinates.

Like in the nonrelativistic case, instead of trying to solve the diffusion equation (24) on its own, we shall
pass to the associated conservation laws for the local (configuration space conditioned) moments of the joint
distribution f(x, u).

Analogously to procedures effected with respect to the relativistic Boltzmann equation [24,25], we shall mul-
tiply both sides of (24) with appropriate polynomials in the four-velocities and then integrate them with re-
spect to the invariant Riemann measure measure on u,u*=1, u,>0.

Eq. (24) differs from the relativistic Boltzmann equation in its right-hand-side where the binary collision
term is replaced by the diffusion term, hence usual arguments about the collision invariants do not apply im-
mediately. All necessary integration formulas pertaining to the left-hand-side of (24) can be directly borrowed
from ref. [24]. We must only handle the respective integrals involving the diffusion term. For this purpose it
is useful to invoke prop. 2.1, ch. X.2 of ref. [27]. Let M be a pseudo-Riemannian manifold and A the Laplace-
Beltrami operator on M. A is a symmetric operator, that is

j W(x)(Av)(x) dx= j (Aw)(x)v(x) dx, (25)

M

if dx is the Riemannian measure on M, and w is infinitely differentiable, while v is a differentiable function
of compact support. The support restriction can be relaxed, since for (25) to hold we need the divergence
integral to vanish,

jdiv(wgrad v—vgrad w) dx=0. (26)
M

It can certainly be guaranteed if v decreases sufficiently rapidly outside a given compact (in our case with 7—c0).

To specialise the above arguments to (24) we set dx=d>u/u,, v=/f(x, u) and next w=1 or w=mu*.
In case of w=1, we have

3
[ afr <o, (27)
Up
For w=mu* we deal with
3 3
m_[u“Af(x,u)%:mJ-(Au”)f(x,u)%. (28)
To evaluate (28) we need only to know [10] that

a3f

durdu®’

% Arpflx, u)=a*

~ Imie (29)

since accordingly

11
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ALBu#=O (30)

and thus (28) vanishes like the corresponding collision invariant expectation value in the kinetic theory of
gases. We mention that w=u”u° would imply the integral (28) not to vanish.

The conservation laws (moment equations) induced by (24) do not significantly differ from those known
in the standard relativistic kinetic theory [24,25]. Since for a differentiable function w(u) there holds [24]

of d*u d J' d?u J’ dw d3u J’ df d3u J dw d3u
w2 _ 7 aZZ_ n 222 + w2 _ - w22 2%
jwu Ox* uy  dx* wu Uy “ o Uy T wE u* u, T ) (D)

and in addition to (30) we have

9

d’u
gur B o =0

the choice of w=1 implies
3
6ufu”f(x,u)9—“=0, (32)
Up
while for w=mu* we get
3 3
ayfmcluuu”f(x,u)ﬂ= f (£Fr—Bo)fx, u) LY. (33)
Uy Uo
Notice that if F# is independent of u we get
3
[ o0 S <, (34)
0

where p(x) is a relativistic invariant quantity describing a reduced (space-time) probability distribution of
particles diffusing in phase-space. If F#=F#(x, u) we shall consider the simplest example linear in u of
Ft=y,F* with F*=F*"(x) and then
3 1 3
[ o S <ppw,, o, =1 [ufinw 2. (35)
U p U
With the notion of the configuration space conditioned local moment v, (x), we can rewrite (32) as the con-
tinuity equation

3, (pv*) =0, (36)
and (33) as
3
9, T =+pFr—pb* or +pF®y,_pb*, bﬂ=Ljﬂm@,u)f(x,u):b#(x). (37)
p(x) Up

Remark 3. The Minkowski space conditioned local moment v,(x) of f(x, u) is not a genuine four-velocity
unless normalised, v,— v,/ (v,v*)'/2. This normalisation is only one [25] of the ways utilised in the literature
to introduce a satisfactory relativistic analogue of the hydrodynamical velocity of the flow.

The mean energy—-momentum tensor 7#” can be decomposed as follows (to be compared with the nonre-
lativistic formula),

12
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d3u
Up

T# =mc?pv*v”+ J.f(x, wymcer(u* —v*) (u’ —v") =mc*(pv*v* +p*) , (38)

where p*” is called the stress tensor (pressure in the nonrelativistic case ). Then (37) is transformed accordingly
upon employing the continuity equation (36),
mc?[v¥d v+ (1/p)d, p*}=2F*=b¥, or LF*p,—b". (39)

At this point we shall directly exploit the nonrelativistic lesson (1)-(9) and assume that in the diffusion regime
(AT ¢/& when we pass to the relativistic problem of random flights) the remainder of (1/p)d,P**+b* is the
straightforward relativistic generalisation of (7), (8):

tom=(D/c)?pd ,d,Inp,  {=DE. (40)
Let us specify F# to be the Lorentz force affecting particles with charge e electromagnetically:

Fra Spm,= S (0047 =0 40, 8,4¥=0,  te=Flel-tF=F 1 Fuu, (41)

and assume that the following gradient field can be defined,
d“S=mcv*+ (e/c)A* . (42)
With these definitions, (39) takes the following form,

l(a r§— fA")a,(aﬂs— gA”) +m(U"8,U*+DOU*) = £ (9#47—374%) (a,s— —eA,), (43)
m C c - C C

where

U*(x)=Dd*Inp (44)

generalises the nonrelativistic notion of the osmotic velocity [1,2]. Apparently (43) coincides with eq. 57 of
ref. [8] (with the reservation that another metric #,u*= —1 is used there), if we only set D=%/2m and with
the choice of particles with charge e= — |e| (electrons) to be acted upon by the Lorentz force, we change the
sign of the osmotic term m(U#d,U#+ D U*) into the opposite.

Evidently, we are here enforced to consider the previously discussed (albeit on the nonrelativistic level)
problem of the relationship between the two, apparently primordial, diffusion problems (9) and (10). To make
the issue more explicit, let us study both cases F (1/p)V, P4, simultaneously, while adjusting the I sign choice
to our charge ( *e= T |e|) convention implying the emergence of the force term *+ F#,

1
—(6”S¢ E’A”) ay(aﬂsx fAﬂ) T (%aupg:m) mer=+ S pmw (a,sx f’A,) —F4(te)=+F*. (45)
m c (4 c C

This establishes a straightforward correspondence with (9) and (10). By employing the Lorentz gauge con-
dition and the fact that 4,5 and d,1Inp are gradient fields, we can [8] integrate (45) with respect to x, with
the result

1
;(%Si ffh) (0“S$ fAﬂ) F2mD?*[(8%Inp)(d,Inp)xi+0OInp]l=M; , (46)
where M is an integration constant.

By neglecting the noise (set formally D=0) we end up with a classical problem, which in the free motion
case yields (see e.g. also ref. [8])

M, =M=mc"v,=mc?. (47)

13
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Let us now pay attention to the role of the choice of the sign with which the potential term
1
Q: =F2D*0p'?/p"?=F2D*[0np+4(8#Inp)(3,Inp)], a"Q¢=¢;a#Pg:m (48)

appears in (43)-(46).

According to our previous considerations [1] held on the nonrelativistic level, @, controls the standard
Brownian diffusion, while Q_ is immediately identifiable as the Bohm-Vigier quantum potential and by ref.
[1] controls the Brownian diffusion-against-the-flow. The latter provides an equivalent stochastic description
of the Schrédinger dynamics.

Let us observe that a complex function

w=exp(R+iS/h)=p"/* exp(iS/h) (49)

satisfies (we deal with the positive energy case po=mcy>0)

ie ie Op'2 1 ( e )( e ) mM m2c?
Uy o gH + = - == - = + - HS+ — A4 = — Y= —
(6 t hcA )(8#_ hCA,,)t// I:PI/Z 5 4,5+ CA,, e\ CA v 5z ¥ 7z Vo

3,(pvs)=0, vi =345+ EA“. (50)
Hence
uy i€ ie m3c?

is the energy-momentum balance equation when Q_ enters the game. By introducing the real function 6* (we
conform to the notations of ref. [21]

g*=exp(R—S/h)=p'/*> exp(S/#) , (52)
we obtain
ooz £ an) (0,7 £a,)00=|B02 4 L(6 S+%4 )<6”5+ gAv) or= TM g MU g
+ he ut he e = p-l/z 72 yO T Ay s =72 =5 ,
9,(pp%)=0, 74 =945+ fA#. 53)

Hence with @, (e.g. with the relativistic generalisation of the standard Brownian diffusion) in hands, we arrive
at the generalised theory of heat transport with the energy-momentum balance equation

e e m?3c?

—{ 9T —A* F— —— | 6*=0. 54
[~ (o= i) (om0 )+ 555 o 2
By passing to the proper time Schrédinger equation and investigating its stationary (in 7) solutions with
w(x, t)=exp(—imc?t/2h)p'? exp(iS/h) , (55)

we recover (D="#/2m)

ie ie
i W= — ng = qu + — 56
10 . D(a _hcA )(a,‘_hcA,‘)y/ (56)
or, respectively, its thermal (heat transport) version

14
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ol ) ) sv
3.0 _D<a“+ At )97 4. ) 60" (57)

Zambrini’s generalised heat transport equation [21]

vV
3,0*=DAG*— 2

* 58
mD (58)

defines the nonrelativistic Q.. Brownian diffusion, which is complementary to the Q_ (i.e. Schrodinger) one

0 i 59
10,p= DA://+2 D (59)

in the framework of the theory of Markov-Bernstein processes.

The complementarity hypothesis in the relativistic setting allows one to form pairs of complementary dif-
fusions characterised by the choice of the sign for the charge and for the osmotic potential Q. They are
{+e, @_} with {—e, Q,} and {—e, Q_} with {+e¢, Q.}.

The first draft of this paper was written during my brief visit in Bielefeld (BiBoS preprint No. 461/91). My
warm thanks go to Professor Ph. Blanchard for discussions concerning the utility of Wigner distributions in
the context of stochastic mechanics, and to Professor E. Nelson for making ref. {10] accessible to me. While
completing the final version I have enjoyed discussions with Professor J.P. Vigier and his hospitality extended
to me in Paris.
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