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THE QUANTUM PENDULUM AS SPIN 1/2
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We derive the conditions under which the quantum pendulum becomes equivalent to the elementary spin 1/2. The re-
lation of the quantum and classical angular momenta is considered.

1. A potential V' = mgl(1—cos ¢) implies the motion
of a plane pendulum of mass m, length ! in a plane in
which an acceleration g = (g,0,0) is applied. The first
quantization of the problem arises in the following
form:

{(~72/2m1?) d?/dg? + mgl(1—cos )} ¥ = BV,
which after the substitutions

22 =¢,q=4m23g/h2, a=8mi2(E-mgh)/n?,
goes over to the well-known Mathieu equation
{(d2/dz2) + (a~2q cos 22)} ¢ = 0.

This last equation is solvable [1], and provides us with
a complete description of the Hilbert space h =
£2(0,4n), ¢ € [0,47]. The spectrum of the quantum
pendulum for g # 0 is nondegenerate and both eigen-
functions and eigenvalues exhibit a manifest g-depen-
dence. The Mathieu functions:

ceqn (z £ M) =ce,y,(2),
Seon+2(Z 2 ) =s€9,49(2),

Ceyp4q (2 £ M) = —ceyyiq (2),

ey (ZEM) = —sey,,1(2), n=0,1,2, ..,

1 2n 1 2n

;Of cek(z)ce,(z)dz=’8k,=;(‘)[ seg(z)sefz) dz,
i

2
f cep(z)se)(z)dz =0,
0

form a complete orthonormal system (basis) in h =
£2(0,4n), where h = h® e h5e.,

In the limit g - O the following properties of eigen-
values arise [1]: 2 (q) ~> 0, a° (@) ~ o (q) - ;. (0)
# 0, 4;(0) < ay.,1(0), while in the limit m > oo, g/l
fixed, the spectrum of the quantum pendulum goes
over to that of the doubly degenerate harmonic oscil-
lator:

ESE >ES 1~ (Qn +1/Dh@E/H2,

E$ . ~ES .y~ {Qn+ 1)+ 1/2}ag/H12 .

Moreover, under the reflection g > —q, we have

0% +1(* @) =a%, .1 (F @), while an even part of the
spectrum remains unchanged. Let us add that conven-
tionally [3,4] an odd part of the spectrum is omitted
as “unphysical™, but its presence is crucial in below.

2. Let us now introduce the following indexation
of the Mathieu functions: ce,,, (2) = €4, (2), ceyy 41 (2)
= €441 (2) 589,42 (2) = €442 (2), 585,41 (2) =
€4,+3(@),n=0,1, ... Notice that with respect to their
magnitude the eigenvalues ay,, , 5, a4, .3 appear in the
inverse order.

The set {e;};=¢ ;,... can be used to define densely
in A the pair of operators:

a*=kz=)0\/k+1ek+1® é_k, a=k§1 \/Eek—laék’

which as generating in & a Fock representation of the
CCR (canonical commutation relations) algebra, give a
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complete characterization of the quantum pendulum
problem, {a*, a, |0) = ceg}. On the other hand, if one
denotes:

In, 1)= [(2n + 1)!] 712 @*)2n+10)

In,0) = [(2n)!] 172 (a*)27]0),
and notices that:

o0

25 1n,0)(0,n| =cos?(nN[2), N=a*a, (N
one finds [5] that the operators:
2 2
_ cos*(nN/2) p* = g+ €O (1rN/2)’ @)
(N+ 112 (NV+D12

generate in & = £2(0,47) a reducible representation of
the CAR (canonical anticommutation relations) alge-
bra, which becomes reduced on each two-dimensional
subspace k,, C k; an even basis vector is the vacuum
state for this irreducibility sector,

bey, =0, b*ey, =ey,4q, vn=0,1, ...

Consequently, with respect to b, b* we get the follow-
ing splitting of A:

=D rCeohr®),
n=0

where A, is a linear span of {ce,,, cey, .}, and iy
of {se2n+2, se,, +1 1. Notice that b* creates an energy
quantum in 25°, while annihilating an energy quantum
in ;7. The converse holds true for b.

Because dimh = 2, each h,, carries an elementary
spin 1/2. Hence the quantum pendu]um is equivalent
to the reducible spin 1/2 equipped with an additional
degree of freedom 7 indicating whether the creation of
the spin-up state creates or annihilates an energy quan-
tum: A€ =h* h¥ =h—,

3. Now we shall introduce the notion of tempera-
ture-dependent ground states |©(B)) according to
thermo-field dynamics [6,7]. They give account of
the coupling between the quantum system of interest
(quantum pendulum here) and the environment (reser-
voir), under which the ground state expectation value
of N =a*a reads:
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(©(B)la*al®(B)) = sinh20(B) = [exp(Bw) — 1171 . (3)

As shown in refs. [8—10], it is possible to construct
the one-parameter family {©,(8)}, = [0, ) of the
above couplings, so that:

lim [exp(Bw,) — 1]t [exp(Bwp) + 111

A—> oo

which expresses a nonthermal procedure of the A-en-
forcing of the spin 1/2 approximation of the consid-
ered system:

lim (A:FC(a*, a): [X) = (| F(b*, b):|o=),

A—> oo

Here [b,b*], = 1 and {b*, b, |0)} is a Fock represen-
tation of the CAR (canonical anticommutation rela-
tions) algebra. If applied to the quantum pendulum
problem, such a choice of the temperature-dependent
ground state, mathematically represents a selection of
an irreducible spin 1/2 component from the mixture,
and says that the system reservoir coupling prefers
spin 1/2 based on Ag® =

At this place we shall generalize the spin 1/2 ap-
proximation concept of refs. [8—10] to allow the se-
lection of other than A spins 1/2. We take: f= Z¢-
Jr ey €h and define:

oo lk=2slf, 12 ED
nn2e35(g) = koLl B Vil exp(h O
Eklfk|2eXP( —BER)

where the A-scaling of the quantum pendulum spec-
trum is chosen by demanding: lim,\_,mE,z‘ = oo for all
k<2s,k>2s+ 1 while lim}\_mE =E,, lim,y
E2s+1 E5¢ .y (for an explicit construction of such
scaling in the limit 1 - oo, which corresponds to ¢1
see refs. [2,10]). Now, we have:

lim sinh2®%s(6) = [exp {B(wp + e300} + N, ®
A—> o0

where wp = (2/8)In]fo /o411 and €5 > 0 forn =0,
2,4, .., e5,<0forn=13,5, ...

By repeating the arguments of refs. [8,9], one easi-
ly finds that each 2sth coupling of the quantum pen-
dulum with the environment, in the limit A = o° selects
a single irreducible spin 1/2 component of the quantum
pendulum, which is based on A forn =s/2,5=0,2,4, ...
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and on h,; forn=(s-1)/2,s=1,3,5, ..., respectively.

4. The quantum pendulum understood as a triple
{a*, a, ceq = 10)} defines in & = £2(0, 47) a symmetry
0
group E(2) of the euclidean plane:

+ = - = _ 1
T=q*, T-=a, J,=—3%a%a,

Vo, T*]_=xT*, [T, T*]_=1p,

so that T, = exp(aa*—&a) translates the vacuum

T,10) = |@) into a coherent state, while J, realizes ro-
tations in the complex a-plane:

a~> aexp(—i¢) = a, = (ala,la) = a exp(—i¢) .

Let us now consider the temperature-dependent expec-
tation value of the generator J, in the limit A -> eo:

lim ©Z (81,103 (8))
(6)

= — b+ [exp{Blwp +ex)}+1]7 € [ £, +1].

We have here realized the generalized spin 1/2 approxi-
mation of the quantum pendulum. Namely, we find in
h vectors |\, 25) so that:

lim (A, 2s):Fg(a*, a): 1\, 25)= (2s|: F (b*,b):12s),
A—> oo

where [25) = lim, _, .|\, 25) € h, (i.e. h;, for 2n=s,h,,
for 2n +1 =) and the index NV at : Fy (a*, a): means
that in the explicit normal ordered operator expansion
for : F¢(a*, a): all a*, a should be replaced by a* = (1/
W+ D)12)a* a=(1/(N+1)1/2) g, respectively, cf.

e.g. ref. [2]. But it also means that

lim (X,2sla*/(2s + 1)V2|\, 25) = (25(6*(25) ,
A—>oo

lim (X, 2sla/(2s + 1)1/2|x, 25) = (25|b]2s) ,
A—>oo

i.e. the whole SU(2) Lie algebra for spin 1/2 emerges
in the place of (T*,J,): S*=0*, S~ =0-,5,=-1/2
+ato—.

5. With a moving plane pendulum (classical) we can
associate an angular momentum vector, averaged over
the period 7, oriented in the z-direction and with
length Ly = 7= fT mi2$ dz. In the case of rotating mo-
tion we have + 2ami2/r = L, where the sign depends
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on whether signq'b =+ respectively, while for an oscil-
lation: Ly = 0.

On the other hand, the quantal result in the spin
1/2 approximation would be 1/2 and no apparent re-
lation between the classical and quantum angular mo-
menta is seen.

For simplicity (but with no loss of generality) we
restrict our considerations to the case s = 0 and de-
mand:

(©,(B)1 £ 7,10, (B) = £ (— 3 +5inh20, (§))

=+ 2mml (1 h . @)
In the limit A - o= we get then:
t 1/t = (Af2nmi2)(— 1 + [exp(wp + ) + 1]71), (8)

where: t 1/7_ € [—h/4nmi?, h/4nmi?] and conse-
quently a lower bound for the classically admitted ro-
tation period arises: 7., = 4nl2m/h. In addition, be-
cause the spin 1/2 approximation defines an irreduci-
ble spin 1/2 in A*, we can introduce a rotation through
an angle f about an axis (sin ¢, — cos ¢, 0) by the use
of § [11,12],

R0,¢ =exp(.St—£S7),

£=30exp(-ig), 10,9)=R, 0},

sw =R;MSR0’W =>(0|S9’¢IO) =(0,¢1819,v),
(6,015,10,¢9) =3cos 0, (8,418,10,9)=3sin6 cosy,

(0.¢15,16,¢) = 5sin 0 sin ¢, (6,015216,9) = 3/4, (9)

[0) being the spin-down (vacuum) state in a spin 1/2
sector. The rotated vacuum state |9, ) is known as
the Bloch state and provides us with a classical-like
image of §.

The above formulas suggest to define the deflection
angle by demanding:

cos 0 = 4nllm/r h if 6 €[0,7/2),

= —47T12M/T°°h if 6 € [n/2,7],

which establishes the link between eqs. (7) and (9):
the classical plane (1, [) pendulum rotating with the
period 7, = 4nl2m/f# around the z-axis, can be consid-
ered as a classical relative (descendant or ancestor) of
the irreducible spin 1/2 component of the quantum
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pendulum, here 8 = 0. Taking 7, > 4nl2m/# induces
a corresponding @ -rotation of eq. (9) for all possible .
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