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A Canonical Description of  the Solitary Quantum Decay ('). 
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(ricevuto l ' l I  Luglio 1977) 

Summary, - -  A quantum picture of solitary motion is presented. Time 
evolution of a quantum N-soliton is described as a transition through 
infinitely many uuitarily inequivalent reprcsentations of the canonical 
commutation relations. The statistical nature and the irreversibility 
of the process naturally emerge. Their origin is found in the nonunitary 
character of the transformation among the unitarily incquivalent 
representations. 

l .  - Introduction: classical solitary mot ion.  

Le t  us consider  a sol i ton sector  of the  si l le-Gordon s y s t e m  in two space- t ime 

d imens ions  : 

(1.1 ) = ,~ ~ \ ~ ]  + ~m(1-  cosy(x, t)) , 

whose genera l  cons t i tuen t s  arc  i n t r o d u c e d  in the  f o r m  (~) 

2 ( 8  ~" ~-~ f(x, t ) ,  (~.~a) cos~(x,t) = 1 ,~ ~ dtV 

](x, t)-~ det  ]MI; 

(*) To speed up publication, the authors of this paper have agreed to not receive the 
proofs for correction. 
(**) On leave of absence from Institute of Theoretical Physics, University of Wroclaw, 
Wroctaw, Poland. 
(1) P . J .  CAUDREY, J. C. EILBECK and J. D. GIBBON: A~noVO Cimento, 25 B, 497 (1975); 
V. E. ZAKItAROV, L. A. TAKHTADIAN and L. D. FADDEEV: Dokl. Akad. Nal~k. USSR,  
219, 1334 (1974). 
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] M ] - -  {M~j} is the  N X N  matr ix  of elements 

(1.2b) 

2 O~-~- O~ 
M ,  = - ~  cosh 

ai + aj 2 ' 

0~----- •  + b , 

a~--  
l + v ~  

the solution el(X, t ) ~  q~.(x, t) is called the N-soliton solution. The solution 
is parametr ized  by  the  number  N of parameters  {a~} which are in general com- 
plex. We shall restr ict  our considerations to real parameters  only. The major 

point  of interest  then  becomes an asymptot ic  s t ructure  of the solution (1.2) 
under  the assumption tha t  constants a~ are real: 

(~.3) 

N 

lira of(x, t) -= 4 ~ t g - ~ e x p [ O ~ +  ~:] - -  4~ r  
t--->'~T, I1 I>>O i ~ l  t 

] i--1 1 N 

fli ~ ---- :t: ,7 ~ In a~ -T 5 Y In a~i, 
u i = l  ~ J = t + l  

- -  

aij \ai + a g  " 

Thc asymptot ic  fields ~ are called 1-solitons. Thc corresponding general 
solution ~(x, t)_~ %v(x, t) describes the scattering process of the number  N 
of 1-(anti)solitons, where the number  of particles is preserved. 

Le t  us reduce our interest  to a positive pa r t  only of the  t ime evolution 
scale, and s ta r t  to consider a solitary motion at the point  t = 0 towards 
t ~-- ~ ~ .  ~ow, at  the point  t -= 0 we begin from a nonlinear s t ruc ture  which 
represents a certain initial in terac t ing-N-par t ic le  function,  where the t e rm 
N particles indicates tha t  asymptot ical ly  N free solitons will appear. After  
a sufficiently large t ime period the  asymptot ic  separation appears. Thus we 

deal in fact  with a classical decay model, where at  t == 0 the unstable solution 
is given which fu r the r  decomposes into stable particles, 1-solitons~ which for 
all t imes preserve their  1-soliton ident i ty .  

The well-known p rope r ty  of soliton solutions is tha t  t hey  represent  the 
localized energT and momen tum distributions 

(1.4) 

3r 

= f~f(~(x, t))dx = Z ~, ,  
i = 1  

N 

P = f ~ ( x ,  t)~,~(x, t)d~ = )_/P,, 
i= : l  
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where E~ and P~ are energies and  momcn ta ,  respectively,  of the  a sympto t i c  

components ;  ~ ( ~ )  is the energy densi ty  corresponding to the  solution q~(x, t). 
Moreover,  these global quant i t ies  E and  B are s t r ic t ly  preserved,  despite of 

the  t ime  chosen. Hence,  our classical decay is a purely  elastic process. In  
general ,  any  N-soli ton solution, depending on its complex paramet r iza t ion ,  

can be a sympto t i ca l ly  decomposed into a n u m b e r  n of 1-solitons and  m bound-  

s ta te  exci tat ions,  which are called bions. Then N = n ~ 2m, and again the 

global energy and  m o m e n t u m  have  the  form 

n - b i n  n " - m  

which follows f rom the a sympto t i c  decomposit ion.  
Le t  us tu rn  back  to the  N-soli ton (1.2), which decomposes into a n u m b e r  

N of 1-(anti)solitons. Any q~(x, t) can be pa rame t r i zed  by the  number  N of 

quite a rb i t r a ry  veloci ty  pa rame te r s  

(i.5) ~(x, t)--/~(v~,..., v~)(x, t). 

The only restr ict ion here is 0 < Iv{ I < 1 : c, for any  i, with c being the l ight 

ve loci ty  and  tha t ,  if any  p~tir of velocities coincides, then  the solution van-  

ishes (2,~): v{ - -  v~, for any  i, j ,  implies fx : 0. F r o m  (1.2) one sees t ha t  each 

0~: depends on v~. only;  vk then  characterizes in the a sympto t i c  l imit  the k-th 
1-(anti)soliton, as one can see f rom (1.3). Since 1-solitons are energy distri- 
but ions,  f.~.(v~, ...~ v~.)(x, t) can be though t  of as a funct ion which describes the 

mot ions  of the  N energy centres of the  under ly ing distr ibutions and  the 
mot ions  relat ive to them.  We admi t  here the in teract ion be tween energy 
centres.  Le t  us now consider the  soli tary evolution in the lat t ice approximat ion .  
h ' amely ,  we shall assume to have  the linear lat t ice so t ha t  the line R ~ is count-  

~bly covered b y  the set {A} of nonintersect ing open intervals  A ~ n A t  : 0, fo r  

s:/: t. The la t t ice  cons tant  is assumed to be given: t t ( d , ) =  ), for all s = 0, :t:rl, 
.-J: 2, .... I~et us assume tha t  q~,v(x, t) at  the t ime t = 0 represents  the number  

N of in teract ing-s ingle-par t ic le  energ) ~ distr ibutions,  whose energy ccntres 

occupy the  posit ions y~, ...~ Y,v, each belonging to a respective in terval  A E R ~. 

Then the  point  x can be comple te ly  identified (in the lat t ice sense) when we 

wri te  

(1.6) qJ~.(x, O)=J,v(v~, . . . ,  vx; y~-~-n~).,y.., ~ - n ~ . 2 , . . . , y x @  n x ) , ) =  

= ~ ................. (vl, ..., v,u y, ,  ..., y,~). 

(2) S. ORFANIDIS: Phys. Rev. D, 14, 472 (1976). 
(3) ]). GARBACZEWSKI: Sel]-quaq~tization o] the sine-Gordon system in the solito.~ sector, 
University of Salerno prcprint (1977); Boson expansion methods in quantum theory, 
to appear in Phys. Rep. C. 
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Any single pa ramete r  n~. establishes tha t  the site to which x belongs is n~-th 
relat ive to the Yk position of the energy centre:  nk == 0, • 11 • 2, .... h~ext, 
let v---- ]v~[ be the smallest ~elocity in the set (v~, ..., v~); we introduce then 
the identification v ~ - r k v  with r~--- :k 1, -_t: 21 ... (we have thus a discrete 

veloci ty scale). 
The t ime evolution of (:1.6) reads (s) 

(1.7) ~s x, t --- -~- == ]~ v~, ..., v~r, y~-~- n~).--~,~tr~-~- ~(t)dt, ... 

O k  
. . . ,  y.~--b m~.),--,,).r.v + l i j , ~ ( t ) d t ) ,  

o 

where terms of the form v~r~ (~ is ~n integer) represent  a uniform motion of 
the k-th energy centre (asymptot ic  free motion;  compare wha.t happens if 

t~v).r~lv~ 
1-soliton is considered in the place of ~vN) and fyk(t) dt represent  the result  of 

o 

accelerated motion suffered by  the k-th energy centre in the interval  [0, t 

v~/v] (interactions with other  energy distributions). For  sufficiently large 
v,~s (t>>0) we can, in fact,  decompose %~. into a linear sum of single 1-(anti)- 
soliton distributions, where each single t e rm is of the form 

( 1 . 8 )  4 t g  - I  e x p  [4:,_ m~'~:(yk-71-nk)~--~)3"~-]-j~)l:(t)dt)J, 
o 

where Yk d- n~ ~t ~ xk is the initial position of interest  (varying y~, we get the 
d-co 

informat ion about  space propert ies  of the l-soli ton solution) and f.~(t)dt ---- ~7~ 
is the k-th phase shift of the solution, see eq. (1.2). o 

The funct ion (1.7) can be easily t ransformed into the form exhibit ing the 
hopping motion from site to site, which is modified by  the t ime-dependent  phase 
shift:  

~f~(x,  t : ~T21=: q~ ",-  ........... - ~ ' ( v ~ ,  . . . ,  v,v; Yt-~- ~l~(t), . . . ,  y~v-~ ~]~(t)) . (1.9) 
\ v /  

Now the discrete t ime t --: v~/v labels the instants  of our classical decay process. 
Le t  us add tha t  I provided the velocities are given, a global momen tum of the 

N-soliton is established, so it  can be in t roduced as an addit ional  pa ramete r  
P labelling momen tum propert ies of the functions (1.7)-(1.9). In  the nex t  sec- 
t ion wc will introduce a quan tum pic ture  for the solitary t ime evolution. The 

quan tum decay process will be modelled by  the classical solitary decay motion 
in t roduced in the present  section. In  sect. 3 a description of the solitary 

quan tum decay process is presented,  which is based on the existence of in- 
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finitely m a n y  uni tar i ly  inequivalent  representa.tions of the  canonical com- 
mu ta t i on  relations. The s tat is t ical  na ture  and  the  irreversibi l i ty of the  sol i tary 

decay  process na tu ra l ly  emerges f rom the nonun i t a r i ty  of the  t rans format ion  
among  the  inequivalent  representat ions.  

2. - Solitary quantum decay. 

Le t  us s t a r t  f rom the classical N-sol i ton solution (1.6) at t ime t -= O. Let, 

us assume to have  a family  {1~} of complex tes t  functions with the  proper t ies  

(2.1) 

h = h(v , . . . ,  

f = , 

k 
N 

/~(v~) = 0 for k ~ ~ k , ,  

where vN ~ (v,, ..., v~) and  each of the  k's is a 1-soliton a sympto t i c  m o m e n t u m  
defined b y  the  p a r a m e t e r  v~. I n  addit ion,  let  us assume t h a t  the  init ial  posit ions 
of energy centres belong to a finite in te rva l  A~ with a character is t ic  funct ion 

ZJYl ,  ..., YN) = 
1 

0 

y~, ..., ylv e All~, 

if any  of the  y ' s  ~ Ai,, 

We  define 

(2.2) 

and fu r the r  

(2.3) 

=fdyl . . .  dyNqP(v~v, y,, ..., Y~)Z,~(Y~, ..., Y~) 

where n ---- (nx, ..., n~) and  dv~ ~ dye.., dvN. We  res t r ic t  considerations to a 

finite n u m b e r  of k's only, and  to a finite number  of real  pa r ame te r s  s, which 

we need to define a classical lat t ice field 

(2.4) q~' = ~ ~+~ exp + q[* exp . . . .  . 
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At this point  we shall introduce a quan tum lat t ice field 

(2.5) r  - ~ / ~ / ~  ~ v . -  exp [*--VJ + v :  exp - -  ~ - -  , 

where 

(2.6) 

[V,,  , ,~  

~, V~',I V ~ ~' [V~ , ,., ~ = [  ~ , V ~ , ] = O ,  

V,~2~ = O, 

for all k's, 

so tha t  the corresponding Fock  space is given. The notat ion here is n ---- n'  =~ 
=> (n,, ..., n.v) ---- (n',, ..., n'~). 

We introduce then  

(2.7) v ,  = >2 ~ -  v ; ,  ~ I~'l ~ = 1 ,  

so tha t  

(2.s) [v , ,  v2,] = ~ , , ,  IV;, v**] = IV,, v , , ] - -  o.  

To compare this quan tum construction with the previously introduced 
one, let us write explicit ly 

(2.9) 

An with ~v, being a ]=[ermitian field. 
We construct  the coherent-s tate  domain for the field ~ ,  so tha t  its coherent- 

state expectat ion value will coincide with ~ ,  see, e.g., (2.5) and (2.4). The 
coherent-s tate  domain is given by  

(2.1o) 

so tha t  

(2.11) <BIr = ~: .  

The correspondence relat ion (2.11) between the classical and quan tum 
levels, provided we allow t ime to flow, establishes the relation between the 
classical soli tary dynamics and the corresponding quan tum solitary dynamics. 
Namely  we exl)ect to have t ime dependence of the operator  ~:' once ~:(t) is 
given. By  assuming tha t  for each t ime t one has a representat ion of the can- 
onical algebra, then,  through the GNS construction,  we always have a cor- 
responding carrier Hi lber t  space H~. We expect  tha t  in H ,  there  exist  s tate  

8 - I l  Y u o v o  C i m c ~ f o  A .  
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vectors l B, t> such that  

(2.12) <B, t]r t> = ~:'(t) 

holds. Let  Wt be a t ime evolution operator  such tha t  

and hence 

(2.13) 

In  general  

Suppose 

(2.1~) 

[B, t> = W, IB > 

~r A n  <B[W, % (t) Wt lB  > = q~:(t) . 

W~ r W71 . 

<B l~7(t)]B> = ~07(t) 

for some ~:'(t), so tha t  the influence of the general evolution rule (2.12) can be 
s tudied by  the  use of pure Fock  techniques. In  consequence of (2.14) there  
exists a un i t a ry  motion operator  Us such tha t  

(2.15) v3:'(t) = v71r  

in such a way tha t  (2.14) holds. The form of Ut is predicted by  the classical 
sol i tary-motion law (1.9), which shows tha t  energy centres become shifted 
by  suitable space intervals when t ime flows. These shifts imply the eorrc- 
sponding form of ~:(t). Le t  us namely restr ict  to all the  energy centre initial 
positions and velocities such tha t  the values 

| 

(2.16) f (t) dt + y = y(t) 
O 

for all t imes t still belong to the initial in terval  A,n. As a consequence, any  
asympto t ic  phase shifts completely loose their  importance:  with or wi thout  
them,  the ~:(t) can be satisfactorily defined by  taking into account  the free- 

mot ion shifts which have their  origin in the uniform terms yr. Thus, for t = v)./v, 

(2.17) ~:(t) = ~"'-  .......... -~rN, 

and this is the motion rule which we must  generate at  the quan tum level. 
To derive a quan tum motion which will imply (2.17) through (2.11), we need 
the appropr ia te  quan tum t ransformat ion of q~: while t ime flows: 

(2.18) exp [-- iMt] q3~ exp [iMt] := ~"'-  .......... -,,N 
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with t = v),/v, so tha t  the Hermit ian operator M is just  the generator of quantum 
solitary motion. Spectral properties of M are well defined due to (2.6) and (2.8). 
Notice tha t  immediately 

(2.19) <BI@:,- . . . . . . . . . .  -vr~[B> = ~ : , -  ......... ~--vr~r 

Obviously, ~he r ight-hand side of (2.19) gives account of the classical solitary 
decay exhibiting the most important  feature (i.e. shifting in space) of solitary 
motion in the lattice approximation. Thus, to the classical decay there cor- 
responds through (2.19) an associate quan tum decay implied by the classica.1 
t ime evolution. In this sense, we speak of solitary quantum decay. 

3. - Statistical description of  solitary quantum decay. 

In this section the statistical properties of the solitary quantum decay 
process are of main interest  to us: we want  to s tudy  the probabili ty distri- 
bution informing about the fraction of still undecayed particles in the given 
fraction of pa.rtielcs with momentum k. 

We consider 1he t ime scale divided into ~ sequence of t ime intervals At 
much smaller than  the cha.ra.cteristie lifetime of our decay process. Let  t = 0 
be the initial t ime; a generic t ime interval is denoted by A,, z = 0 ,  1, 2, ..., @ ~ .  
We recall tha t  each of the operators V~*, V k was defined by (2.7), (2.8) for 
hr-soliton excitation ~t t -- 0; we shall put  a subscript 2V to the state vectors 
representing states of N-soliton particles, e.g. ~ 2 ~  [0>z, so tha t  (cfr. (2.6)) 

(3 .1 )  v,.Io>~, = o ,  . . < o ] o > ~ ,  .... 1 .  

Our task is the construction of a state 10(z)>~ such tha t  the expectation 
value of the number  operator in this state is a. t ime-dependent function which 
describes the quantum deca.y of the quantum N-soliton excitation. We expect 
namely tha t  the value 

(3.2) ~<B] exp [-- iMp] * V , , V~ ~ exp [iMv] ]B},v = F~ ~ for t ~ A~, 

will be the expectation number of quantum N-soliton excitations of momentum 
k at  the t ime te  A .  Recall tha t  M is the generator of the soli tary t ime evolution 
(cf. cqs. (2.18) and (2.19)). The t ime-dependent function/ '~, ,  describes the decay 
law whose explicit form is irrelevant to our description. 
shall assume 

jl 
(3.3) I'~,, =[ '  0 

O < F k ~ < l  

For simplicity, we 

at  v = O ,  

at  ~ = -~- oo, 

for ~ ( 0 ,  + ~) .  
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TO Construct the state ]O(v))N such tha t  

(3.4) ~(o(~) l  v~ v~lo(~)>~ = ~ ~,~, 

we follow a s tandard procedure (*) which has already been used in the descrip- 
t ion of unstuble particles in quantum field theory (~). 

We introduce the operators l ~* and lYk at t e Ao with the commutat ion 
relations 

�9 ~. (3.5) [?~, ?*,] = ~ , ,  [?~, ?,,] = [?~, T ~,] = [ v .  ?;,] = o .  

The << tilde ~> vacuum for t c/]o is denoted by 10> : 

(3.6) ?kl0),,. = 0,  .~(O[0)~v = 1.  

We will use the notat ion ]O>N-~ I O, 0)~ for the direct product  of the V- 
vacuum stute and the ]Y-vacuum state. We introduce the operators Vk(~) 
,~nd ~7~(~) by  a Bogoliubov transformation as follows: 

[ V~(v) = V~ cosh 0-- ~'~ sinh 0, 

(3.7) ?k(~) = IY~ cosh 0 -- V* sinh 0 

and their  Hermit ian conjugates; here 0 is a function of 3. 
(3.7) is 

(3.s) ~ ( ~ )  = io(~)(v* ~ * -  ?~ v~) , 

(3.9) V~(v) = exp [-- igor] V~ exp [iG~], 

The state ]O(v))~ is given by 

(3.10) 

i.e. 

The generator of 

?~(v) = cxp [ -  ir ?~ exp [iGA. 

IO(~)>~ = exp [ -  iG.,.(T)] [0>~, 

_ - T ,  * I ] 0 exp [tgh ~, k ?k],0)~-. (3.11) 10(~)>~ cosh 

The state lO(v)>,v is the vacuum state for Vk(~) and lYk(~) 

v~(~)lo(~)>~ = ?(~)lO(~)>~-= o (3.12) 

(4) Y. TAKAIIASHI and H. U~>~zAwA: Collective Phenomena, 2, 55 (1975). 
(~) S. D~, FILIPPO and G. VITI•LLO: .bett. Nuovo Cimenlo, 19, 92 (1977). 
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and 

(3.13) :,.(0(v) 10(v)).~. = 1,  V~ .  

7"  * By cyclic operation of T k(z) ~nd ~k(v) on ]O(z)) ,v  we can generate  a Hilber t  
space whose vacuum state is ]O(z))N (our construct ion is thus the analogue of 
the G~ S  construction),  h 'ote tha t  t ransformat ion (3.7) preserves the  canonical 
commuta t ion  relations (2.8) and (3.5). We have now 

(3.14) , v (O(v)  )V~ V,]0(v)).,. := sinh'-' 0 =: 1'~.~ for t ~ A,, 

due to ore" requi rement  of eq. (3.4). Equa t ion  (3.M) fixes 0 a,s a funct ion of v 
(ef. also eq. (3.3)). 

:Due to eqs. (3.3) and (3.14) (cf. also eq. (3.11.)) we see tha t  

(3.15) IO(0)).,. = ~-~exp [~/2 j 10}.,. 

rcpresents the VA. (N-solitary) exci tat ion state at t ~/10; while 

(3.16) ] 0 (+  c~))x---- ]0),~ 

is the no-t~:-statc at t ~_ ,1+=. :Note tha t  the t ime evolution (decay) of the 

N-sol i tary excita.tion is thus described by  the lransit ion through the !0(v))u 
states. Note  also tha t  in the 10(T))~,. s tate there  is an equal number  of ~. ex- 
citations and of 17~: excitant ions; fur thermore,  

(3.17) 

[ V;~('r)[O(T))x = 

[ 72(~)1o(~1).,- -- 

:1 , ,  1 ?, ,Io(~))~ 
co]s-h- 0 Vk IO(T)),v - -  sinh 0 

1 1 I%10(,))~, cosh 0 ?~' iO(v))~" - -  sinh 0 ' " ' 

which suggest to in terpre t  the tilde excitat ions as the holes of thc VI~ excitations, 
since the addit ion of one V~ excitat ion to ]0(v))~v is equivalent  to the anni- 
hilation of one 17 k. One could in terpre t  the ti lde system as a (,reservoir ~). 

To complete our description we ne.(~d to consider thc ((decay products  ~); 

i .e. we must  include in our picture  the N 1-solitons by  which we can represent  
asymptot ical ly  the N-soli tary excitations:  

N 

(313) v,, ~ Z v~, 
i=1 

with 

N 

(3.19) k ---- ~ k~. 
i=1 
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The vacuum for Vk, ( i =  1 , . . . , N )  at  t~A+~ is ]0}{~}: 

(3.20) Vk,[0}{~) = 0,  {,}(010}(~} -- 1 ,  for t e A+~. 

The V~, satisfy the canonical commutat ion relations 

(3.21) [Vk, , V'j] : ~k~ ~,~, i, j : 1, ..., N ,  

etc. As we did in the case of V,, we introduce the tilde operators ~k, and ~** 
and construct the operators 17~,(z) and V,,(v) by  a Bogoliubov transformation 
similar to the one in (3.7); then construct the state 10(z)){~}: 

(3.22) [0(~)}~} : exp [--iG(~}]lO}~ 0 : 

1 
= 1-[ ~ exp [tgh 0, V~, ?~*]10)(,~ (,/0(~)IO(,)}(,~ = 1 

with 

(3.23) 
2V 

and 0~--0~,(~) wi th  k~ constrained by (3.19). 
We require tha t  

N ~v 

(3.24) (,)(0(v)l I I  (V* V~,)lO(v)}(, ~ = I I  sinh'~ 0, = 1 -- 1' k~V 

which fixes sinh -~0i equal to 1 at  ~ = -~- oo and to zero at  ~ = 0. 
Denote now by [0} the direct product  ]0}~ @ 10}(~ and 

(3.25) 10(~)} = exp [-- iG(,}] exp [-- iG,v] [0}, 

The N-soli tary excitation state at t e Ao is 

1 [ ] ]  
(3.2~) Io(0)) = ~ exp ~ v~ ~ 1o)  

As z - + - [ - o o ,  it  evolves to 

(3.27) 10(+ oo)) = I I : - ~ e x p  Vk, V~, 10} 
i = l  V 

We observe tha t  one can write [0(v)} as (~) 

(3.28) [O(~) ) - - exp[ - -K /2]exp[V~9~]exp[~ .V**  * .= k, -k, jIT*][O} 

at  t e a r ,  

(o(T)]o(,)) = 1. 

for t e  Ao �9 

for t~ A+~ . 
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with 

(3.29) K = -- (V~ V~ log sinh 2 0 -- V~ V* log cosh 2 0) -- 

&r 

-- ~ ( V* V~, log sinh 20 k -- V~,V*k, log cosh ~ 0,). 
t = l  

Comparison of (3.28) with (3.4) and (3.2) shows tha t  K plays the  same role 
as - -  i M v .  B y using (3.25) and (3.29) it is possible indeed to show tha t  -- d K / d 3  

generates t ransi t ion from [0(~)) to 10(~')) with v :/= 3'. The probabil i ty  of 
finding a s ta te  10(3)) at  the  t ime t e A , , ,  3 ' # v ,  is thus given by  
<O(3)lexp[--K]I0(3)>:  the t ime evolution of the Vk-N-solitary wave is thus 
described by  the transi t ion through the  states ]0(3)) controlled by  the op- 
erator  K. Note  tha t  the  operator  K gives a measure of the irreversibility of 
the process. I t  is indeed called the  (~ en t ropy  ~ in the  Takahashi-Umezawa's  

formulat ion of statist ical  mechanics in QFT (~). The expectat ion value of K 
on ]0(3)) is, in fact ,  

N 

(3.30) <0(3)1K10(3)> = - ~ W m log" W~n -- ~ ~ W~, log W~,, 
m i ~ 1  ml  

as can be seen by  writ ing [0(3)) as 

Io(3)5 = Eqw7  Ira, | YVW:, 

with ~ W,,  = 1, ~ W,, ,  := 1, and by  using (3.29). 

One can verify then  tha t  the <( en t ropy  ~> 

(3.31) (O(O)[K[O(O)) ~ ~- c~ 

i.e. it  reaches a max imum as the system evolves towards a stabil i ty condition 
at t ~ A + ~ .  

We observe also tha t ,  as we go to the infinite-volume limit (lattice spacing 
going to zero)~ the [0(v)) states become orthogonal  to the [0) state.  We hay% 
by  using (3.25), 

1 ~ 1 
(3.32) <o Tl" 

l u t3 J / - -  cosh 0 11 cosh 0~ ] - -  = exp [-- log cosh 0] exp - -  log cosh0k 

which is zero in the  infinite-volume limit if log cosh 0 and/or  ~ l o g  cosh0,  

go to + ~ ,  In  this limit relations as (3.8), (3.23), (3.25) become formal. In  
the same limit (0(3)10(3')} -+ 0, v :/: t'. The t ime evolution of the quan tum 
N-soliton exci ta t ion is thus natura l ly  described as a t ransi t ion through the 
uni tar i ly  inequivalent  representat ions {]0(T)}} of the canonical commuta t ion  
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relat ions .  The  u n i t a r y  inequiva lence  a m o n g  the  q u a n t u m  N-sol i ton  s ta tes  

a t  different  values  of v is a r e m a i n d e r  of the  classical inequivalence ,  in the  

s ta t i s t ica l  sense, a m o n g  N-so l i t a ry  waves  a t  different  t ime,  i.e. with  classically 

different  i n t e rna l  s t ruc tu res  (notice the  s t r ic t  re la t ion  be tween  K and  the  

gene ra to r  of the  sol i tary  m o t i o n  M in t roduced  in (2.18), as no t ed  a f te r  eq. (3.29)). 

F ina l ly ,  i t  is in te res t ing  to  no te  t h a t  t he  s ta t i s t ica l  na tu r e  and  the  i r revers ibi l i ty  

of the  t ime  evolu t ion  is s t r i c t ly  connec t ed  wi th  the  u n i t a r y  inequ iva lence :  

i t  is indeed  the  (~ e n t r o p y  ~) K which  controls  the  t ime  evolu t ion  as a t r ans i t ion  

t h r o u g h  t he  i nequ iva l en t  representa t ions .  

@ R I A S S U N T O  (*) 

Si d~ una descrizione quantistica del moto solitario. Si descrive l'evoluzionc nel tempo 
di un N-solitone quantico come una transizione attraverso infinitamcnte molte rappre- 
senta~ioni unitariamente inequivalenti delle relazioni di commutazione canonichc. 
Emergono naturalmente la natura statistica e l'irreversibilith del processo. Si trova 
la loro originc nel carattere non uuitario della trasformazionc tra le rappresentazioni 
unitariamente inequivalenti. 

(*) Traduzione a cura della Redazione. 

I~aHOHHqeegoe OHHCaHHe O~HIIOqHOFO KBaHTOBOFO pacna~a.  

PealoMe (*). - -  1-Ipe~aaraeTca KBaHTOBafI I<apTHHa O~HHO~IHOFO ,~Bkl)I(eHH$/. OI]HCbl- 
BaeTc~i BpeMeltHa~I 3BOYIIOIV~I~[ KBartTOBOFO 2V-COYIHTOHa. CTaTHCTH~IeClga~I npnpo~a 
HenpHno~rIMOCTb npo~ecca rIpO~B~tglOTC~ Hertocpe~ICTBeHHbIM oSpaaoM. OSHapygKeHO, 
~TO ax npoHcxo~eHHe CB~t3aH0 C HeyHHTapHBIM xapaKTepOM npeo6paaoBann~ M e ~ y  
yn'aTaprto He3KBHBa.rleHTHBIMH I'Ipe~cTaBYleHHflMH. 

(*) Ilepeaec)eno pe3amtue?t. 


