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We present in this Letter a detailed analysis of mechanisms by which the phase space Brownian motion of an ensemble of
massive particles, in the diffusion regime, is governed by the Schridinger equation. It is explicitly shown how the pressure of the
diffusing ensemble is linked to the quantum potential, known to appear in the Hamilton—Jacobi-Madelung formulation of the
corresponding quantum dynamics. The quantum state vector (wave function) corresponds in this picture to the physically real
diffusing medium governing the collective evolution of the particle ensemble.

1. Motivation

In the framework of Nelson’s reformulation of
quantum mechanics [1] the notion of the particle
path acquires a well defined meaning on the level of
configuration space motions. One can view it as a
sample trajectory [2-4] followed by the mass point
undergoing the Markovian diffusion process in R?
with dynamics constrained by the second Newton law
in the conditional mean.

While trying to understand this model of quantum
phenomena on physically deeper grounds, one is
tempted to search for a random phase space prop-
agation, whose configuration space projection would
imply stochastic mechanics. This would amount to
a phase space derivation of Nelson’s mean acceler-
ation formula.

A deep analysis of the links between Einstein-
Smoluchowski (configuration space) and Langevin
(phase space) descriptions of the Brownian motion
was made in the expository reference [5]. As one
knows the large friction regime of the Ornstein-
Uhlenbeck process allows for the Smoluchowski ap-
proximation (e.g. spatial diffusion ) in the case of the
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general external force, albeit with the applicability
limited to the Fick law governed cases.

Alternatively, attempts to derive stochastic me-
chanics in the framework of the so-called stochastic
electrodynamics [6,7] indicate that in the Markov-
ian approximation of processes with short correla-
tion times (high friction) one should disregard fric-
tion at all to arrive eventually at Nelson’s formalism.

It thus seems that the search for a realistic phase
space justification of stochastic mechanics ends up
with a confusing picture involving both high and low
friction limits of Markovian stochastic processes.

Our purpose is to view stochastic mechanics (and
eventually quantum mechanics) as a special version
of the general problem of random flights [8] which
arises in the diffusion approximation of the phase
space random motion. To get a clear idea of the links
[9] between quantum mechanics and the conven-
tional Brownian motion it seems advantageous to
analyse any solvable model in detail. For clarity of
discussion (not hampering the generalisations) we
shall confine our attention to the case of freely mov-
ing Brownian particles in one space dimension.
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2. Brownian metion of a single particle

The general form of the joint probability distri-
bution W(x, u, t) for a freely moving Brownian par-
ticle which at =0 begins its motion at x,=0 with an
arbitrary velocity ug is derived in ref. [8] under the
assumption of the maximally symmetric displace-
ment probability law:

Wi(x,u,t)=W(R,S)=[4n*(FG—-H?)]~'/?

xexp(_ GRZ—ZHRS-:-FSZ>’ (1)
where R=x—ug(1—e #)p~!, S=u—uge~* while
= % (2Bt—3+4e~F_eg=24)
G=DB(1—e~#), H=D(1—e %), (2)

B is the friction coefficient, D will appear later to be
the spatial diffusion constant, D=kgT/mp.
The marginal distribution of velocities

w(u, t)=j dx W(x,u,t)

=(21G)~"? exp(—S2/2G) =w(S) (3)

in the large friction regime (alternatively at times ¢
much larger than the relaxation time f~') takes the
conventional form

1/2 2
w(u,t)=(ﬁf) exp(— 2%37) (4)

characterising diffusions in velocity space.
Analogously the marginal space configuration

w(x, t)=J’ du W(x,u,t)

=(2nF)~ ' exp(—R%/2F) =w(R) (5)

in the diffusion regime gives rise to the familiar heat
kernel

w(x, t)=(4nDt)~'/? exp(~x2/4Dt) , (6)

solving dw=DAw.
Let us now evaluate the first local moment of the
joint distribution:

{(u) =J duuW(x, u,t)
=w(R) [(H/F)R+uge #], (7N
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which in the diffusion regime reduces to
X
= =, 3
{ud w(x,t)2t (3)
The local (configuration space conditioned) mo-

ment of W finally reads

Vw(x, t)
wix, t)

(o= == )

For the second moment we have

J du uW(x, u, t) =j dS S?W(R, S)
+2u0e—ﬂ'JdSSW(R,S)
+u3e-mjds W(R,S) . (10)

In the diffusion regime the leading contribution
comes from [dS S?W(R, S) which can be evaluated
by means of handy formulas given in ref. [10]:

FG-H* H?
2 — S p2
JdSS W(R, S)= 7 +F2R)
X (2nF)~ "2 exp(—R2%/2F) . (11)
In the diffusion regime we thus obtain

D — 2
<uz>=(_—(2§‘t D, %)w(x,t) (12)

and the configuration space conditioned (local) mo-
ment of W(x, u, t) takes the form

(u?y =(DB—D/2t)+<u)z. (13)

The transport (Fokker-Planck) equation governing
the time development of W{(x, u, t) reads

WH+uUV W=V, (Wu)+qA, W,
g=Dp? (14)
and implies the local conservation laws

9w+ V({uyw)=0,

0, (U W) +V. (Ku?) w)=—Buyw. (15)
Introducing
P(x, t)=({u?) = upIw(x, 1) (16)

and assuming that w(x, t) has no zeros, we can iso-
late the leading contribution to P in:



Volume 162, number 2

dw=—-V({uy,w),
(3, + <UD V) ud o= —Bud —VP/w. (17)
In the diffusion regime we have

VP__ W, DV

w w 2t w

, (18)

which when inserted into the above momentum con-
servation law gives rise to the cancellation of the fric-
tion term(!): our process effectively appears to be fric-
tionless although in fact operating in the high friction
regime.

We have here
@+ (> V) Cuy = 222, (19)

where it is instructive to notice that
Pom=DwAlnw, (20)

Since VPym/w is irrotational we can easily recover
the corresponding potential (the general discussion
is given in refs. [1,9])

Awl’?
Q=0(x, t)=2D2W ,

(@4 W V) (U= = VP ==VQ.  (21)

Q(x, t) has the familiar form of the Bohm-Vigier
quantum potential (set #/2m=D) except for the op-
posite sign.

Irrespective of the sign, however, holds Vw~
VP,.n=wVQ. The link of Q and P, has been known
for a long time [9,11,12] in connection with the hy-
drodynamical models of quantum mechanics, where,
however, a given particle distribution p(x, )=
w(x, t)|? is associated with

1/2
Pq=—D2pAlnp « Qq="'2D2$7lf,Lz-,
dp=—V(pv), (9,+vV)r=-VQ,,
v=2DVIn(y/p'/?), D=h/2m. (22)
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3. Brownian evolution of particle ensembles

All previous derivations refer to a single particle
suffering random displacements according to the
maximally symmetric probability law, which
uniquely characterises the random medium.

However [8], it is clearly allowed instead to imag-
ine a very large number of particles starting under
the same initial conditions and undergoing Brown-
ian displacements without any mutual interference
according to the same probability law.

Such an ensemble caii be built as well of sample
flights consecutively executed and having flight du-
ration time ¢: even if not perfectly realisable in prac-
tice, such an ensemble can be easily produced by
means of a computer simulation.

Once passing to the ensemble picture, we can con-
sistently follow the lore of the kinetic theory of gases
and eg understand P(x, t)={u?>—(udiw=
(DB—D/2t)w as the pressure exerted at point x (on
the ensemble average!). This concept can be exclu-
sively attributed to the swarm of particles, where each
member independently follows a Brownian motion
according to the same displacement probability law.

It is a canonical statement of the macroscopic the-
ory of diffusion [8] that if w(x, t) denotes the con-
centration of diffusing substance at x at time ¢, then
the amount escaping through a given point from the
area of larger concentration, per time Af is given by

—DVw(x, t) At=—u(x, t)w(x, t) At. (23)

Here u(x, t) is called [1,5] the osmotic velocity,
u=DVw/w. In our case apparently u(x, t)=—x/2t
=—<{u),and since {u), is the local velocity of the
particle flow, we realise that (23) does refer indeed
to the osmotic transport. In its course the particle
swarm expands at the expense of lowering its con-
centration by the obvious reason: there are more par-
ticles leaving the region of higher density than en-
tering it.

For a deeper understanding of the previously dis-
cussed striking affinity between Q and Q, let us con-
sider the particle ensemble, whose initial (at time ¢;)
spatial distribution reads

po(x)=(na?) "2 exp(—x*/a?). (24)

We assume that our particles have approached this
distribution in the course of the well defined phase
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space evolution. Irrespective of its detailed nature
(Brownian, classical etc.) we can safely admit that
a certain mean velocity field is given in parallel to

Po(X):
ud=V(x, ) =Vo(x) . (25)

We then address the following problem: what is the
probability to reach a Ax neighbourhood of a certain
point x at time ¢> t,, if particles are conditioned to
emanate from x, at time f, with the mean velocity
Vo(xo), and the propagation is Brownian?

The universal maximally symmetric Brownian
probability law for spatial displacements AR in the
diffusion approximation coincides with the heat ker-
nel expression

W(AR) = (4nDAt)~'/?
xexp[— (AR)?/4DAt] . (26)

However, what AR is needs to be carefully specified
since it depends on the mean velocity value at the
reference point (source of particles). Apparently, if
we start from x, with a member of the V;(x;) beam
then after time At the particle will reach the point x,

x=x0+V0(x0) At+AR, (27)

where AR is the purely random contribution. Ac-
cordingly we must write

AR=Xx—x0—Vo(xXo) At, (27")

thus arriving at the distorted [8,2,3] infinitesimal
Brownian propagator. This displacement probability
law induces [8] the diffusion equation

dw(x, t)=—=VoVw(x, t)+DAw(x,t), (28)
which is solved by the Brownian kernel
Weo(X, t)=[4nD(t—15) 172

[x—x0—Vo(xo) (1—1t5) ]2>
4D(t—to) )

Xexp(—- (29)
For simplicity we shall disregard ¢, in the above for-
mula, which provides us with the answer to the prob-
lem posed before.

It is, however, remarkable that our isolated prob-
lem can be easily extended (by varying Xxp) to the
general issue of the Brownian propagation of ini-
tially given particle distributions with non-trivial
initial velocity fields. For particles conditioned to pass
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at ¢, an arbitrary point x’ with the mean velocity
Vo(x') we develop a Brownian evolution anew (this
situation has very much in common with the prob-
lem of repeated measurements in stochastic me-
chanics [13]).

The corresponding propagation formula (with
t,=0) reads

p(x,0)= [ ax' W (x, Dpo(x') = (d4n2a2Di) =12

[X=x'=Vo(x)t]? x'?
xj dx’ exp(‘ A - "a_Z)

(30)

Consequently the Brownian evolution of the particle
ensemble py(x)—p(x, t) quite sensitively depends
on the initial mean velocity field, to be contrasted
with the single particle Brownian propagation which
is insensitive to the initial particle velocity #, in the
diffusion regime. Hence, how the ensemble propa-
gates due to random fluctuations depends on the
phase space preparation procedure which not only
fixes po(x) but supplements it with a mean velocity
field Vy(x).

In particular, if the particle ensemble was Brown-
ian prepared (through Brownian evolution from
Xo=0 and arbitrary initial velocity #,) then we should
set a?=4Dt, and the osmotic flow is characterised
by Vo(x)=x/2t,.

Let us consider the ensemble preparation proce-
dure giving rise to po{x) and also to

Vo(x)=72Dx/a?, 31

with yeR! left unspecified at the moment. The
Gaussian propagation integral can be immediately
evaluated. We have

o
plx, t)= {r[a*+4Dta?(1+y)+y?4D*?]} /2
x2a?
_ _ 5
xexP( a4+4Dta2(1+y)+y24D2,z> (32)

The choice of y=1 produces the Brownian diffusion
of the Brownian prepared Vy(x)=x/2t,=2Dx/a?
ensemble, while the choice y= —1 apparently leads
to (see also ref. [14])
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o
[r(a*+4D%?)]'/?

x2a2
rap): (33)

p(x’ )=

X exp( -
which is a well known probability distribution as-
sociated with the solution of the Cauchy problem
id,w(x,t)=—DAw(x, 1),
w(x,0)=(ra?) "4 exp(—x2/2a?) . (34)
Indeed
w(x,t) =f dx’ G(x—=x",t)y(x',0)

= (4miDt) 172 I dx’ exp(— (x‘;—*lgt)z) w(x',0)
=(a?/n)"/*(a?+2iDt) /2

x2
oo - s 7m) 32

and |w(x, t)|?=p(x, t) in agreement with (33).

The initial (reversed osmotic) velocity field
{u),=~2Dx/a? is not conspicuously present in
(35) but its time evolution is provided by Nelson’s
osmotic velocity formula [1]

u(x,t)=DVinp,

2Dx 2Da’x
w0 =="7 = un D=L

(36)

By (35) we have here developed a particle current
with the velocity (called [1,5] current velocity)

v(x, t)=2DVIn(y/p'"?),

4D%x

p(x,0)=0 - wxt)=—5s,

(37)
which together with (36) yields

m 24,2

Ejdxp(x, t) (u+v?)(x, t)=const,

compare e.g. ref. [12] where the hydrodynamical
discussion is given and ref. [1] for a discussion from
the stochastic mechanics viewpoint. The current ve-
locity solves the transport equation

(8,+vV)v=—VQ,=V[2D2(Ap'/2)/p!/?].  (38)
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Q, refers to the osmotic diffusion process against the
initial flow.

Remark 1. Eq. (34) is a conventional Schriédinger
equation, if we set D=#/2M. Here [4] we can iden-
tify M with the mass m of diffusing particles, which
fixes the diffusion constant. However, we can as well
choose D to be the universal constant and then in-
troduce an effective mass M=#/2D.

Remark 2. The Brownian prepared ensemble evo-
lution with y=1 converges to the y= —1 evolution
for larger times. Indeed then the term 8Dta? can be
neglected against 4D%2,

Remark 3. If the ensemble preparation procedure
is tuned to the background random field to provide
Po(x) with the exact reversal of the osmotic flow, then
the Brownian evolution of such an ensemble is gov-
erned by the Schrédinger equation. This amounts to
analysing the diffusion process in terms of average
(collective) flows. One flow is directed towards the
main concentration, another is born due to the
Brownian fluctuations and transports particles away
from the main concentration, hence a diffusion pro-
cess against the initially given flow appears.

The process respects the energy conservation law
in the mean;

%j dxp(x, t) (u>+v?)(x, t)=const .

In the course of the Brownian propagation two com-
peting flows combine into the mean drift, which
asymptotically is dominated by the outgoing current.
The quantum potential Q, appears to be a mathe-
matical encoding of such a diffusion process.
Remark 4. The initial phase space distribution to
which remark 3 applies can be immediately obtained
from the Brownian solution (1) if we specialise it to
time ¢, and formally replace H by — H. Keeping in
mind that we are interested in the #,>> 8! regime
and setting #,=«a?/4D the form of Wy(x, u) reads

Wo(x, u)=(2n?Dpa?) ~1/?

(39)

4Dx?*+8Dxu+2a%u?
xexp| — ADF .

By (3), (5) one easily obtains py(x), (26) and
{u>2=DVpo/poto be compared with (9).
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4. Brownian evolution of particle ensembles: phase
space picture

To complete the arguments of section 3 we shall
present a parallel phase space description of the
Brownian ensemble propagation, for the case
Vo(x) = — (2D/a?)x. The more general choice (31)
can be easily investigated by following the pattern.

The initial phase space distribution (39) is to be
propagated by the Brownian kernel of the form (1),
except for another choice of R and S. Namely we need

R=x—xy—Vy(xp)t—ug(1 —e=#)p-1,
S=u—Vo(xo)—ttpe™ . (40)
We consider

j dxo dug W(x, u, t; Xo, ug) Wo(xo, o)

=W(x,ut). (41)

In the diffusion regime the u, contributions can be
neglected, and the effective du, integration yields

W 0= do Weo 6 xo)polx) . (42)
Apparently (compare e.g. (29), (30))
J du W(x, u, t) =J‘ du I dxo W(x, u, t; x9)po(X0)

= | dx w0000 =0 (5, (43)

We can evaluate the local expectation value with re-
spect to u by the same interchange of the integration
order procedure:

{udy =J duuW(x, u,t)
='[ dx, J du uW(x, u, t, x0)po(xo)
= [ a0 Vo) el Dp0(x0) (44)

Setting Vy(xg) = — (2D/a?)x, we can proceed fur-
ther to arrive at

ud=— ZED; (4n2a2Dt)—1/2deo Xo
[x—Xq+ (2D/a?)xot]? x_%)
XCXD(_ 4Dt T a?
2Dx(a*—=2Dt)
== "garapiz PD (43)

134

PHYSICS LETTERS A

3 February 1992

which implies
uy,=Cuy/plx, ty=ul(x, t)+v(x,¢), (46)

where u and v are given by (36), (37) respectively.
In Nelson’s notation [1] <u),=b(x, t) coincides
with the forward drift of the Markovian diffusion
process.
With the explicit form of p, v, 4, and b in our hands
we can straightforwardly derive the conservation laws
respected by our diffusion. The following holds,

d.p=DAp-V(pb),

a,b+bVb=0 (47)
and simultaneously

dp=—Vipv),

d,v+vVv=—VQ,, (48)

which completely characterises the diffusion pro-
cess. We would like to emphasise the classical
(Liouville) propagation formula for b(x, ¢)=<{u),
in the absence of external forces. We have thus ar-
rived at the notion of the quantum potential (Q,)
governed diffusion process, by means of purely phase
space (Brownian) arguments. The striking affinity
between Q and Q, governed diffusions (cf. section
2) becomes here transparent, if we make a time
substitution

4D1=w*+4D**/a?, (49)

which amounts to changing the clock (t—1(¢)) ac-
cording to which the stochastic process is executed.

Eq. (49) implies (the notations of section 2 are
strictly followed)

p(x, ) =w(x, 1)=(4nD7) "2 exp(—x2/4D1) ,
{ud,=x/2t=—u(x,t), (50)
where apparently
d.w=—V({u).w),
(0:+<upV){up,

=—VO(x,t)=VQ,(x,t) (51)

and

1/2
Q0% =202 (1, 1=~ Qu(x 1),
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Posm(x, T)
=(D*wA Inw)(x,1)=—P,(x, 1) . (52)

By setting 4D1,=a? we relate (50) with the initial
distribution (24). The following holds,

w(x,r)=jd.x' w(x—x', t—=1)w(x', %) , (53)

which is a propagation formula characteristic for free
diffusion.

Hence, while Q,(x, ?) governs the Brownian dif-
fusion against-the-flow, within a specifically pre-
pared (conditioning!) particle ensemble, it appears
that Q(x, 1)=—Q,(x, t) governs a conventional,
unrestricted (no conditioning) diffusion process of
section 2, albeit with respect to another clock, (49).
The phase space implementation is obvious.

Diffusion processes (48) and (51) are here in-
separably connected and live simultaneously, provid-
ing a suggestive illustration of the action-reaction
principle. The “quantum pressure” P,(¢) is exactly
balanced by the osmotic pressure P, (7(¢) ), the os-
motic flow {(u)>,(x, t) balances the remainder
u(x, t) of the initial particle flow. Together with the
conservation law [dx (#2+1v?)p(x, t) =const it seems
to establish a link with the ideas of ref. [15], where
particle-medium interaction was acting both ways
(action-reaction) with a strictly observed energy-
momentum conservation law at each minute scat-
tering event.

5. Conclusions

In the above context of the essentially Brownian
implementation of the quantum mechanical time de-
velopment, let us stress the fundamental importance
of both theoretical and experimental investigation of
the particle trajectory concept in the realm of quan-
tum theory [16~18]. In our discussion particle tra-
jectories (“hidden variables”) primarily arise as
phase space Brownian paths, hence they refer to the
non-trivial energy-momentum exchanges between
the particle and the surrounding diffusing medium;
the quantum potential refers thus in the diffusion re-
gime to a quite realistic physical phenomenon of
random accelerations. Consequently any idea of
“ghost information™ or “empty wave” propagation
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is inconsistent with this picture. Quantum particles
really move in a “hidden thermostat”, to recall de
Broglie’s famous suggestion. [19].

On the other hand we give further support to the
idea that quantum mechanical particles are trans-
ported along realistic space time trajectories with re-
alistic momenta in plain opposition to the Copen-
hagen convention.

Quantum state vectors (wave functions) corre-
spond in this model to real physical phenomena
which are governed by the background random field.
They encode the mean (collective) data of the dif-
fusion process. By (26)-(29) one can here intro-
duce a concept of the stochastic control fields. In-
deed, in the description of particle ensembles we have
finally arrived at the field of locally defined displace-
ment probability laws, which control the diffusion in
the infinitesimal neighborhood of each given point.
One can thus tell that w(x, t) is related to the specific
control field (state of the diffusing medium) from
which the quantum mechanical statistics (e.g. Born
postulate) does originate.
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