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We develop a path integral formalism which allows understanding of the Dirac equation in terms of the conventional
canonical (phase space) variables: the internal, which are constrained and the external.

1. We denote ¥ an 8-dimensional euclidean mani-
fold parametrized by the canonical coordinates
{pu, T, }u=1,2, 3,4 With i being an euclidean label.
The following Poisson bracket structure is imposed on
F.

{om}t=8,,, {o,p}t=0={m, m}, (1)

s0 that the antisymmetric second rank tensor
Fop=p0,m =P, . ()
can be used to define the two three-vectors: A; = Fiy
= pimy — Pamy, L = Tep Fye, 15/, k= 1,2, 3 which
satisfy the O(4) group Lie algebra commutation rela-
tions on F :

i Ly} =eply s L Aj} = €Ay
and set on 7 in a linear way, according to

_{Fﬂl,, P)\} = puay}\ - py‘su}\ s
(4)

—{Fw, mt= T un — Ty -

2. From now on, we will only use the natural sys-
tem of units 7 =c = 1. Let us make a conventional
canonical quantization step, by introducing a
Schrodinger representation of the canonical commuta-

tion relations
lowm,] =i8,,. [pp,]_=0=[r,.m]_,

la,,a,] =0=[a;,a}]_,

&)

*
la,.a,] =6,,.
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a;, =(1N2)(p, —im,) ., a,=(12)p, +in,). (5)

* o .
In terms of @, 4, an operator F,, appeats in the form

F,,=ilaya, —aya,), , (6)
so that [FW,N]* =0 with V= Z“ a:a“ and
Ay =ilagay — aqay) . Ly =ieaia . (7)

As a consequence the O(4) Lie algebra commutation
relations are immediately satisfied.
By defining ; =5; — {;, A; = 5; + {; we find further-
more:
1., * * *
§1 = z2ilaray — azay tajay —azay) .
1. * * * *
5y =3ilazay —ajas +aya, — agay) ,
1. E3 * * *
83 = 3ila3a4 — aqaz Yaya, — aray) .

1., % ® * * (8)
§1=21(ayay — a4ay — ayay +azay) .
_ 1. * * * *
§y = zilapay —agay —aza; tayay),

1., % * * *
§3— 51(03(14 —dudy —ayay + a2”1) \

where

[s,M_=0=1[¢;N)_=0=[Ns2]_, s2=g>.
and

[5;$1- =0, [s;. 8] =iegpsy

[fp?j]; = if:',‘jkfk .

3. By virtue of the above commutation relations, we
can represent the O(4) group Lie algebra in the V=1
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sector of the carrier Hilbert space et us1 By =h for
{a”,a }4=1,2,3,4- For that purpose, we shall use a
weaker than N = | constraint and demand stfte vec-
tors of interest to belong to a subspace 1p®,=1 1, = hp
of h, where

17 =11 1,
u

= [ {:exp(-a},
u

Then by taking advantage of the projection theorem
(theorem 4) of ref. [1], we get the following identities
on hg:

a,):+ a: :exp(—a:a”): a,}. 9

1Fs(a*,a)1F =s(a* -*b*,a—>b)=sF ,

(10)
1F§(a*,a)1F = ;(a* >b*, a>b) =Cg .

where the mere replacement of the Bose generators
aﬂ, a,, by Fermi generators b:, b, in egs. (8) is enough
to produce a representation of the O(4) Lie algebra,
which is irreducible in the N =1 subspace hy, of hg.
Here, on ki1, we have: s2 = s(s + 1) = 3/4 and

dim hy;5 = 4. The exp11c1t formulas for the Bose con-
structed generators b’J b, can be found in refs [1 2]
or quite easﬂy deduced by noting that 1Fa 1=
1pa,1g = 0, , where o” 0, are the familiar Pau11 op-
erators, and then using the Jordan—Wigner transfor-
mation [3,2].

4. It was shown by Dahl [4], in his study of the
spinning relativized quantum top, that by using the
0O(4) group Lie algebra generators sg, £ and the ex-
ternal space—momentum variables p, x, the nonmatrix
form of the Dirac hamiltonian arises in the form
Hp¢=i0¢/0t, Hp =2mips +4p,6pp),  (11)
where p;, = —i0/dxy, (x, ict) = x and throughout the
paper fi=c = 1. Then

4
¢ =l t)=§l V6,00, ,

with 6, ’s being the eigenvectors of 52 = 2 = 3/4 in
hy/3- The orthonormality conditions (6,,,0,) =3,
allow us tointroduce a conventional matrix realization
of the Dirac equation
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(mp+ap)y =ioyfor,
(O ok) 5 (I 0 ’ 5
o = , = , k=1,2,3, 1

where | is a column consisting of the expansion coef-
ficients ¥ ”(x, t) of ¢. Our basic assumption here is to
use the spin 1/2 representation of the O(4) group Lie
algebra as given before i.e. the Bose constructed one.

5. The Dirac hamiltonian Hy is densely defined in
the tensor product Hilbert space &y, ® 3 where 3
= ®,3=1 h; carries a Schrodinger representation of the
canonical space—momentum variables {x;, p;};=; 3 3-
If Py denotes a projection onto the N = 1 subspace
hyjp of h = ®“ 1 h, we find that Hg = P1/2HP1/2,
where the operator H is densely defined in 2 ® ¥ and
is completely determined in terms of the quantized
phase space variables for the system

H=H(p,n,p)=H(@",a, A", A),
with
Ay =Ny —ipg), Ag = (l/ﬁ)(xk +ipy) .

By inspection, one easily finds that:
H=:H(p,n,p):

* * * *
tp1(@1a; +agay — ayay — a3a3)
* *
tpy(ajay +aya) — dyay — a3ay)

+pslaja; +aya, +a5a, +a3a;), (13)
where :H: stands for a normal ordered form of H:
recall that under the sign of the normal ordering all
p, w variables commute to 0.

We have thus proved that the quantized Dirac sys-
tem can be represented as a conventional hamiltonian
system with a total number of 7 (4 internal and 3 ex-
ternal) quantum degrees of freedom, among which the
4 internal ones are sub]ect to the constraint (N — 1)¢
=0,with N= E“ aﬂaﬂ

6. The transition amplitude for any quantum hamil-
tonian system with constraints can be expressed in the
path integral representation (as a sum over all phase
space trajectories), according to the general formalism
of Faddeev [5], see e.g. ref. [6].

The quantum constraint (X, a,a, — 1)¢=01is an
image of the following classical one:
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N=2a,e,=(1/2)(> +n2)=1.
u

In the Faddeev formalism a classical constraint must

be accompanied by the “gauge” condition ¢(a, &) = 0,

which is restricted by the demand that the Poisson
bracket (in the p, 7 variables) { (@, &), 9 } does not
vanish. A convenient choice is

v@a)=25p,m, =(p,mM)=0
m

= det({o, M H=n% - p2. (14)

Then a physical phase space for the *“classical’ Dirac
system is 12 dimensional (with 6 internal and 6 ex-
ternal dimensions). The ““classical” hamiltonian for
the Dirac system is

Hy=H@ »aa->a,A">A, 4> )
=H(p.m,p)+(py/2)
X (p% +1r% +p£ +1'r‘2‘ - p% - 77% - p% - Tr_%)
T pa(p1py + T Ty — P3P4 — T3TY)
tP3(pyp3 T Ty T popy +ToTy) (15)

and obviously has nothing in common with any con-
ventional z = O limit, as in our case i = ¢ = | both on
the classical and quantum levels. Our *“classical” level
can be interpreted as to give account of the true clas-
sical (i.e. continuous) motions but then on a micro-
scopic scale. Any 7 — 0 limit means approaching a
macroscale on which all finite volume contributions
of microclassical fluctuations to macrotrajectories are
negligible.

The path integral representation of the transition
amplitude reads

Z:fn(l)p#(bn“ H(Dpi(bxi [16(2 + 72— 2)
M i ¢

X 8((p, m))(x — p2) exp [i fL dt:, . (16)
where:
L=25 b, + 20 pi%; — Holp.m.p) (7
m i
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and 7D indicates an appropriate measure.

7. Let us make a short comment on the role of the
gauge condition (p, 7) = 0 which divides the internal
phase space into two orthogonal subspaces. One can
easily check that the quantity

G=(1/2)(L2 +A2)=(1/2)p%a% - (p.7)? |

is an invariant of the O(4) group on the classical mani-
fold, and that by fixing the value of G, we choose in
the physical internal phase space of the Dirac system
a five-dimensional submanifold, which is an orbit
with respect to the action of O(4). The constraint

p? +al - 2=0=2G/n +72 2,

fixes the variability range of G to the interval [0, 1/2]
in which 72 =1+ (1 - 26)V2 p2 = 1% (1 - 2G)V/2,
are the allowed radii of the mutually orthogonal hyper-
spheres.

Remark. For an example of the Grassmann quanti-
zation of the Dirac system, see e.g. ref. [8]. Some
references to the earlier nonGrassmann quantization
approaches can also be found there. see also refs. [6.4].

This work was partially supported by the National
Science and Engineering Research Council of Canada
and the Faculty of Science of the University of Alberta.
I would like to thank Prof. H. Umezawa for making
this financial assistance available.

References

[1] P. Garbaczewski, J. Math. Phys. 19 (1978) 642.

[2] P. Garbaczewski, Phys. Rep. 36C (1978) 65.

{3] P. Garbaczewski, Bull. Acad. Pol. Sci. ser. astr. math.
phys. 25 (1977) 711.

[4] J.P. Dahl, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 39
(1977) No. 12.

[S] L.D. Faddeev, Teor. Mat. Fiz. 1 (1969) 3.

[6] A. Jevicki and N. Papanicolau, Semiclassical spectrum of
the Heisenberg chain, IAS Princeton preprint (1978).

[7] V.B. Serebrennikov, A.E. Shabad and Y.A. Smorodinskiy,
Nuovo Cimento 47A (1978) 333.

[8] FF.A. Berezin and M.S. Marinov, Ann. Phys. (NY) 104
(1977) 336.



