Volume 147, number 4

PHYSICS LETTERS A

9 July 1990

Accelerated stochastic diffusion processes

Piotr Garbaczewski

Institute of Theoretical Physics, University of Wroclaw, PL-50 205 Wroctaw, Poland

Received 15 December 1989; accepted for publication 25 April 1990

Communicated by J.P. Vigier

We give a purely probabilistic demonstration that all effects of non-random (external, conservative) forces on the diffusion
process can be encoded in the Nelson ansatz for the second Newton law. Each random path of the process together with a proba-
bilistic weight carries a phase accumulation (complex valued ) weight. Random path summation (integration) of these weights
leads to the transition probability density and transition amplitude respectively between two spatial points in a given time inter-
val. The Bohm-Vigier, Fenyes-Nelson-Guerra and Feynman descriptions of the quantum particle behaviours are in fact equivalent.

1. Time reversal in the description of random
phenomena

Discussion of time reversal in the general context
of stochastic processes is tamed by folklore argu-
ments about the inherent (dissipation) irreversibil-
ity of random phenomena. For example [1] the
emergence of the pseudo-Fokker-Planck equation
(negative definite diffusion matrix) was noticed in
quantum optics investigations, but its probabilistic
significance refuted. Under the familiar name of the
backward Fokker-Planck equation, however, it ap-
pears quite naturally [2] in the description of sta-
tionary Markovian diffusion in connection with the
notion of detailed balance.

Indeed, the time reversal symmetry is not an in-
trinsic property of a Markovian diffusion: the Mar-
kov property itself is time symmetric but Markovian
diffusion in general is not [3-6]. Hence it is of some
interest to discuss the circumstances under which the
concept of time reversal may be relevant for the de-
scription of random motions.

Our principal goal is to extract from the proba-
bilistic data information on how the random process
is affected by the action of non-random (hence ex-
ternal to the process) force fields. The forces of in-
terest (conservative) have the property of time re-
versal invariance whose impact must be seen in
stochastic propagation.

Let us confine attention to a fixed time interval
[0, T] and consider a classical configuration space
path connecting the points go=¢(0) and Qy=¢q(T).
Apparently it comes from the Hamilton equations,
whose time reversal invariance allows one to con-
sider the new time dependent configuration variables

4(1)=q(T-1),
4(0)=0Q - §(T)=¢o.. (1)

Here §(¢t) draws the same trajectory in R as ¢(#) but
followed in the reverse direction: p(t) = —p(T—1t),
P(0)= —Py= —p(T). Accordingly we deal with the
alternative ways of connecting the given configura-
tion space points g, and Q, by a classical path fol-
lowed in the time interval {0, T]. Markovian dif-
fusion is known to admit the existence of both
forward (x, s, y, t) and backward p, (X, s, y, t), s<t,
transition probability densities, where

p(x, $)p(x, s, ¥, t)=p,(x,5,¥y, D)p(y, 1), (2)

provided p(x, t) is the probability distribution of the
random variable of the process at time ¢.

The forward probability density solves the for-
ward Fokker-Planck equation in y, ¢ which we choose
in the form

alp=VAyp—Vy(bp)- (3)
b(y, t) is the forward drift of the process, >0 is the
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diffusion coefficient (usually a constant). In vari-
ables x, s we have solved here the backward diffusion
equation

d,p=—vAp—bV,p. (4)

The backward probability density p, (x, s, y, t) solves
the backward Fokker-Planck equation in X, s and the
forward diffusion equation in y, t:

a:p*= - VAxp_ Vx(b*p*) s
8:p,=vD,p-b,p, . (3)

b, is the backward drift of the process. Since

p(x 0= [ 90,009, 0,x,1) dy (6)
solves
d,p=vAp—V(bp) (7)

in the finite time interval, we have the initial dis-
tribution po(x)=p(x, 0) and the final distribution
p(x, T) of the process for the case of forward
propagation.

Would we be interested in the stochastic analogue
of the previous purely deterministic analysis in the
case of the reverse (backward) propagation, then in-
stead of p(x, t), 0<t<T, we need

p(x, )y=p(x,T—-1t), O0<i<T. (8)
The corresponding propagation comes from

ﬁ(x’ t)=p(xa T_t)

=Ip#(x7 T_t)a s T—S)P(.V, T—'S) dy

=Jﬁ(y,S,X,t)ﬁ(y,S)dy, (9)

which implies

0.0(x, 1)=—~08.p(x, T)=vAp+V(bp),

1=T—t, b,=b,(x,T—1). (10)
By defining

b(x,t)y==b,(x,T—1), (11)
we replace (10) by the forward equation

0.h(x, 1) =vAP(x, )=V (bp)(x, 1), (12)

which apart from referring to the forward propaga-
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tion provides us with the reversal of the original time
evolution for p(x, t):

p(x,0)=p(x,T) - p(x, T)=p(x,0) .

According to the rules of the Ito calculus [2] the
forward Fokker-Planck equation is equivalent to the
stochastic differential equation

dX(1)=b(X(1), 1) dt+/2v dW (1), (13)

where the initial values of the random variable X(¢)
are distributed in R according to py(x) =p(x, 0).

Eq. (13) describes forward propagation of the
random variable X(¢) undergoing the Wiener pro-
cess W(t) with the forward drift b=b(X(¢), t) and
X(s), s<t, independent increments W(t)— W(s).
Apparently the same reasoning can be applied to (12)
with the result

dX(1)=6(X(1), 1) dt+/2v dW (1) >
dX(T—-1)=—=b,(X(T—1t), T—t) dt+/2vdW(1).
0<I<T. (14)

Notice that to transform dW(¢) to the explicit T—¢
dependent form, we must define W(¢)=W (T-t)
where X(s)=X(T-s), s<t, independent of
W(t)—W(s) implies the X(T—s), s<t, indepen-
dence of W (T-t)—W_(T—-s). Here s<t -
T—t<T—-shence W, (1) is a Wiener process whose
increments W, (t)— W, (0g) are X(o) independent
not for o< 7 but for 7<a.

The initial values X(0)eR? of X(¢) are distrib-
uted according to p(x,0)=p(x, T). In terms of
o0=T-s, 1=T—1 we have

dX(1)=b,(X(7), 1) dt+/2vdW,(7),
3.p(x, T)=—vAp(s,7)=V(bp)(x,7), (15)

which is a manifest backward (e.g. pseudo-Fokker—
Planck) decoding of the forward propagation (12).

In the above discussion p, defines the reversal of
the random propagation governed by p. Hence for
the diffusion of interest we must have guaranteed the
existence of both p and p, in the interval [0, T'], but
this definitely is not the case [1,2,5-7] for all con-
ceivable Markovian diffusions. Proper limitations on
the process (existence criteria) must thus be found.

Remark. The forward process tells us what will be
the probability distribution at time ¢, given p(x, 0).
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The reverse process must not necessarily be viewed
as a genuine (realistic, realizable in nature) random
propagation in the backward direction. It may be in-
terpreted as telling us that the distribution was in the
time interval T—¢ before p(x, T) has been reached
in the course of the forward evolution, i.e. as an ar-
tifice to reproduce the past data of the process, given
the present.

2. Notions of velocity and acceleration for random
motions

Random trajectories of the diffusion process are
continuous but nowhere differentiable. Anyway we
can introduce the forward and backward time deriv-
atives of the process X(¢) in the appropriately
smoothened sense:

(D4 X) (2)At~ jdyp(x, Ly, t+A)y—x.

(D_X)(H)At~x— szp*(z,t——At,x,t)z, (16)

which in fact provides us with the drifts
(D:X)()y=b, (D_X)(t)=b, of the process:
b.=bs(X(1), ).

If the diffusion pertains to massive (point) par-
ticles, we have a natural physical interpretation of
the forward drift as the mean velocity of particles
leaving x at time ¢ (along sample paths), while the
backward drift can be viewed as the mean velocity
of particles approaching (coming to) x at time . Ac-
cordingly x—b, (x, t) At is the mean position eval-
uated for incoming particles a time At before they
will reach x at . The mean position evaluated along
sample paths of outgoing particles, a time A¢ after
they left x at ¢ is x+b(x, 1) At.

The mean motion in the interval [t~ Af, 1+ At]
can be viewed as uniform, and the propagation from
x—b,At through x to x+ bAt can be approximated by
the uniform motion with velocity v=v(x, )
=4(b+b,) along the line segment [x—b,At,
x+bAt], accomplished in time 2Atf. v is called the
current velocity of the process. This interpolating
motion is given by

XT=X—b*At+%(b+b*)T
=x—b,At+b,1+(b-b,)1, te[0,2A1], (17)
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where the osmotic velocity of the process u=u(x,
t)=14(b-b,) naturally appears.

Let us recall that b, (x, t) is the mean velocity
evaluated for all particles whose destiny is to reach
X at time ¢ after the flight time At (along sample paths
of the process). The abrupt change of b, (x, t) into
b(x, t) at x is of purely stochastic origin: it is the out-
come of random fluctuations (scattering at x) which
modify the mean velocity of particles into b. The net
(mean) drift velocity change at x is 2u=b—b, and
this purely stochastic (osmotic) effect is accounted
for in the finite difference propagation formula (17):
the u deviation from the backward drift 5, accu-
mulates after 2A¢ to the 2uAf spatial increment. The
definitions (16) of time derivatives for stochastic
motion can be extended to arbitrary (smooth) func-
tions f(X(¢), t) of the random variable. It implies
[3-5] a variety of stochastic accelerations through
increments of the drifts,

b, (x,t)~b,(x,t—A)+ (D2 X)(1)At,

b (x, t+At)~b,(x,t)+ (D, D_X)(t)At,

b(x, t)~b(x, t—At)+(D_D, X)(2)At,

b(x, t+ A ~b(x, 1)+ (D2 X) (1)At,

D_by=(3,+b,V—vA)bs,

D, be=(8,+bV+vA)b, . (18)

Related increments of the current velocity are

v(t)~v(t—A)+3(D2+D_D.,)X(t)Ar,

v(t+ A ~v(1)+ (D3 +D, D_)X(#)At, (19)

where

v(t+ At) ~v(t— At + (22 X) (1) (2Ar) (20)

and [7] =4(D,+D_),

(2:X)(1)=[4(D% +D2)
+1(D.D_+D_D,)]X(¢) (21)

is called the current acceleration of the process. No-
tice its time reversal symmetry:

2EX()=22X()=22X(T—1). (22)
Increments of the osmotic velocity,

u()~u(t—At)+3(D_D, —D2)X()At,
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u(t+At)y~u(t)+4(D5 —D,.D_)X(¢)At (23)

combine into the average deviation velocity about x
at

Slu(t+ A +u(t—At) |=u(t) + (22X) (1) (2A1)

(24)
where 2,=1(D, -D_),
(2:X)()=[4(D% +D2)
-4(D.D_+D_D.)1X(?) (25)

is the time reversal invariant osmotic acceleration of
the process. The meaning of these accelerations be-
comes transparent, if we observe that during the time
interval [¢— A¢, ¢] the surrounding of x has travelled
not only by sample paths terminating in x at time ¢,
but also by those which originated from x at time
t— At. The respective contributions to the mean ve-
locity of particles flying about x in the interval [1— Af,
t] are b, (x, t) and b(x, t— At). They combine into
the average velocity of particles

v_()=4[b,(x, ) +b(x, t—A?)]
=v(t)—3(D_D, X) (r)At
=v(1—A)+ (D2 X)(1)At. (26)
Analogously for the interval [¢, t+ At]:
v () =4[b(x, t)+b,(x, 1+ At)]
=v(t)+ (D, D_X)(2)At
=v(t+ At)-1(D3 X) (1)Ae, (27)

where paths outgoing from x at ¢ coexist with paths
whose destiny is to reach x at 1+ At.

The random admixture of the outgoing paths to
the incoming flow implies the net change of
(b—>,)(x, t) into

v, (t)—v_(1)=3(D,D_+D_D, ) X(¢)(2At)
= [v(1+ At) — (1= At)]
—4(D% +D2 ) X(1)(2A1) (28)

where one more time reversal invariant acceleration
enters the scene:

1(22-2)X(1)=4(D,D_+D_D., ) X(z). (29)

Analogously we can evaluate how deviations from
the forward flow b, (x, t) in time intervals [¢— A, ¢]
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and [¢, t+ At] are modified by the admixture of the
outgoing (scattered as a result of random fluctua-
tions) paths:

u_(y=—1[b,(x,t)=b(x,t—At)]
=2u(t)—(D_D ., X)(2)At,

U ()=—[b,(x, t+At)-b(x,1)]
=2u(t)—- (D,.D_X)(2)At. (30)

The average deviation from the forward flow in the
interval [t— At, t+ At] is given by

Hus () +u_()]
=u(t)—4(D+D_+D_D,)X(2)(2At). (31)
Given u(x, t), v(x, t) we can consider:
Us=u+(2:X)()At, va=v+(22X)(2)At,
ba=b+(22+22)X(t)At
=b+4(D% +D2)X(1)At,
boa=b,+(22—-22)X(1)At
=b,+3(D,.D_+D_D,)X(t)At. (32)

In the case of non-zero b,,—b, we would deal with
the attraction (or repulsion) of the incoming flow to
a given point. Let us say that the diffusion process
remains in a stochastic equilibrium if the incoming
flow is not accelerated at any spatial point for all times:
then neither point is particularly distinguished by the
process. It means that

1(D,D_+D_D,)X(t)=(22-22)X(t)=0
(33)

for all times, and accordingly
boa(x, t)=b,(x, 1), v,(1)—v_(¢)=0,
Hue (@) Fu_ () ]=u(x,t). (34)

The process still allows for non-zero accelerations of
outgoing flows, but they are an intrinsic feature of
fluctuation phenomena. We shall choose a specific
way to destroy the stochastic equilibrium in the above
by applying force fields external to the process. If they
are conservative, we can produce the field of accel-
erations for the stochastic process by setting

$}(D.D_+D_D,)X(¢)=~ -JZVV(X(t), 1), (35)
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where M is an arbitrary constant with the dimen-
sions of mass.

Remark. If the diffusion process pertains to iden-
tical particles of mass m each, then M should be
identified with m. If we do not attribute any concrete
mass to diffusing particles then by setting m,=#/2v
where % is the Planck constant, we can associate a
certain stochastic (effective) mass m, with the dif-
fusing particles. For future applications let us intro-
duce a constant with dimensions of the action,
f,=2mpv, in the case of particles of mass m. (Since
v need not be a constant but may in principle slowly
vary with x and ¢, eq. (35) would apply nevertheless
for not too large space-time regions).

The acceleration formulas (33), (35) are of pro-
found importance, since as indicated in ref. [8] the
problem of solving the joint system (13), (35) can be
uniquely replaced by that of solving the partial dif-
ferential equation

iQ2my)d,w(x, =[—-imy?A+V(x, ) ly(x, 1)
(36)

in the time interval [0, T], provided we confine
po{x) to a contractible spatial area where the density
has no zeroes, and

v, D =exp[(R+i8) (%, 1)1,
(Syo= [ axs(x 0)po(x)=0.

20VR(x, t)=u(x,t), 2vVS(x,t)=v(x1). 37)

In the case of particles of mass m undergoing the dif-
fusion, by setting

v="h,/2m (38)

we transform (36) into the familiar Schrédinger type
equation. In particular we can set #,=#% where # is
the Planck constant, which replaces the correspond-
ing diffusion process by the quantum mechanical
Schrédinger problem.

3. Weights for random trajectories and respective
path integrals

For small flight times the transition probability
density of the diffusion process (13) isgiven by [1,8]
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p(V, t, x, t+ At) = (4nvAr)~3/2

[x—y=b(y, t)Atlz)
4vAt ’

Xexp(— (39)

Since it is necessary that (35) is satisfied, we utilize
b(x, t)=2vV(R+S)(x, t) and the system which is
equivalent to the Schrédinger equation (38):

3,S—v[(VR)?— (VS)*+ AR]+V/h=0,
3, R+V[AS+2(VS)(VR)]=0, (S>o=0, (40)

to evaluate contributions to (39) from the gradient
(i.e. b), by means of the Ito formula [5,9] (applied
to R and S as functions of the random variable X(¢)
in the finite difference scheme),

SX(+ A, t+ A —f(X(1), 1),
t=t;, t+At=ty,,
X(+A)=x;+,, X@)=x
=f(Xia 15 v ) =f(x, 1)
=0, (x;, t;)At+ (V) (x;, t;) Ax
+v(AN (X, 1) AL,
At=ti \—t;, Ax=X,41—X;, (41)

with ¥=7#/2m. The transition probability density be-
tween two fixed points x, and x in the time interval
[0, T] can be formally represented by the random
path summation formula [9,10] (see also ref. [8]),

p(xO’ Oa X, T)

= lim
_ e[ (R+S)(x, T)]
" exp[(R+S5)(x0,0)]

n n—1
[T p(xis iy X, tie) T1 dxie
i=0 k=1

X(T)=x | ‘
X J [DX] exp[—%j(%qu
X(0)=x0 0
RN
—V+ E —172—)] ,
Xn+1 =X, [,,+|=T, t0=0- (42)

It collects contributions from probabilistic weights,
associated with random paths of the stochastic pro-
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cess connecting points Xy and x during the flight time
T<0. In the case of #, #%, 1, should be used instead
of # above.

A formal link of the above path summation pro-
cedure with the Feynman path integral was estab-
lished in ref. [9] and was claimed to provide a sto-
chastic mechanics derivation of the Feynman
propagator formula. However, the arguments of refs.
[9,10] remain incomplete: one cannot be satisfied
with the replacement of the diffusion constant » pro-
cess by the “process” with the imaginary diffusion
constant i». What is necessary, is to demonstrate that
Feynman’s path integral can be represented as the
summation of phase contributions associated with
random trajectories of the same stochastic process as
the one underlying (42).

This goal can be indeed achieved along the same
lines as (39)-(42), provided that instead of the
probability density we shall utilize the proper com-
plex expression for the phase accumulation between
points x and y in the small time interval Az, Let us
observe that

K, t, x, t+4t) = (4nivAt) —3/2

i [x—y—u(, t)At]Z)
4y At

X exp(
X exp{ —i[9,S+ v(VS)2+vAS—V/h](y, 1)At}.
(43)

After suitable reordering of terms and next utilizing
the Ito formula (41) gives rise to
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K(x; t;, Xiv15 tigy)

o
= [4niv (i) —1;) ]2 exp(—l—u

4v tig =t
—i[3,SAt+VSAx+ v ASAt+ VAL/R] (%, t,—))

i (e —x)?

= [41tiV(ti+l —ti)]_3/2 eXp(4lI Livi =l

—t[S(Xw1, i) =S(x:, 1)

+V(xi, ;) (s _ti)/h])

= exp{i[S(x, ;) —S(Xis1, tis1) 1}
X K(Xi5 by Xigrs Livr)
Ax=xipy—x;, At=t,—t;. (44)

This enables us to write down the phase accumula-
tion formula as a formal path integral over random
trajectories of the stochastic process (13), (35),

K(x,,0,x, T)
= exp{i[S(xp, 0) =S (x, T)1}k(x5, 0, x, T)
k(xy,0,x, T)

. T
= J [DX] exp(%J‘ (3ma2—v) dt). (45)
0

Hence Feynman’s expression for the quantum me-
chanical propagator comes out, and Feynman paths
are essentially random paths of the well defined dif-
Jusion process (13) affected by the conservative force
field (35).

Remark 1. The path integral measure for (45) is
known not to exist in the literal sense, see ref. [11].

Remark 2. The positive probability weights were
attributed to Feynman trajectories in refs. [12,13]
(see also references therein). As emphasized in ref.
[13] it appears that a common stochastic basis un-
ifies the three viewpoints of quantum particle be-
haviours: the Bohm-Vigier causal approach, Fen-
yes-Nelson-Guerra stochastic mechanics and the
Feynman path description of quantum mechanics.
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