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A Canonical Description of the Solitary Quantum Decay (°).
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(ricevuto 1'11 Luglio 1977)

Summary. — A quantum picture of solitary motion is presented. Time
evolution of a quantum N-soliton is described as a transition through
infinitely many unitarily inequivalent representations of the canonical
commutation relations. The statistical nature and the irreversibility
of the process naturally emerge. Their origin is found in the nonunitary
character of the transformation among the wunitarily inequivalent
representations.

1. — Introduction: classical solitary motion.

Let us consider a soliton sector of the sine-Gordon system in two space-time
dimensions:

1{(op(@, )\* (S, 1)\* | |
(1.1) L = 5((7 —~ = + 2m(1— cosg(z, 1)) |,
whose general congtituents are introduced in the form (*)
2 (or @*
(1.2a) cosg(x, t) = 1—m—2 (a—ﬁ——-a—ﬁ)lnf(m, ),

fl@, )= det |3];

(*) To speed up publication, the authors of this paper have agreed to not receive the
proofs for correction.

(**) On leave of absence from Institute of Theoretical Physics, University of Wroclaw,
Wroclaw, Poland.

(*) P.J.CAaUDREY, J. C. EiLBECK and J. D. GiBBON: Nuovo Cimento, 25 B, 497 (1975);
V. E. Zaguarov, L. A. TaxaTADIAN and L. D, Fapprev: Dokl. Akad. Nauk. USSE,
219, 1334 (1974). '
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|M| = {M,} is the N XN matrix of elements

2 0;-+6;
M”:a,--}—a,-e'OSh 5
(1.2b) 0, = +myxz—v,t) + 6, i=@a—0)?
., 1—w;
=17,
1-+9;

the solution ¢(x,?) = ¢y(r,t) is called the N-soliton solution. The solution
is parametrized by the number N of parameters {a,} which are in general com-
plex. We shall restrict our considerations to real parameters only. The major
point of interest then becomes an asymptotic structure of the solution (1.2)
under the assumption that constants a; are real:

lim g, t) = 42tg lexp [0, + 77 —4290

i—>%7,171>0 i=1

(13) 77 = _t()zlna'u’}‘ z lna’u9

“j=1 2 J=i+1
a; — @; 2
(lrij - ( _‘) .
a;+ a;

The asymptotic fields ¢, are called 1-solitons. The corresponding general
solution @(w, t) = @x(x, t) describes the scattering process of the number N
of 1-(anti)solitons, where the number of particles is preserved.

Let us reduce our interest to a positive part only of the time evolution
scale, and start to consider a solitary motion at the point t = 0 towards
?= L co, Now, at the point ¢t = 0 we begin from a nonlinear structure which
represents a certain initial interacting—N-particle function, where the term
N particles indicates that asymptotically N free solitons will appear. After
a sufficiently large time period the asymptotic separation appears. Thus we
deal in fact with a classical decay model, where at t == 0 the unstable solution
is given which further decomposes into stable particles, 1-solitons, which for
all times preserve their 1-soliton identity.

The well-known property of soliton solutions is that they represent the
localized energy and momentum distributions

IE f,af (@ ) do = S B,,

i=1

lP f 0o, t)da == ZP,,
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where E, and P; are energies and momenta, respectively, of the asymptotic
components; 5#(¢) is the energy density corresponding to the solution ¢(z, t).
Moreover, these global quantities £ and P are strictly preserved, despite of
the time chosen. Hence, our classical decay is a purely elastic process. In
general, any N-soliton solution, depending on its complex parametrization,
can be asymptotically decomposed into a number » of 1-solitons and m bound-
state excitations, which are called bions. Then N = n + 2m, and again the
global energy and momentum have the form

nt+m ntm

E:th P:Z-Z)iy
i1 1

which follows from the asymptotic decomposition. :
Let us turn back to the N-soliton (1.2), which decomposes into a numbel
N of 1-(anti)solitons. Any ¢(z,t) can be parametrized by the number N of
quite arbitrary velocity parameters

(1.5) (2, t) == fN(vly ceey ox)(Zy ) .

The only restriction here is 0 < |v,| <1 = ¢, for any 4, with ¢ being the light
velocity and that, if any pair of velocities coincides, then the solution van-
ishes (2%): v, = v;, for any 4, j, implies fy = 0. From (1.2) one sees that each
0, depends on v, only; v, then characterizes in the asymplotic limit the %-th
1-(anti)soliton, as one can see from (1.3). Since 1-solitons are energy distri-
butions, fx(vy, ..., vx)(%, t) can be thought of as a funetion which describes the
motions of the N energy centres of the underlying distributions and the
motions relative to them. We admit here the interaction between energy
centres. Let us now consider the solitary evolution in the lattice approximation.
Namely, we shall assume to have the linear lattice so that the line R! is count-
ably covered by the set {4} of nonintersecting open intervals A,n4,= 0, for
s=1. The lattice constant is assumed to be given: u(A,)= 2 for all =0, ;t:l,
+ 2,.... Let us assume that gy(x,t) at the time ¢{ = 0 represents the number
N of interacting—single-particle energy distributions, whose energy centres
oceupy the positions gy, ..., ¥y, each belonging to a respective interval 4€ R
Then the point 2 can be completely identified (in the latiice sense) when we
write

(1.6) @@y 0) = fu(Oyy ooy O3 Yo -+ Mady Yo+ Mo hy oy Y+ Ny 4) =

YNy N (e e g
= g™ (Byy ey TNy Yryooey Yn)

(2) 8. ORFANIDIS: Phys. Rev. D, 14, 472 (1976).

(®) P. GARBACZEWSKI: Self-quantizalion of the sine-Gordon system in the soliton sector,
University of Salerno preprint (1977); Boson expansion methods in quantum theory,
to appear in Phys. Rep. C.
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Any single parameter n, establishes that the site to which # belongs is n.-th
relative to the y, position of the energy centre: n, = 0, £ 1, £ 2,.... Next,
let v = |v;| be the smallest velocity in the set (vy, ..., vy); we introduce then
the identification v, = r,v with », = £ 1, - 2,... (we have thus a discrete
velocity secale).

The time evolution of (1.6) reads (3)

t=p2ryfvy

A . .
(1.7) Pn (m,t = }T) == fy (v,, cey Uy Yy -F nll—am‘l»{—fyl(t)dt,
0
t=virn[vNn

ey Yn ‘+‘ mN;“ - 1"}.7‘1\( + /I.N(t) (1t) )

[]

where terms of the form »ir, (v is an integer) represent a uniform motion of
the k-th energy centre (asymptotic free motion; compare what happens if

t=pArgfvx
1-soliton is considered in the place of ¢y) and fg]k(t) dt represent the result of
(]

accelerated motion suffered by the k-th energy centre in the interval [0,¢ =
=vA/o] (interactions with other energy digtributions). For sufficiently large
»)s (t>>0) we can, in fact, decompose gy into a linear sum of single 1-(anti)-
soliton distributions, where each single term is of the form

4+
(1.8) dtg exp [ £ mpslyet med— vin+ [0 Q1)
0

where y, + n, A = @, is the initial position of interest (varying y., we get the
~+
information about space properties of the 1-soliton solution) and f U(t) At = o5
is the k-th phase shift of the solution, see eq. (1.2). o
The funetion (1.7) can be easily transformed into the form exhibiting the
hopping motion from site to site, which is modified by the time-dependent phase

shift:

A
(1.9) on (w,i = ;) =2 QTN TNy Oy Yt (), ey Ya - (D))

Now the discrete time ¢ = pi/v labels the instants of our classical decay process.
Let us add that, provided the velocities are given, a global momentum of the
N-goliton is established, so it can be introduced as an additional parameter
P labelling momentum properties of the funections (1.7)-(1.9). In the next sec-
tion we will introduce & quantum picture for the solitary time evolution. The
quantum deeay process will be modelled by the classical solitary decay motion
introduced in the present section. In sect. 3 a desecription of the solitary
quantum decay process is presented, which is based on the existence of in-
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finitely many unitarily inequivalent representations of the canonical com-
mutation relations. The statistical nature and the irreversibility of the solitary
decay process naturally emerges from the nonunitarity of the transformation
among the inequivalent representations.

2. — Solitary quantum decay.

Let us start from the classical N-soliton solution (1.6) at time t = 0. Let
us assume to have a family {f,} of complex test functions with the properties

fi = fe(v1y oy V)
[eonfiwn) fiwon) = b,
sz(vzv) fk(v:v) = 61:,,1"”7

N
fk(vN) = O fOI' k # zk;,

=1

where vy = (v, ..., vy) abd each of the &’s is a 1-soliton asymptotic momentum
defined by the parameter v,. In addition, let us assume that the initial positions
of energy centres belong to a finite interval A, with a characteristic function

( ) 1 Yiyeeny Yn€ A,
(io(U1yoeey Yn) =
Hialas voea S 0 if any of the y's¢ A4, -
We define
(2.2) ¢(v,) =fdy1 e AYw @™ (Vs Yuy ooy Yu) XYy ooy Yov)
and further
" :fva " (vx) fi(vx)
(2.3)
v = [dvsgm(on) fulvn)
where n = (n,, ..., ty) and dvy=dv,...dvy. We restrict considerations to a

finite number of k’s only, and to a finite number of real parameters s, which
we need to define a classical lattice field

e

3 -k .k )
o T bl )
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At this point we shall introduce a quantum lattice field

(2.5) ¢ = \_/IV % {V*" exp [%L——] + Vrexp [ ki;” ,

where

[VI’:7 V:’"’] = 61:7:’ 51"1 ’
(2.6) [V, VE¥] = [VE, Vo]=0, for all ¥’s,
Vk QB =0,

so that the corresponding Fock space is given. The notation here isn = n' =
!
= (g veey Ny) = (nu oy M)

We introduce then

(2.7 sz{za"V';, zla"[zzl,
50 that
(2.8) Ve, Vil= 6, Ve, Vel=1[V,, Vi1=0.

To compare this quantum construction with the previously introduced
one, let us write explicitly

(2.9) vim =[dv, g fivy)

with ¢; being a Hermitian field.

We construet the coherent-state domain for the field ¢7, so that its coherent-
state expectation value will coincide with ¢7, see, e.g., (2.5) and (2.4). The
coherent-state domain is given by

(2.10) B =oxp [ 13 S| exn [S S V] 24,
x {n} E {n}

50 that

(2.11) (BIg7|B) = ¢ -

The correspondence relation (2.11) between the eclassical and quantum
levels, provided we allow time to flow, establishes the relation between the
classical solitary dynamics and the corresponding quantum solitary dynamies.
Namely we expect to have time dependence of the operator ¢7 once @r(t) Is
given. By assuming that for each time ¢ one has a representation of the can-
_onical algebra, then, through the GNS construction, we always have a cor-
responding carricr Hilbert space H,. We expeet that in H, there exist state

8 — Il Nuovo Cimento A.
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vectors |B,t) such that
(2.12) (B, t|g;(1)|B, t> = ¢7(2)

holds. Let W, be a time evolution operator such that

1B, t) = W|B)
and hence
(2.13) <BIW:@;(0) W ,|B) = ¢[(t) .
In general
W, W,
Suppose
(2.14) (B|9;t)|B) = ¢(t)

for some ¢7(t), so that the influence of the general evolution rule (2.12) can be
studied by the use of pure Fock techniques. In consequence of (2.14) there
exists a unitary motion operator U, such that

(2.15) 0 = U o) U,

in such a way that (2.14) holds. The form of U, is predicted by the classical
solitary-motion law (1.9), which shows that energy centres become shifted
by suitable space intervals when time flows. These shifts imply the corre-
sponding form of ¢7(¢). Let us namely restrict to all the energy centre initial
positions and velocities such that the values

(2.16) Jimat+y =y

for all times ¢ still belong to the initial interval 4,,. As a consequence, any
asymptotic phase shifts completely loose their importance: with or without
them, the ¢7(¢) can be satisfactorily defined by taking into account the free-
motion shifts which have their origin in the uniform terms »f. Thus, for = v2/v,

(2.17) (p:(t) — (p:l—"’fb---ﬂl)q—vr)v’

and this is the motion rule which we must generate at the quantum level.
To derive a quantum motion which will imply (2.17) through (2.11), we need
the appropriate quantum transformation of ¢7 while time flows:

(2.18) exp [— T Mt] @y exp [{Mt] == @hrmmvy
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with ¢ = »A/v, so that the Hermitian operator M is just the generator of quantum
solitary motion. Spectral properties of M are well defined due to (2.6) and (2.8).
Notice that immediately

(219) <Bl¢:x—vr1,---,"N~Vle'B> — q):’l_V'ls-'-v”N“V"N .

Obviously, the right-hand side of (2.19) gives account of the classical solitary
decay exhibiting the most important feature (i.e. shifting in space) of solitary
motion in the lattice approximation. Thus, to the c¢lassical decay there cor-
responds through (2.19) an associate quantum deecay implied by the classical
time evolution. In this sense, we speak of solitary quantum decay.

3. — Statistical description of solitary quantum decay.

In this section the statistical properties of the solitary quantum decay
process are of main interest to us: we want to study the probability distri-
bution informing about the fraction of still undecayed particles in the given
fraction of particles with momentum %.

‘We congider the time scale divided into a sequence of time intervals At
much smaller than the characteristic lifetime of our decay process. Let ¢t = 0
be the initial time; a generic time interval is denoted by 4_, 1=0,1, 2, ..., 4o,
We recall that each of the operators V7, V, was defined by (2.7), (2.8) for

N-soliton excitation at ¢ = 0; we shall put a subscript ¥ to the state vectors
representing states of N-soliton particles, e.g. £2,= [O>y so that (cfr. (2.6))

(31) VK'IO>N - 0 3 N<0|O>N == 1 .

Our task is the construction of a state |O(t))y such that the expectation
value of the number operator in this state is a time-dependent funetion which
describes the quantum decay of the quantum N-soliton excitation. We expect
namely that the value

(3.2) K Blexp[— Mz VEV, exp [iM7]|B)y=1T,, for ted_,

will be the expectation number of quantum N-soliton excitations of momentum
k at the timete A_. Recall that M is the generator of the solitary time evolution
(cf. egs. (2.18) and (2.19)). The time-dependent function T, , describes the decay
law whose explicit form is irrelevant to our description. For simplicity, we
shall assume

1 at =20
11}:,121 ’
(3.3) | o at 7= + oo,
0<r,<1 for 7€ (0, + o).
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To construct the state |0(z))y such that

(3.4) HKOD|VEV0()>y =1

k.t ?

we follow a standard procedure (1) which has already been used in the descrip-
tion of unstable particles in quantum field theory (5).

We introduce the operators V,f and ¥V, at te 4, with the commutation
relations

35 D, Til=8w, [V, Pl=1V;, V=1V, Vi1=0
The « tilde » vacuum for ¢ e 4, is denoted by |0>N:
(3.6) TOox=0, KO0 =1.
We will use the notation |0>y== |0, Oy for the direct product of the V-
vacuum state and the V-vacuum state. We introduce the operators V(z)

and ¥.(z) by a Bogoliubov transformation as follows:

Vi(t) = V,cosh— V¥ sinh 6,

3.7
30 Vi(r) = V. cosh§— V¥ sinh

and their Hermitian conjugates; here § is a function of 7. The generator of
(3.7) is

(3.8) Gul(z) = 0()(VE V= ViV,
(3.9)  Vi(r) = exp[— iGy] Viexp [iGy],  Vi(r) = exp[— iGy] Vi exp [iGy] .

The state |0(7))y is given by

(3.10) |0(7))x = exp[— iGu(T IO>N5
..
(3.11) |0(T)>y = 111 ; ©xD [tgh V¥ P20y .

The state |O(r))y is the vacuum state for V,(r) and Vi(r)

(3.12) Vi(0)|0(x))x = V(2)|0(2) ) = 0

(9 Y. Taxamasar and H., Umezawa: Collective Phenomena, 2, 55 (1975).
(®) S. DE Fiurero and G. Vitrerro: Lett. Nuovo Cimento, 19, 92 (1977).
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and

(3.13) KO 0w =1, Yz,

By cyelic operation of V ( ) and 17* )on |O(7)>y we can generate a Hilbert
space whose vac O(7)>~ (our construction is thus the analogue of
the GN'S construction). Note that transformation (3.7) preserves the canonical
commutation relations (2.8) and (3.5). We have now

(3.14) O3 V J0(7) ) == sinh2 6 = I | for te d,,
due to our requirement. of eq. (3.4). Equation (3.14) fixes 6 as a funetion of ¢

(cf. also eq. (3.3)).
Due to egs. (3.3) and (3.14) (ef. also eq. (3.11)) we see that

3.15 0(0)> Ve 0>y
(3.15) 10(0) >y = \/Z,e p[\/z V]|O>A
represents the V, (N-solitary) excitation state at ¢ e A,; while

(3.16) 10(+ o) = 0Dy

is the no-Vi—state at te .1, ,. Note that the time cvolution (decay) of the
N-golitary excitation is thus described by the transition through the |0(z))y
states. Note also that in the |O(7))y state there is an equal number of V, ex-
citations and of 17_. excitations; furthermore,

1
V(0 0())s = ViO(r)y = g VHOE D

cosh ]
1
cosh 6

(3.17)

V200 y = == VilO(T))x,

which suggest to interpret the tilde exeitations as the holes of the V), excitations,
since the addition of one ¥V, excits (t)>y 18 equivalent to the anni-
hilation of one V,. One could interpret the tilde system as a «reservoir ».

To complete our descriptioh we need to consider the « decay products »;
i.e. we must include in our pieture the N 1-solitons by which we can represent
asymptotically the N-solitary excitations:

N

(3.18) Ve 2 Vs

k7o
=1

with

N
(3.19) =Yk,
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The vacuum for V, (i=1,...,N) at te d,, is [0D:

(3.20) Vel0>y =0, @003, =1, for ted .
The V, satisfy the canonical commutation relations

(3.21) Vi V21 = 84505, byj=1,.., N

"2 ’

etc. As we did in the case of V,, we introduce the tilde operators V and V
and construct the operators Vk ) and V, (z) by a Bogoliubov transformatlon
similar to the one in (3.7); then construot the state [0(7)>:

(3.22) [0(z)> = exp [ 1G] 0>y =

¥
= H cosh 6‘ exp [tgh 0,~ V,: ]IO>{,} (‘)<0 |0 >(,} =1
with
N ~
(3.23) Gy=1i20.)ViVE—TV. V.),

=1

and §, =0, (v) with k, constrained by (3.19).
We require that

N
(3.24) w<0(@) |H( V)00, = [Isinh?6,=1—1,  at ted,,

=1 i=1

which fixes sinh26; equal to 1 at v = - co and to zero at 7= 0.
Denote now by |0) the direct product |0), ® |0),, and

(3.25) |0(z)) = exp [— iyl exp [— iGy]|0),  <O(7)|0(7)) =

The N-solitary excitation state at te A4, is

(3.26) |0(0)y = 7 [ﬂ V*V*] 0> for te 4, .
A8 17— - oo, it evolves to
(3.27) |O(+4 o0)) = fI:l/'—Eexp [\/E Ve VE] |0> for te A, .

We observe that one can write |0(z)> as (%)

(3.28) [0(2)> = exp [— K /2] exp [V} V] exp [Z Vi VZ{] 10>
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with
(3.29) K =—(V;V,logsinh?0— V_V}log cosh?f) —

N
— X (V3 V,, log sinhzf,— V, V} log cosh?6)) .

{=

=

Comparison of (3.28) with (3.4) and (3.2) shows that K plays the same role
as — tMr. By using (3.25) and (3.29) it is possible indeed to show that — dK/dr
generates transition from [0(r)> to |0(z'))> with 7 = 7'. The probability of
finding a state |0(r)> at the time ted,, 1's4t, is thus given by

7)jexp [— K]|O(t)): the time evolution of the V,-N-solitary wave is thus
described by the transition through the states |0(z)) controlled by the op-
erator K. Note that the operator K gives a measure of the irreversibility of
the process. It is indecd called the « entropy » in the Takahashi-Umezawa's
formulation of statistical mechanies in QFT (4). The expectation value of K
on |O(t)y is, in fact,

(3.30) O@IEI0@) == I W, log W, — Z SW, log W,

i=1 my

as can be seen by writing |O(7)> as

7)) = 2VW, Im, 05, @ XVW, Imy, Dy,

with > W, =1, > W, =1, and by using (3.29).

One can verify then that the «entropy »
(3.31) COO)[EIO(0)) =5z + =0,

t.e. it reaches a maximum as the system evolves towards a stability condition
at ted,,. '

We observe also that, as we go to the infinite-volume limit (lattice spacing
going to zero), the |0(1)) states become orthogonal to the |0) state. We have,
by using (3.‘)0),

(3.32) <0|0(z)> H COSh cosh 6, = exp [—log cosh §] exp [— i log cosh 6,—] R

COSh 0 il i=1

which is zero in the infinite-volume limit if log cosh 6 andjor Y log cosh6,
i
go to + oo, In this limit relations as (3.8), (3.23), (3.25) become formal. In

the same limit {(O(7)/0(7")> — 0, v 1. The time evolution of the quantum
N-soliton excitation is thus naturally described as a transition through the
unitarily inequivalent representations {|O(z)>} of the canonical commutation
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relations. The unitary inequivalence among the quantum N-soliton states
at different values of t is a remainder of the classical inequivalence, in the
statistical sense, among N-solitary waves at different time, 7.e. with classically
different internal structures (notice the strict relation between K and the
generator of the solitary motion M introduced in (2.18), as noted after eq. (3.29)).
Finally, it is interesting to note that the statistical nature and the irreversibility
of the time evolution is strictly connected with the unitary inequivalence:
it is indeed the « entropy » K which controls the time evolution as a transition
through the inequivalent representations.

@ RIASSUNTO (%

Si di una descrizione quantistica del moto solitario. Si descrive ’evoluzione nel tempo
di un N-solitone quantico come una transizione attraverso infinitamente molte rappre-
sentazioni unitariamente inequivalenti delle relazioni di commutazione canoniche.
Emergono naturalmente la natura statistica e I'irreversibilitd del processo, Si trova
la loro origine nel carattere non uuitario della trasformazione tra le rappresentazioni
unitariamente inequivalenti.

(*) Traduzione a cura della Redazione.

Kanonn4eckoe ONHCAHHE OJHHOYHOIO KBAHTOBOIO pacmaja.

PestoMme (*). — Ilpennmaraerca KBaHTOBas KapTuHAa OJHHOYHOrO HBHXEHMs. Onuce-
BaeTCAd BPEMEHHAs JBOJIIOUMA KBaHTOBOro N-conmmrona. CTaTHCTHYECKAA NPHPOAa H
HETNIPUBOTMAMOCTh HPOLECCA NPOABIAIOTCS HEMOCPEICTBEHHBIM 00pa3soM. OOGHapyxeHo,
YTO MX NMPOHCXOXICHHE CBA3AHO C HEYHHTAPHBIM XapaKTepoM NpeoOpa3oBaHuA MEXAY
YHATapHO HE3KBHBAJICHTHBIMH IIPEACTAaBICHUAMHM.

(*) IHepesedeno pedaxyueil,



