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We discuss the uniqueness conditions for the derivation of Schr6dinger wave functions within the Fenyes-Nelson formalism. 
The primary concept of the transition probability density induces the probabilistic path summation formula with respect to the 
random (sample) paths of the diffusion process. Bohm-Vigier causal trajectories arise as the mean displacement paths of the 
underlying process. 

Fenyes-Nelson stochastic mechanics [ 1 ] is one of  
the very few [1-4]  attempts to reconcile the indi- 
vidual particle trajectory notion with the wave 
(Schr6dinger) theory of  quantum phenomena. Ac- 
cording to the recipes of  ref. [ 1 ] to a given solution 
of  the Schr6dinger equation one can in principle at- 
tribute a stochastic diffusion process satisfying New- 
ton's second law in the mean. The corresponding 
stochastic differential equation describes a propa- 
gation of  a point particle through a non-dissipative 
random medium. Sample paths of  the process can be 
approximately identified with the realistic configu- 
ration space paths of  (perhaps) physical particles. 

For a quantum particle in a conservative force field 
we have 

~2 
i~Ot~,(x, t )= ~m A~,(x) + V(x)~u(x, t ) ,  (1) 

which implies the continuity equation for p =  I q/I 2 

h 
O , p = - d i v j ,  j =  ~ (q~V~,-~,Vq)). (2) 

In the case of  nowhere zero qJ (locally at least, there 
are existence proofs for singular diffusions), upon 
the standard substitution ~,= exp (R + iS), (2) goes 
over into 

h 
0 , p = d i v [  - (h/m)VSp] = -~m A p - d i v  pb, (3) 

where 

p = e x p ( 2 R ) ,  b=u+v,  

v=(h /m)VS ,  b . = v - u ,  

and one more equation 

h 
Otp= - ~m zXp-div pb. 

u= (h /m)VR,  

(4) 

(5) 

is obeyed by p. It is identifiable [ 1 ] as the backward 
Fokker-Planck equation, while (3) is the forward 
one. In the theory of  stochastic processes such equa- 
tions are known to determine the time development 
of  respectively the forward and backward transition 
probability densities for the diffusion process. 

Setting 

v = h / 2 r n ,  b=(17 /m)V(R-S)  

in the forward case we have 

O,p(y, O, x, t) =divx[ vVxp(y, O, x. t) 

-b (x ,  t)p(y, O,x, t ) ]  . (6) 

According to the rules of  the Ito stochastic calculus, 
one can uniquely associate (6) with the stochastic 
differential equation 

dX(t )  =b(X(t) ,  t) + x / ~  d W ( t )  , (7 

where d W ( t )  represents the normalized Wiener 
noise. X( t )  takes values in N3 as a continuous func- 
tion of  time, and with time passing draws a sto- 
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chastic trajectory in the configuration space. Given 
po(x)=p(x, 0) and p(y, O, x, t) solving (6). 
Apparently 

f dy PO', O, x, t)PoO') 

provides a solution of (6) with the initial condition 
po(x), hence by the uniqueness theorem for the par- 
abolic (Kolmogorov) equation it equals p(x, t). 

The normalization 

f dxp(x, t)= 1 

is preserved by virtue of 

I dxp(y, O,x, t ) =  1 . 

Let us emphasize that the knowledge ofp(y ,  0, x, t) 
does not determine p(x, t) unless po(x) is specified. 
Consequently, given (3) it is rather natural to de- 
mand the validity of this equation not only for p(x, 
t) but also for the transition probability densities p (y, 
O, x, t) which automatically associates ( 7 ) with ( 1 ). 

Remark 1. The existence and uniqueness of the so- 
lution of the stochastic differential equation (7) with 
the initial condition X(to)=x0 are discussed in refs. 
[5,6]. To have (7) solved in the interval [to, T] one 
usually imposes the smoothness (Lipschitz) 
condition 

tO(x, t) -b(y,  :) I ~<Klx-yl  

for all x, y and te [to, T], K being a constant and the 
growth condition 

2v+  Ib(x, t)12~<K' (1 + [ x l  2 ) . 

The latter, if fulfilled, guarantees that the solution 
will not explode for finite times. 

As is well known [ 1-4,7] the Schr6dinger equa- 
tion ( 1 ) can be equivalently rewritten as a coupled 
system of equations, one of which is (3), while an- 
other has the familiar Hamilton-Jacobi form: 

h V 
0 iS= 2 ~  ( [ V R [ 2 - I V S I 2 + A R ) -  ~ .  (8) 

Let us define the conditional expectation for the sto- 
chastic process X(t) solving (7), 

E,[f(X(t') ) ] =E[f(X(t') ) IX(t) =x]  

= f  dyp(x , t ,y , t ' ) f (y ) ,  t'>~t. (9) 

In terms of (9) the mean forward and backward de- 
rivatives D+, D_ of the process can be introduced, 

(D±J)  (X(t), t) 

= lim E,{_+ (1/At) [f(X(t+_At), t_+ At) 
AtJ.0 

-f(x(t) ,  ~)1} 

=[O,+b+.V+_(h/2m)A]f(X(t) , t) ,  (10) 

such that 

D+X(t)=b+=b, D_X( t )=b_=b , ,  (11) 

and the following equation holds. 

½re(D+ D_ + D _ D + ) X ( t )  

- ! m ( D + b  + D  b+)(X(t), t  - - 2  - - 

=,~V[0 ,S -  (h /2m)  ( I VR] 2 -  ]VSI 2 

+ AR)](X(t) ,  t).  (12) 

By equating (which is a restriction on the process 
making it time reversal invariant [ 7 ] ) 

½m(D+D_ + D _  D + ) X ( t ) = - V V ,  (13) 

the second Newton law of motion is obeyed in the 
stochastic mean. Apparently we deal here with the 
gradient form of (9). Since the osmotic u and cur- 
rent r velocities are gradients, it is convenient to re- 
write (3) and (8) in terms of them only. Then 

h O,u=- ~ A r - V ( r . u ) ,  

01t,= h - -  ~Vu - ~ V r  - ( 2 m A u + '  2 J 2 ~1 VVm 14) 

may be considered as the starting point for the sto- 
chastic analysis, once the initial velocity fields u(x, 
to), v(x, to) are chosen and the Cauchy problem (14) 
is solvable. 

Remark 2. Let us emphasize that the causal ap- 
proach [2-4] exploits directly eqs. (3) and (8). it 
is precisely the Hamilton-Jacobi form of (8) which 
allow one to associate certain deterministic motions 
with the wave equation (1). In the stochastic ap- 
proach [1,7] the situation is different. The para- 
mount importance of the stochastic differential 
equation (7) makes here quite a substantial differ- 
ence between the deterministic and random imple- 
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mentation of (possibly particle) trajectories asso- 
icated with solutions of ( 1 ). 

Eqs. (3), (8) provide us merely with another form 
of ( 1 ), while the equivalence of ( 14 ) with ( 7 ), ( 13 ) 
is more intricate. On the other hand, by taking the 
gradients of (3), (8) we recover (14), hence on the 
mathematical (at least) level a manifest link exists 
between Schr6dinger wave functions and random 
(diffusive) motions of point particles. 

The major problem of stochastic mechanics is then 
to reveal to which extent wave functions are deriv- 
able on purely probabilistic (diffusion processes) 
grounds. 

Apparently it amounts to recovering the potentials 
upon an assumption that u(x, t), v(x, t) solving (14) 
are gradient fields. Let u, v solve (14) with the initial 
data Uo(X)=u(x, to), Vo(X). By introducing b = u + v  
we can pass to the stochastic differential equation 
(7) which in turn implies (6). Accordingly p(x, t) 
is determined by the choice ofp(x, to). Assuming that 
Uo(X) is the gradient field, we can locally reproduce 
the potential with accuracy up to the additive con- 
stant (e.g. Poincar6 lemma). The normalization 
condition fp(x, to) dx=  1, exp(2Ro) =Po removes the 
arbitrariness, hence Uo(X) determines po(x) and by 
(6)  p(x, t). 

With p(x, t) established, we are finally left with 
eqs. (13) whose integration amounts to solving the 
Cauchy problem 

O,s+ H(Vs, x, t ) = 0 ,  

s(x, to)=So(X), Vso(x)=mvo(x), s=hS, (15)  

with 

p2 
H(p, x, t) = ~m + U(x, t) , 

h2 ~pl/2 
U ( x , t ) = V ( x , t ) -  2m p l / 2  " (16) 

Indeed, if we have a solution s(x, t) of (15), then 
Vs(x, t) solves (13), hence (14). By the uniqueness 
argument for solutions of the Cauchy problem, Vs(x, 
t )=mv(x ,  t) provides a solution of (14) with 
t'o ( X ) = ( 1/rn)Vso(x). The only non-uniqueness per- 
tains to the initial data VSo(X) = mvo(X) since in the 
contractible spatial area Vo(X) determines the cor- 
responding potential up to the additive constant. 

To see how this arbitrariness can be removed, let 

us consider the absolute expectation value of ( 15 ). 
Then <O,s>=-(H> where (integrating by parts 
[121) 

<H> = J- dx [ l?n(g,2--gg2)--{- V(x, t) 

- ½h div u]p(x , t )  

= j dx [½m(u2+t,2)+ V(x, t)]p(x, t) 

= j  dx ~c(x, t)p(x, t) , (17) 

and the assumption of the localizability (e.g. {H> 
< ~ )  of the total (mean) energy of the diffusion 
process is necessary to have ( 15 ) uniquely solved on 
the basis of (14). The term 

f dx ½m(u2+v2)p(x,l)  

is known as the kinetic energy of the diffusion 
process. 

By the continuity equation we have 

O,<s>= j dx (O,p) s+<O,s)  

=m<t '2 > + <Ors ) . (18) 

Hence (15) implies 

0, <S) = m < t  '2 ) -- (H> , (19) 

which admits a unique solution ( s > (t) for given ini- 
tial data 

< s > ( t  o )=<So>  . 

By making the restriction 

(So) =0  (20) 

we have a guarantee that <s> (t) is determined in 
terms of u and v only, 

(S> ( t ) =  _i ( re(v2> -- ( H > )  dt .  (21) 
to 

Given an arbitrary integrals' (x, t), ( s0 )  ~ 0 o f ( 1 5 ) .  
Then, apparently 

s(x, t) =s' (x, t ) -  (S'o) (22) 

obeys both (20) and ( 15 ). 
Accordingly Schr6dinger wave functions with 

phases obeying ( 15 ), (20) can be set in a one-to-one 
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correspondence with the diffusion process (7), ( 13 ). 
The mapping {u, v] ~ {p, S} was investigated by 

us locally (in a contractible area). However, its ex- 
tensions can be fruitfully studied by viewing the 
Schr6dinger equation as the linearization of the cou- 
pled nonlinear system (14). Then, with all previous 
reservations concerning the uniqueness of the map, 
once p(x, t), S(x, t) are obtained, we can introduce 
the diffusion processes for which {p, SI is a pair of 
potentials implementing the gradient fields {u, v}. 
This route which is quite customary, in the literature 
views the Schr6dinger equation as an efficient tool 
to integrate the Hamilton-Jacobi equation (15), 
otherwise a highly non-trivial problem even for the 
simplest examples, see e.g. ref. [ 11 ] for an exhaus- 
tive discussion. 

Apart from the presence of the contribution - (h2/ 
21~l)A/)l/2/p 1/2, eq. (15) can be considered within 
the traditional Hamilton-Jacobi formalism [8,9]. 
Once the three-parameter family s(x, o~, t) of solu- 
tions of ( 15 ) is found, such that 
0 ~ det (02s/O.r, Oa, ) then automatically solutions of 
canonical Hamilton equations 

0 0 
gl,=~p H ( p , q , l ) ,  /~,=-- ~q H ( p , q , t ) ,  

i= 1, 2, 3,  (23) 

are generated by the standard identities 

Os(q, m t )  
0c~ 

- f l , ,  i = 1 , 2 , 3 ,  (24) 

where ~, flare the integration constants ((20) should 
be obeyed ), which allows one to derive functions q,(t, 
o¢. p).  The identities pi=Os/Oqs after inserting q,(t) 
allow us to recover p,(t) =p~(t, o~, ,8). In this way the 
deterministic trajectories of the causal approach do 
appear in the framework of stochastic mechanics. 
However, it is the diffusion process (7), (13) which 
underlies (15), and highly irregular (non-differen- 
tiable) sample paths of the process are the primary 
notions in the formalism. 

Let X(t)  be the stochastic process (7), (13). The 
stochastic analogue of the ordinary time derivative 
was introduced in ( 9 ) - (  11 ). It allows the introduc- 
tion of the symmetric and antisymmetric stochastic 
derivatives 

% = ½ ( D + + D  ) ,  ~ a = ½ ( D + - D _ ) ,  

(~sf) (x(¢), t) = (0, +v. v)f (x( t ) ,  t ) ,  

(%,13(x(t),t)= 77mA+U.v f(x(t) t). 

In particular 

%x(t) =v( t ) ,  

% X ( t ) = u ( t )  , 

(25) 

~/2X(t) = ½ v = 0 , v +  }Vv 2 , 

h I " ~ X ( t ) = % u =  ~ zxu+~Vu o, 

(26) 

and by ( 13 ) 

( ~ 2 _ ~ 2 ) X ( t ) = _  I V V ( X ( t ) ) .  (27) 
D? 

In addition 

cy2 = (/o + ~ (D+ D + D _ D + ) ,  

( /~= % - } ( D + D  + D _ D + ) ,  (28) 

and we may consistently call ~ X(t ) the current ac- 
celeration and - 9 ~ X ( I )  the osmotic deceleration. 
Here ~So = 1 ( D~_ + D 2_ ). Given X(¢), we define P([):  

Y ( t ) = m % X ( t ) = m v ( X ( t ) ,  i) . (29 

With H(p, q, l) given by (15) we define 

t t ( X ( t ) , P ( t ) , t ) =  1 p2(t  ) + U ( X ( t ) ` t )  
Z t'~1 

= P . % X ( t ) - L ,  

L = L ( X ( t ) ,  %X( t ) ,  t) 

= ½m[ % X ( t ) l  2 -  U(X(t) ,  t ) .  (30 

Then because of (26) the canonical stochastic sys- 
tem (compare e.g. also refs. [ 10,11 ] ) emerges, 

OH OH 
~sX(t)  = - -  ~ s P ( t ) - -  - -  (31) 

OP(t) " OX(t) ' 

which is an obvious generalization of the purely de- 
terministic system (23) to the theory of random mo- 
tions. In addition to (7) X( t )  satisfies the reverse 
(backward diffusion ) stochastic differential equation 

d . X ( t ) = b , ( X ( t ) ,  t) d t + x / 2 v d W , ( t  ) . (32) 

Technically it refers to the independence of incre- 
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ments W ( t ) - W ( s )  on X(t) for s<~t, while 
W , ( t ) - W , ( s )  for s>~t. 

Remark 3. (7) leads to the forward Kolmogorov 
equation with solutions p(x, s, y, t), s<~t. Eq. (32) 
leads to the backward Kolmogorov equation with 
solutions 

p(y, t)p,(x, s,y, t) =p(x, s,y, t)p(x, s) 

~p(x,s)= j dyp,(x,s,y, t)p(y,t) , 

s<~t. (33) 

Let us observe that the stochastic increments 
dX(t), d ,X(t)  arise as limits of finite increments 

A X ( t ) = X ( t + A t ) - X ( t ) ,  

A , X ( t ) = X ( t ) - X ( t - A t )  . 

By invoking (9 ) - (  11 ) we realize that 

E,[AX(t) ] ~-b(X( t), t)At , 

E,[ A,X(t)  l ~- b, (X(t), t)At, 

E,[½AX(t)+½A,X(t)]~_v(X(t),t)At. (34) 

Given an initial point qo=x. Let us consider all sam- 
ple paths of the diffusion process, which originate 
from x at time to. The average over all sample lo- 
cations achieved after time At is x+b(X(to), to)At 
as a result of the forward drift and x+b, (X(to), to)At 
as a consequence of the backward drift. Their arith- 
metic average defines the mean displacement taking 
us from x=q(to) to q=q(to+At), 

q~ =q(to + At)=qo +v(qo, to)At. (35) 

A repetition of this procedure for the next interval 
At gives us q2=q(t2) =q(h +At),  and so on up to the 
final time instant T= to+ NAt, 

q N = q ( T ) = q ( T - A t ) + v ( q ( T - A t ) ,  T -A t )A t .  
(36) 

We have constructed a finite difference scheme: a 
chain of N mean displacements which interpolate 
between initial qo=x and certain q(T) in a smooth 
way. Formulas (23) prove the existence of a contin- 
uously differentiable continuum limit (T-to)~ 
N=AT- ,0  of the above finite difference procedure. 
As a consequence deterministic trajectories of the 
causal approach [2-4] are not alien objects in the 
stochastic framework. Their probabilistic origin can 

be summarized as follows: they provide a continual 
interpolation between points q(to) =x  and q(T) =x '  
in terms of (infinitesimal) mean displacements from 
each instantaneous location achieved. In this sense 
they encode certain qualitative information about 
how the random field makes particles propagate. 

Random trajectories of the conditioned Wiener 
process are known [13] to provide a natural prob- 
abilistic background for Feynman's path concept, 
which is condensed in the Feynman-Kac formula. 
Its particular case is the path integral expression for 
the heat equation kernel, whose stochastic mechan- 
ics implementation was discussed in ref. [14]. In- 
deed, the simplest example of the smooth Marko- 
vian diffusion is the Wiener process with the 
transition probability density solving the heat 
equation: 

p(y, 0, x, t )=  vAxp(y, O,x, t ) ,  

p(y ,O,x , t )=(4xvt ) -3 /2exp(  [Y-Xl2'] j .  (37) 

The corresponding stochastic differential equation 
reads dx(t) = (2v)~/2dW(t). 

Consider the family {Ijc R3, j=  1, 2 ..... n} of Borel 
sets and set t= (n+  1 )At. We introduce the finite dif- 
ference (discrete) approximation of random paths 
as follows: 

{ X ( s ) :  X ( 0 )  : X o ,  X (  t )  .~.xf , 

X(jAt)EIj,j= 1, 2 ..... n}, (38) 

with the initial Xo and final xf points fixed. The cyl- 
inder sets (38) are measurable, i.e. the transition 
probability density conditioned by (38) reads 

f dXl .... f dx, p(xo, O,x,,At) 
It In 

×p(x~, At, x2, 2At)...p(x,, nAt, xf, t) 

dXl [ 4XV( tj--t~_, ) ] - 3/2 
j= l  

h In 

Xexp 4~v ( t j -  tj_~) =p.(xo, 0, xf, t) , 

t 0 = 0  , tn+ 1 =t ,  X.+I =Xf. (39) 

The so introduced conditional Wiener measure on 
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the cyl inder  set explici t ly a t t r ibu tes  the real posi t ive  
probabi l i ty  weight to each discrete a p p r o x i m a n t  (Xo, 
x~ ..... xn, Xr) of  the r a n d o m  path. The  measure  (38)  
is known  to be coun tab ly  addi t ive  on all cy l inder  
subsets  of  the set o f  all c o n t i n u o u s  t ra jector ies  de- 
f ined on [0, 1] and  c o n d i t i o n ed  to connec t  fixed 

poin ts  Xo and  xf. 
A formal  rep lacement  of  all lj by R 3 followed by 

the n - , ~  l imit  in the par t i t ion  A t = t / ( n + l )  gives 
us a comple te  t r ans i t ion  probabi l i ty  densi ty,  

[ 18,19 ] to come from the m i s u n d e r s t a n d i n g  of  re- 
la t ionships  be tween q u a n t u m  and  stochastic observ-  
ables. A new cr i t ic ism has been l aunched  recently 
[20] .  Both the discuss ion of  the present  paper  and  
detai led reviews [7 ,18]  indica te  that  the t ime-re-  
versal i nva r i ance  is a pr incipal  feature of  stochastic 
mechan ics  and  thus  the B o h m - V i g i e r  theory as well. 

It is not  shared by irreversible stochastic processes so 
typical  for d iss ipat ive  p h e n o m e n a  of  s t andard  sta- 
tistical physics. 

P(Xo, 0, xf, t) 

= l i r a  [p,,(xo, O, xf, t) II/=[R 3, l <~j<<.n',. . (40) 
References 
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