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SUMMARY :

Fenyes-Nelson's derivation of Schrodinger wave functions
within the stochastic formalism allows to reintroduce
the notion of (random) particle trajectory in quantum
theory. We extend this argument to diffracting crystals
used in the triple von Laue interferometric

experiments, to reveal the particle aspects of inter-
ference phenomena.

For low intensity neutron beams two interference
scenarios are possible: (1) neutron self-interference
(conventional) implies the essentially non-local
phenomenon extending on few centimeters within the
macroscopic apparatus, (2) indirect neutron inter-
action through memory effects in the diffracting crystal
(usually dismissed on the basis of the current
paradigm) is the remaining part of the hypothesis due
to Buonomano, not disproved in the recent experimental
test. A decisive experiment is discussed.

Motivation
The departure point for our investigation is an interesting
series of papers [1-11] on neutron interferometry experiments,
which together with the studies of photon interference [12=15]
seem to open new avenues towards an understanding of the wave-
particle duality problem and the superposition principle.
The orthodox approach to guantum mechanics denies a possibili-
ty of saying anything about the particle trajectory, except
for the probaﬁility disgribution of particle location in space,
although it is a single particle [1-15] which excites the coun-
ter or hits the detecting film in the experiment, see also
[16,17] and compare e.d. investigations of a possible meaning
of individual Feynman paths in quantum mechanics [18] . The es-
sence of neutron interferometry lies in performing a series of
reproducible one-particle experiments with a binary yes-no
outcome. Neutrons are to pass through either the appropriately
cut monolitic silicon crystal (Vienna group) or through three
parallel crystal slabs (Bonse-Hart interferometer). The geomet-
ry of the arrangement implies that each single neutron emitted
by the source, everywhere within the interferometer and at the
exit, has two possible (macroscopically separating or conver=
ging) paths to follow.

The time of flight of neutrons through the interferometer is

_‘eonsecutively born in the crystal neutron. In fact [4] the time
‘of flight is ~ 35 ups, the time interval between consecutive
‘neutrons ~ 780 us.

j’ﬂhe coincidence tests confirm that single neutrons come at ran-

~ dom to always one of the two detectors. Quite analogous situ-

‘orders of magnitude smaller than the mean interval between two



%

254

ation is known to arise in electron interferometry (19 ] where
at a very low current density, the statistical process of frin-
ge formation can be seen as the image of statistically distri-
buted light flashes of individual electrons. The same situation
occurs in case of very low intensity photon beams [12=15].
Statistically significant outcomes (frequencies) arise after
sufficiently many repetitions of the generic single particle
experiment, under constant physical conditions.

In case of neutron interferometry one can never tell which neut-
ron has gone along which path, but only that in the number N

of neutrons the fraction of - reached one detector, while the
fraction of N-k reached another.

A totality of single particle flights through the apparatus un-
der (roughly) the same experimental conditions, we identify
with the beam of particles notion (statistical ensemble [16=17]).
It is a beam to which probabilistic predictions of quantum me-
chanical wave functions do apply, although it is customary [1-
=-11] to employ the plane waves in theoretical analyses. Beam
splitting and recombination by silicon crystal slabs, if accom-
panied by phase shifting operations results in the experimen-
tally measured phase modulation of frequencies. It thus reveals
wave phenomena although consecutive single clicks of the coun-
ters are registered merely.

Remark: Although the beam separation in the interferometer
may be of a macroscopic size, the underlying quantum mechani-
cal description always refers to the unsharp separation (up to
exponential tails), so avoiding the problem raised in [20] :
quantum mechanics does not literally apply to macroscopically

separated quantum systems.
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Apart from the fact that all experimentai results of [1-11]
find a formal justification in the standard rules of the game
based on the Schrddinger equation, some obscurities still remain
while representing the physical notions (particle path, beam of
particles) within the well settled mathematical formalism of
quantum theory. Undoubtedly single neutrons travel along space-
time paths between the source an the detector, although the de-
tails of their trajectories are not accesible to the experimen-
ter. But [3,4]:

"The question whether the wave function describes a single neut-
ron or a beam has to be answered such that it describes a single
neutron out of a certain beam. Therefore the wave packet repre-
sentation contains parameters of the particle and of the beam,
which are defined by the constraints of the experimental arran-
gement"

albeit certainly some confusion must come from the statement
about a single neutron self-interference [3,21].

at the
"The experimental results manifest that every neutron has

place of superposition (i.e. beam recombination) information

h
about a physical situation in both possible beam paths" althoug

d
with §robab111ty one only one path was followed by the detecte

11t

neutron and not (simultaneously) both. Moreover with probabi y
h

one only a single neutron has accomplished its route throug

the crystal long before the next one was born.

Perhaps it is not useless to invoke at this point the quite jus-

tified criticism by Lande [22] which originally pertains to the

two slit diffraction thought experiments with electrons: the

; -
single electron knows nothing it is the experimental arrangemen

as a whole which determines its destination.
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Random paths in quantum mechanics
Fenyes-Nelson's stochastic mechanics «23)15 one of very
ife\v(23.7‘>S attempts to reconcile the individual particle
trajectory notion with the wave (Schrédin er; theory of
quantum phenomena. According to the recipes 0325

to a given
solution of the Schrédinger equation one can in principle

attribute a stochastic diffusion process satisfying the
Newton second law in the mean . The corresponding stochastic
differential equation describes a propagation of a point
particle through a non-dissipative random medium. Sample
paths of the process can be approximately identified with the
realistic configuration space paths of (perhaps) physical
particles.

For a quantum particle in the conservative force field we
have:

n?
i, p(X,t) = 2—ap@) + VD)p(X,t) (1)

which implies the continuity equation for p = I!I2

ap = -divy 3 = 7—21- (¥ - pvp) (2)

In case of nowhere zero p (locally at least, there are
existence proofs for singular diffusions), upon a standard
substitution yp = exp(R + iS), (2) goes over into:

3.0 = div(- % VSep} = gﬁ ip S divpB (3)

where:

p=expaR, B=@T+ 7, & -Evn, Ve Rys 8

»

<l
I

el

(4)
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and one more equation
> (5)
atp = _TﬁAp - diva,
is obeyed by p. It is identifiable as the backward

Fokker-Planck equation, while (3) is the forward one.

In the theory of stochastic processes such equations are
known to determine the time developement of the respectively
forward and backward transition probability densities for the

diffusion process.

h

Setting v = 7% » B = Z V(R+S) in the forward case we have

8,p(,0,2,t) = div, (w7 p(7,0,%,t) - BR,0p(F.0,2,0)} (6

According to the rules of the Ito stochastic calculus, one
can uniquely associate (6) with the stochastic differential

equation

ax(t) = BR(t),t) + yZv dW(t) 3

where dW(t) represents the normalized Wiener noise. Y(t)
takes values in R® as a continuous function of time, and with
time passing draws a stochastic trajectory in the
configuration space. Given pg(?) = p(?,O) and p(?.o.?,t)
solving (6). Apparently Jd ?p(?.O.?.t)po(?) provides a
solution of (6) with the initial condition po(?). hence by
the uniqueness theorem for the parabolic (Kolmogorov)
equation it equals p(?.t). ;i

The normalization fd’?b(?,t):l is preserved by virtue of
fd’?b(?.o.?,t)-l. Let us emphasize that the knowledge of
p(3,0,2,¢) does not determine p(¥,t) unless pg(¥) is
specified. Consequently, given (3) it is rather natural to
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demand the validity of this equation not only for p(?.t) but
also for the transition probability densities p(3,0,%,t)
which automatically associates (7) with C15:

Remark 1: The existence and uniqueness of solution of
the stochastic differential equation (7) with the initial
condition Y(to)-zo is discussed in(27°8),To have (7) solved
in the interval: [to.T] one usually imposes the smoothness
(Lipschitz) condition: |B(X,t)-B(¥,t)| =« K|¥-F| for all 2,7
and t e [t ,T]. K be1ng a constant, and the growth condition
2v+|3(? t)| sK’ (1+ |?| ). The latter, if fulfilled guarantees
that the solution will not explode for finite times.

As is well known(zs’zg) the Schrédinger equation (1)
can be equivalently rewritten as a coupled system of

equations, one of which is (3), while another has the
familiar Hamilton-Jacobi form:

h 2 2 v
98 = R{|VR|® - |v8|® + AR} - & (8

Let us define the conditional expectation for the stochastic
process Y(t) solving (7)

ELE(R(t7))) = BLER(E") |R()=R) = £&®Tn(R, ¢, 7, t ) E

t2t

(9)
In terms of (9) the mean forward and backward derivatives D '

D_ of the process can be introduced

(D, £)(R(t),t) = lim Bt{:%r[f(x(tzAt).t:At) - £(X(t),t))])=
At 0
=@, + By« L_n)re), 0 (10)

such that

p¥(t) =B, =8 p X(t) = B_ =8, (11)

and there holds

2(p, D_ + D_DOR(t) = F(D,b_+ D_b ) (R(t),t)=

2 2 12)
= h(a,s - o (IVR|? - |vs|® + aRDA(H), ) (

By equating (which is a restriction on the process making it
time reversal invariant )

y 13
5 (D,D_ + p_D)R(t) = - VV (13)

the second Newton law of motion is obeyed in the stochastic
mean. Apparently we deal here with the gradient form on (9).

Since the osmotic U and current ¥V velocities are gradients,
it is convenient to rewrite (3) and (8) in terms of them

only. Then

- _%EA? T 8)
1
- g gﬁaﬁ v 3 v(@2%) - %ﬂ(?z) - Lyv (14)

may be considered as the starting point for the stochastic
analysis, once the initial velocity fields u(x,t ) v(x,t )
are chosen and the Cauchy problem (14) is solvable. :
Remark 2: Let us emphasize that the causal approach
exploits directly equations (3) and (8). It is precisely the
Hamilton-Jacobi form of (8) which allows to associate certain

deterministic motions with the wave equation (1). In the

stochastic approach the situation is different. The

paramount importance of the stochastic differential equation
(7) makes here quite a substantial difference between the
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deterministic and random implementation of (possibly
particle) trajectories associated with solutions of 1),

Equations (3), (8) provide us merely with another form
of (1), while the equivalence of (14) with (7),(13) is more
intricate. On the other hand, by taking the gradients of (3),
(8) we recover (14), hence on the mathematical (at least)
level a manifest link exists between Schrédinger wave
functions and random (diffusive) motions of point particles.

The major problem of stochastic mechanics is then to
reveal to which extent wave functions are derivable on purely
probabilistic (diffusion processes) grounds.

Apparently it amounts to recovering the potentials upon
an assumption that 3(?,t). 3(?.t) solving (14) are gradient
fields. Let 3.? solve (14) with the initial data
30(?)-3(?,t0), Vo(?). By introducing B=U+V we can pass to the
stochastic differential equation (7) which in turn implies
(6). Accordingly p(?,t) is determined by the choice of
p(?,to). Assuming that 30(?) is the gradient field, we can
locally reproduce the potential with the accuracy up to the
additive constant (e.g.Poincare lemma). The normalization
condition  sp(X,ta’% = 1, exp2Ry=p, removes the
arbitrariness, hence ﬁo(?) determines po(?) and by (6)
p(R,t).

With p(?.t) established, we are finally left with the
equation (13) whose integration amounts to solving the Cauchy
problem

d;s + H(Vs,%,t) = 0
s(?.to) = so(?). Vso(?) = mvo(?), 2=n3 (15)
with

2
H(B,2,t) = % + U@
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2 172 .
he a s
U@t = VL) - = —,:N

Indeed, if we have a solution s(?,t) of (15), then Vs(?,t)
solves (13), hence (14). By the uniqueness argument for
solutions of the Cauchy problem, Vs(?,t)-m?(?.t) provides a
i -uniqueness
solution of (14) with 30(?)-EVao(?). Thevonil,y noin un T:, e
pertains to the initial data Vso(?)-m 0( ) since b
i n
contractible spatial area Vo(?) determines the correspo g
potential up to the additive constant.
To see how this arbitrariness can be removed, let us consider
the absolute expectation value of (15). Then (ats> = =<H>

where (integrate by parts(ao))

h
H> = m’i"[g-(?}2 - 0%) + V(E,t) - Idivﬁ']p('x',t) -

nﬁ;t[;(a’ o 9%) » V(?,t)]p(?,t) -

7@, t)p(X,t) (17)

and the assumption of the localizability (e.g.<H><w) of the
total (mean) energy of the diffusion process is necessary to
have (15) uniquely solved on the basis of (l4). The term
!d’:'%(32+32)p(?,t) is known as the kinetic energy of the
diffusion process.

By the continuity%quation we have

2 18
a,¢s> = 18R(3.p) s + B> = m @ 4 o8> (18)

Hence (15) implies
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8,<s> = m<¥%> - > (19)

which admits a unique solution <8>(t) for given initial data

(s)(to) = {§,.>.

0

By making the restriction

<s,> = 0 (20)

we have a guarantee that <s>(t) is determined in terms of T
and V only

t
<8>(t) = En(?’) - <H)]dt (21)

t

0

Given an arbitrary integral s'(?,t). <96>:0 of 1(15).
Then, apparently
s(¥,t) = s'(2,t) - <sp> (22)

obeys both (20) and (15).

Accordingly Schrédinger wave functions with phases obeying
(15), (20) can be set in a one-to-one correspondence with the
diffusion process (7), £137.

The mapping {ﬁ.V} «— {p,S} was investigated by us
locally (in a contractible area). However, its extensions can
be fruitfully studied by viewing the Schrédinger equation as
the linearization of the coupled nonlinear system (14). Then,
with all previous reservations concerning the uniqueness of
the map, once p(?,t),S(?.t) are in hands, we can introduce
the diffusion processes for which {p,8} 1is a pair of

potentials implementing the gradient fields {3,7).
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Random trajectories of the conditioned Wiener process are
known 31) 4o provide a natural probabilistic background
for the Feynnan's path concept, which is condensed in the
Feynman-Kac formula. Its particular case is the path 1:--
tegral expression for the heat equation kernel, whose sto
chastic mechanics implementation was discussed in
Indeed, the simplest example of the smooth Markovian dif-
fusion is the Wiener process with the transitiom probabi-
1ity density solving the Efatq?quation:

a tp(.ivo v;'t)' VA,P(Y ,0,X,%)

. Lo 2 (23)
P(?nov?ot) = (4wv t) 3/2 exp‘-\fzvit

The corresponding stochastic differential equation reads
1/2° 3

dx(t) = (2v) aw(t).

The Wiener process can be used for the construction of more

complicated diffusions, like these described by Eq.(6),(7).

The general formula for the small time transition proba=-

bility is available (Ref.35,Chap.4.7) and reads:

p(¥,8,X,8+ At) = (4T At)"3/2

b { - l?'iﬁ'%!hﬂ e

The uses of this small time formula become apparent when
passing to the finite difference (discrete )3|a.pprox1matio::1
of random paths. Consider the family (I C R”, J= 1,2,...
of Borel pets, with t = (n+1)At . The random paths are
approximated by broken trajectories:

{X(s): X(0) =Z,,X(%) = % , X(javer, , 3=1,2,...0]

with the initial ?o and final 'x} points fixed.
The cylinder sets are measurable i.e. the transition
probability density conditioned to refer to the cylinder

set reads :
§ a2y ... 02, 03,05, 40 B(F), A6T; 240



n+1
§1_<’i’--- {nd?n E{[mv (o5 an, 2, ¥

- -
exp[-k N e
e (£3-t,_,) et

tm 0 styyy = b4 By Xy

The so introduced conditional Wiener measure on the cyline

der set does explicitly attribute the real positive pro-
bability weight to each discrete approximant (¥,,¥,,...
!h.i}) of the random path, This measure is known to1be
countably additive on all cylinder subsets of the set
of all continuous trajectories defined on [0,t] and con-
ditioned to connect fixed points X, and X, .
A formal replacement of all I. by R3 follgwod by the
n —> 0O limit in the partition At = t/(n+1) gives
a path integral expregsion for the complete transition
probability density p(ib,o,;},t). One must however remem-
ber that neither of n-dependent factors in (25) taken se-
parately admits the well defined n — oo 1limit, albeit
the whole expression does,
!he(;go;:)diloualion well exemplifies the conclusions
of 2 on the purely probabilistic origin of Feyn-
ma paths,

Remark : Numerous objections were raised against

the physical relevance of stochastic mechanies , but
most essential of them were found (36,37) to come from
the misunderstanding of relationships between gquantum
and stochastic observables,The contribution to the pre-
sent volume 3 appears not to account correctly for the
prinecipal feature of the stochastic mechanics which
Ais time roz:raal invariance,The issue was discussed at
length in '?9) 4o indicate why 1t is not shared by irre-
versible stochastic processes of standard statistical phy=-
sics,

According to the previous analysis we can view the wave

functions as symbolic representations of collections of sample

paths, and thus of the underlying random (stochastic) field,

which we identify with the medium through which individual par-
ticles are to propagate.

It is the background (universal Brownian motion of [23]) ran-
dom field hypothesis, which might involve objections against

. a physical reality of stochastic mechanics. However, its ap-
~plicability is undoubtful whenever physical reasons of random-
s can be explicitly identified, like in the specific problem
£39-42)

nes

studied i Useful suggestions can here be also drawn

from experimental reports on neutron flight times through the

diffracting crystals (43) . In neutron experiments the very

. fact of neutron propagation through monolitic crystals, leads
to the natural notion of the random medium: apart from the or-
dered (lattice) structure crystal own excitations plus these
born through interactions with the incident particle, allow to
attribute the random medium role to the crystal. Neutrons effec-
. tively diffuse through the crystal and random fluctuations are

j necessarily superimposed on motions due to the periodic poten-
tial of the crystal lattice.

According to the above picture the ambigous (albeit justified

~ by tradition) assignment of wave functions to neutron beams can
be understood in the framework of stochastic mechanics:

.~ wave functions govern the (statistical) dynamics of collections

of individual,randomly perturbed single particle trajectories.

Thus we are at the point where particle and wave aspects of

- gquantum mechanics may consistently match.
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Beam splitting and Recombination in Neutron Interferometry

1. Experimental setting

0 beam
detector
H beam
detector

Neutron interferometry deals with fairly monochromatic neutrons
°
[1-4] with the de Broglie wavelength of about 1-2 A i.e. velo-

cities of about 2000 m/s. A wavelength spread is less than one

promille.

begm

Traditionally monochromatic beams are represented in quantum

slab III

mechanics by plane waves, and the dynamical theory of neutron

reflection, refraction and diffraction amounts to analyzing so-

outgoing beam

outgoing

lutions of the Schrddinger equation in the form of plane waves
[4,9,-11]. Let us reproduce a schematic diagram of the inter-

ferometer (patterned after Fig.1 of [9] and Fig.16 of [10]):

(see the figure enclosed on the separate page)

The neutron beam is coherently split in slab I. Lattice planes
are indicated to show our (a bit impractical) choice of the
ideal geometry for the symmetric Laue case, which applies here.

The two diverging beams are again coherently split in slab II,

but only the reflected components are preserved to converge and

get recombined, next split again in slab III. The slab III

splitting induces the interference pattern visible in the modu-
lation of counting rates at the detectors, provided we enforce
‘a phase change of one beamagainst the other.

The two beam components which leave slab II outward, can in

principle be separately registered. Their absence in the recom-
bination area apparently results in what is sometimes called

the wave packet reduction.
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2. Beam splitting

The incident beam we tentatively represent by a plane wave:

W(;) = u(?)exp(iﬁ?) ’ u(¥) - ¢ = const
(1)
B=wMk , K| =x, E = (k)%/2m

Properties of the wave in the crystal follow from the one-body
Schrddinger equation [10]:

2
(-L s virn@ = 0@ (2)

where, in virtue of (1) we set E=E, .
The crystal potential is periodic, hence one usually passes to

the reciprocal lattice vectors & and Fourier expands V(E):
V(E) = 5 v (&) exp (-187) (3)

inside the crystal, setting V(T)=0 outside.

since & il = 27 (R1 denotes the l-th lattice site position)
each reciprocal lattice vector G (given in the i-space) parti-
tions the lattice points ﬁl (inthe ?-space) into a family of
parallel, equally spaced Bragg planes. They are orthogonal to
¢ and have a separation d=2nn/|§[, where n is the largest com-
mon factor of the ﬁ-space coordinates (h1,h2,h3) defining the

vector 6 .

If the incident wave vector ?'makes an angle © with the Bragg

planes, and there holds:

nA = 2dsin® (4)

we say that E, k=2n/) satisfies the Bragg (reflection) law via

a given ¢. Notice that {(4) can be written as:
ksinO = G , G = |8| (5)

By the construction of the reciprocal lattice, there follows

that if k obeys (4) then also:
& + &2 =x? (6)

holds true.

Let the incident plane wave (1) be characterized by Eo orien-
ted in the exact Bragg direction via the reciprocal vector &.
To deduce the wave in the crystal, we Fourier analyze u(;).

The internal incident wave vector differs from Eo' and we deno-
te it K. Then 2) is replaced by the set of equations for

each reciprocal lattice vector G:
2 e -
{gﬁ &+& 2 -E}u(é) = - é,V(é - &1)u@é”) (1

By admitting that K only slightly differs from the exact Bragg

condition, we can expect that:

2
&+ H2-E e k- (8)

is small for either %=0 or a certain &#0, which allows u(0) and
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: the
u(a) to be relatively large against the other Fourier coeffi- Since K and KO are supposed to be slightly different,

s K, b
cients. This two-plane-wave approximation ansatz replaces (7) boundary condition suggests that R e R bty K

s an increment in the normal direction:
EE 2 2 L > > (13)
[2m (K® - ko) +V(0)]u(0) 8 - V(‘é)u(G) & ow ko i koen
2 (9)
1
{gﬁ [(K re? - kg ]* V(O)}U(G) = = V(G)u(0) A is a unit vector perpendicular to the surface of the crysta
and thus to G as well. Then:
Introducing: "
K2 ~k2 + 2KZecosey = kp(1+2Y)
= 2m 1/2 > o
K. = k 1 - V(o)] K =k+a (10)
0 0[ LT P ’ 2 4
o r K+ 2ak® + 6% + 2KE = (k2 + 6%« E B +
we can rewrite (9) as follows: N ZkgECOSGB 3 kg(1 £5¢) (14)
&% - K3)u(0) + 2 v(-&u@ = o
¥ (11) and the solution of (12) immediately follows:
2 2 2m
(K - K)u(@) + 28 v(=&)u(0) = 0
7 ! = /2
L y= ccoso = —= (-v(0) £ (v@v(-81"?%) - (s)
B " ko
which admits a non-trivial solution only if: LA A
z b 3
S Bl Ing 2 - (v ¢ k erates in the
. : 9. KO) iy ;5 otidy 1 s (12) It implies that the ko incident plane wave gen

crystal two internal plane waves in the forward direction

holds true. This secular equation determines the internal wave K'=K(y,) and K =K(y_) respectively, and two internal waves in
o -

s + >+ b & -
PECTOL T VEIEY. OF ko,V(O),v(-E). the diffracted direction K, and K. respectively. Hence a comp-

Remark: It is instructive to notice that K. of (10) is lete internal wave generated in the crystal reads:

0
the vector length proper to the case when Bragg reflection con-

dition 4) is not satisfied. The corresponding Schrédinger

v = [u®exp (iK*F) + ug exp(iigf)] (16)
a=%

equation refers then to refraction only: the crystal is practi-

cally transparent for neutrons. where u',u”, ué,u; are to follows from (11) and the boundary

conditions.
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Along the entrant surface we must have:

ug + ug =0 W # ul s (17)

where we use the (almost a constant in the area of interest) pre-

vious amplitude notion ¢ instead of u(;), to implement a plane

wave approximation. Notice, that the diffracted wave is entirely

born within the crystal.

By using a guess [8] with c* and e being real numbers:

leT 7 @™ =18 14 , = =Ie*/(c” - chH e

c
n

(18)

(=]
"

[c*e™/(c” - c*)19 = - ug
we realize that (17) gets reduced to identities, while in vir-
tue of (11) which determines the ratios of amplitudes, we ob-

tain:

2 2

K

i (19)
K 0

[u(O) ]2 _ V(=%
u (&) v(0)

which, by (12) implies:

+.2 2

ot o BT AREESIAL Opd WER e
Wbk My g)

1/2

_ v vi-8)] IV (-8)

(20)

We then continue the internal waves up to the rear (exit) side

of the crystal at which a superposition:

VE) = Voug(F) + Vgug (F)

Vo (¥) pexp (iKyF)

Vg () pexpli(K, + &) 7] (21)

is to come out.

For the crysial of thickness D, we can express positions on the

rear side by these on the entrant side:

(22)

"
il
+
o
=}

*
where  (17) refers to §=rin.

Since isﬁll+ KKL v Rlldenoting a component of K parallel to the

crystal surface, the boundary conditions:

- = - (23)
w+(;out) I Vowo(‘out)
S s Yo E ) = Vo @ o)
wG(rout) Ve out H'G '“out
E ->
imply (see  (13) and remember that Gllr  ):
u+exp(kaoe*) . u-exp(inkoe-) = Vgt
ugexp(iDkye”) + ugexp(iDkse™) = Vyo
Kf =k %) K, + ket n (24)
K" = k0||+ ko(coseB + €Y ko 0f
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After accounting for (15) , we can introduce another notation

in (24):

. 3 +
Dkoe = =g - § ¥ EI = (_0 :6)/Dko

o= ;539§ﬁ§é— 8 = QEI_EEZE_ v v(-g /2 (25)
g 0°°s%%
so that:
u*exp(id) + uTexp(-is) = Vv, ¢exp (io)
(26)
uéexp(id) + ugexp(-i8) = Vy¢exp(io)

via (18) implies:

- +
V0 = ' cosd + 1 = g C+ sind exp(-io)
€cC =-C
(27)
c'e”
Vg = 21 — + sind-exp(-iog)
e =g
In virtue of (20) we have finally:
V0 = cos$ « exp(-ig)
i (28)
vy =1 sinﬁ[v(a)v(-a)l exp (-io)

v(-G)
Since V(E) and V(-a) come from the Fourier expansions, by equa-

ting V(&) =|v(d) |exp(ia) we find V(-&)=|V () |exp(-ia), and so:

VB = isindexpi (a-0) (29)
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which implies a normalization formula:

V212« (vgl? =1 (30)

: unavoidably necessary in case of the no-absorption map:

¢exp(iﬁ0;) +¢[V°exp(iﬁof) + VHexpi(E° + 3);] (31)

which is to répresent the beam splitting induced by the diffrac-

ting crystal. Notice that (20) implies a surprisingly simple

result:

1/2
= + _ _ - _¢ veVv(-6)] e}
u, = u, =3 xpgn = 5 exp ia
(32)

Veopy(B) = % lexp(iR'E) + exp(iR1)) =

>0, > > >8> g
= %[expi(ﬁo - n%)r]-[exp(iﬁ%r) + exp(-insr)] =
= ¢[exp1(fo - ﬁ%);]-cos(%ﬁ?)

- - -> 6+—)
Vaiee (F) = idexp(ia) [expi(ky + & - A)¥]sin(gAz)

> > ->
WUE) =V ory (B 4bg g6 ()

computing the squared modulus of the above internal

stal wave field, we realize that the obtained intensity
s a trivial nodal set (no true repelling surfaces for the
ochastic diffusion). Hence a local representation of this
wave-field in terms of the stochastic flow and its random
“gths is a priori possiblé within the diffracting crystal.



276

3. Plane waves and wave packets in quantum mechanics

(44) there is a fundamental difficulty linked

As observed in
to the physical interpretation of plane waves, which however is
simply disregarded both in quantum mechanical text-books and

in research papers (neutron interferometry is a good example).
The plane wave ansatz (1) is not quite realistic if compared
with the experimental situation, where [4] monochromatic neut-
rons are injected successively into the crystal. Such neutrons,
if in a free flight, should pass a mean distance L during the
transit time T=L/v, where a typical velocity value is about
2000 m/s. It implies that in statistical terms, we must descri-
be a probability distribution which at time T is peaked (con-
centrated) about certain ﬁo, while at a later time T+t is pea-
ked about a new space location §=§o+3t.

Obviously such a picture has nothing to do with plane waves

and their predicted everywhere the same probability density. We
did not even mention their much more serious defect of not be-
longing to the Hilbert space, hence precluding their realistic
probabilistic interpretation.

Obviously properly wighted superpositions of plane waves give
rise to Hilbert space wave packets, and the wave packet which
is quite appropriate for the experiments of interest is the

minimum-uncertainty one. If in free propagation it reads

> 1 1

Y >(r,t) =

q,p (TI'AZ)3/2 L i&)3/2
mAZ

B

a(t) = g - pt/m (33)
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The initial half-width of the packet is A . and it is initially
peaked about phase space point (6,5). While evolving in time it
spreads out, but at a later time it is still peaked about

a point E(t)=a - g t. It follows from [17] that in case of neut-
‘rons, the velocity dispersion equals Av'~10m/s, if the spatial
dispersion is A-10-2m. Experimentally produced beams are colli-
ri;ted to about such a size [8] , hence the wave packet spreading

3
be safely disregarded on the time scale T €0” s. It implies

that the "frozen" Gaussian is a proper fit instead of (32) :

>
1 > B 2
*(t) = - exp {- — (x-g-= t)7}
("A4)3 2 2A2 m
exp kB (- §-BE) -

(34)

Qi+
I
sre?

in our case p=h K, |ﬁ|=k=2n/k~10-1om-1, and the typical

thickness is [10] D~0,3 cm, when considering the situation
> slab area the space - dependent Gaussian factor can be
*Ey replaced by a constant, at least if compared with the ra-

ly varying phase factor, whose oscillation interval equals

thus a point at which we can replace the moving in space

an wave packet by a plane wave: the packet gets entirely
at the time when the wave packet centroid enters the

And this instantaneous freezing trick allows to save
: rd belief that exp(:iE;) plane wave "represents" a pro-
in the positive or negative K direction, because a wave

- attached to it does so.



278

One must however remember that the group velocity of the Gaus-
sian wave ¢=§ which refers to the mean particle velocity is
twice the phase velocity of the pertinent plane wave. The cita-
tion from (44)shou1d clarify the issue: "in the quantum mecha-
nical case... it is fundamentally misleading to look at exp(iﬁ?+
-iw(k) t), m(k)=Mk2/2m as a travelling wave". Contrary to the

classical theory where exp(...) would be replaced by cos (KT +

-w(k)t) i.e. a genuine travelling wave, in quantum theory plane

waves refer to stationary (generalized) states, and as such have

much more in common with standing waves.

4. Beam recombination

While employing "frozen" wave functions, and confining the ana-
lysis of diffraction by a crystal to A'v10_2m beams, we can take
advantage of the previous plane wave analysis.

Let wE’B(;,O) with the centroid coordinate §=0 be a representa-
tion of the neutron beam at the entrant side of slab I, at the
time instant t=0. The mean passage time of neutrons through the
slab is incom-parably shorter then the transit time between
neighboring slabs. Thus we shall keep the Gaussian probability,
density time independent as well (in addition to neglecting its
variability). Thus we begin with:

1 22 X
L3 AT IRE e S o9

The neutron beam while on leave from slab I is represented by
a superposition of two minimum-uncertainty wave packets, both

initially peaked about 3=0, but with diverging momenta: $°=ufo

and §G=M(§O*G) respectively. They are next supposed to propaga-
te freely until slab II is reached. Since |E0|=|iG|=mv/M , af-

Tter time T=(§B-?A)/v=(?c-?h)/v the centroids of our wave func-

tions reach slab II at positions EB'EC respectively. Their sepa-

~ ration is of about 5-10-2m, hence definitely macroscopic. In

. this case, even for not very sharply peaked Gaussians, their

'overlap is negligible, and propagation through the crystal of

" the two diverging beams can be considered separately:

: 2 T
L pE0)? ~ |v0|2|¢;8'0(§,0)| + |VH|Z|Q£ o(r,O)l (36)
4 5

The time dependence is here absorbed in the new positions of

1 centroids, hence by using them as reference points of the new

coordinate system (related to each wave separately) relative

: coordinates can be used, and thus all previous beam splitting

discussion applies without any modifications.

E Notice that integrating (36) over R3 we recover the meaning

.~ of the normalization identity  (23).

If instead of slab II, counters would be introduced in proper
positions (i.e. about }B and ;C respectively), the relative

frequencies obtained should converge to counting probabilities:
2..3 248 2 S 2
Py = Vol [a r|¢;a'o(r,0)| = |Vl = cos®6
Py = G Do Py = sin26

" k,cosOy

Let us turn to the slab II diffraction of each beam separately.
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After splitting, the forward fraction of the incident EO beam
is sent away (and eventually registered). The same pertains to
the forward fraction of the (ﬁo+§) beam,

They get eliminated from further processing.

At the rear side of slab II we are thus left with widely separa-
ted (but now moving in convergent directions) partial beams,
whose mathematical representation reads (we again disregard the

transit time through the crystal):

>

) o
> - i» -> G
Vpp €& 8) 4 VHV0|¢;B'0(r,0)epopG(r+ m )t
-
R
> i=> > (o}
+ V_HVH|¢;C,o(r,0)|exp P+ o) (38)

The coefficient V_y indicates that we have split the beam inci-
dent with momentum 56' and preserved its (here diffracted) com-
ponent 50' Since it arises by referring to - G instead of 5, we

have:

V_y = i sindexp -i(a + 0) (39)

The sent away components correspond to intensities Vg (Bo direc

>
tion) and VHV° (pG direction).

Would we allow the beam to propagate freely in time (take time

interval 3T or 4T the arising wide separation of the four Gaus-
sian components would allow to compute the counting probabili-

ties

P 1

11 * Plost T
Pyp = |VHV°|2 + IVHV_H|2 = sinscos?s + sinds = sin?s

s H ‘ 2 ok 2
Prost ~ Piost * Piost = |V0] ¥ IVOVHl = 508 4 (40)
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Since we can in principle measure pgoet and p?oe by intro-
ducing the additional counters , the previous analysis al-
lows for the following conclusion: neutrons arriving at
glab III come from two widely separated directions with pro-
babilities p(ib)‘lvavo‘z = 8in®$ cos?$ and p(po) =|VyV_ é -
sin% respectively, with p(pG) +p(P,) = e
Let the incident wawe function at slab III be given by :

YTI(Te) = "nvolq’? ,0(Fs o) exp g (¥ G ok

+ VgV_ HH’r 0(? 0)| exp %po(r +28- (41)
It is peaked about rD and the time intorval 2T has passed
to allow for neutron migration from r to rD.
By linearity of the Schrodinger equntion , we can still
analyze beam splitting of each incoming beam separately.
But then the superposition must be formed:

VIEE,6) =V pp(Bt) = Yo(Fe) +¥p(Ee) (42)
Yo@it) = 2V_gVg¥ o“br o (®,0)|exp 5T+ A

Yy(F,6) = (V¥ g+ vovn)ﬁ’ 0(r.o)| exp A5, (P+ p23-

Ietting the split wave to evolve freely , we get a spatial
separation of the 0 and H beam due to which counting
probabilities for each direction follow ( one should be
warned at this point that the use of plane wavesin fact
precludes any idea of spatial locvalisation of the sub-
beams in the above, and what one has on mind is the pla-
ne wave approximation of the realistic wave packets in
not too extended spatial areas):
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3 % 2 2 2
By= Ja rlwo(r,t)l 4|V_VuVyl® = 4 cos ssints

sinzd(- sinzé + c0826)2 =

Py = fd3r|wﬂ(?,t)[2

sin?s = Py (43)

Remark : All our considerations in the present section
are based on drastic simplifications ,which cannot reveal
the whole complexity of wave phenomena induced in the diffract-
ing crystal. They might serve as local approximations of
true wave fields only. As example , the misset Bragg angle
leads to exciting the nontrivial wave field in the whole
Borrmann fan so that the plane wave formula (32) 1is
essentially modified . We must insert to (16) the following
functions:

BE-7 -t
-l U )@ (44)
" c”en[o 2pr2(p 4y e

2
where \)o = Yo/zko and YV =Yg V—G while the crystal
misset angle enters = ker sin 293 .
The wave amplitudes are:

v 1 p e @l - 1 B (8%t
W REESS ¢ ot s
. b oy

- e ¢ W T

These plane waves should next be integrated with a proper mo-
mentum space distribution to form the wave packet,

Dynamical diffraction theory was formulated in 46) for Gaus -
sian wave packets,

Beam recombination and interference phenomena: standard

understanding

It is conventionally argued that the measurable interference
phenomenon appears if a phase difference between the recombined
beams is somehow produced, prior to superposing them in slab
III. Since in the interferometer neutrons which follow routes
ABD (I) or ACD (II) achieve a macroscopic sep;ration of about
5 cm, different phase shift operations can be adopted with res-

pect to e.g. beam I dith either completely negligible or control-

lable effect on the other beam.

Let beam I be shifted in phase: in case of Gaussian packets their

centroids suffer simultaneously spatial shifts [8] but this ef-

fect is negligible against the phase change. Then the formula

for the incident wave at slab III should be modified:
VuVo > VyVoexp (i¢) 1)
which in turn implies

2VHV-HVO > VHV-HVO(1 + expig)

2 2 2 2
VEVoy * VoV * VaVog * VoVpexpie (2)

@; = sinzél- sin?s + c0526exp(i¢)|2 5 ol = Pg (
3)
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thus showing a cosine modulation which is characteristic for
wave interference: Pg can take any value from the interval
[O,Pol.
It thus results in the definite destructive interference pat-
tern: the mere phase change of beam I results either in a par-
tial or even in a complete (¢=m) reduction of a counting rate
at the 0 - detector. In the latter case pg-O and all incoming
neutrons are transmitted by slab III into the H - counter.
Remark: The experimental data show a full range cosine mo-
dulation of counting rates, but these oscillations occur about

a relatively high treshold: the 0-channel is never completely

closed for neutrons. This incongruency of observations with the

theoretical predictions up to the author’s knowledge was never
under serious debate, except for mentioning [4] that the non-
existence of the complete beam modulation (down to 0) may be
perhaps attributed to various imperfections of the crystal,the
phase shifting material or the neutron beam itself (which is
never purely monochromatic).

Let us confine attention to the ideal case (3). A se-
rious conceptual problem arises here from the experimental data:
(1) Each single neutron accomplishes its route through the in-

terferometer before the next one is born in the arrange-

ment
(2) Due to a macroscopic separation of routes I and II, we are
allowed to implant phase shifting devices so that their
effect on beam I neutrons reduces to zero on beam II route
(3) Neutrons arriving at either 0 or H counter, in the absence
of phase shift, come at random from either I or II channel.

What does destroy this random pattern, when a phase shift
is induced?
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A difficulty with the understanding of : (3) and generally
of the interference phenomenon is still under debate {1-4,12-15)
see also (21-23) . Rather typical arqument [14,21,3] used in
this context, tells us that in the double slit experiment, due
to its particle character the photon (neutron, electron) always
passes through one of the slits. However, in order to explain
the interference pattern it seems necessary ‘to assume that
the photon (electron, neutron) or at least its (their) wave
function has traveled along both paths. Anyway in the area of
interference the particle must have an information ("know")
about what has happened along both paths [3,4,21,23].

At this point it is reasonable to invoke again Lande’s cri-
ticism. But we have much stronger argument in hands. Namely in
the stochastic formulation of quantum mechanics, the dynamics
is entirely due to a stochastic differential equation. In case
of a Markov process (applicable to a wide class of phenomena)
there is no memory of the past involved in the stochastic par-
ticle motion. In fact while following a sample path, at

no space point a particle itself can "remember" of which direc-
tion it came from. Moreover, it is as likely to continue or to
change abruptly its direction of motion due to a random influ-
ence of the environment.

It thus appears that the realistic phenomena to be accoun-
ted for, are related to an interaction of the consecutively. ar-
riving single neutrons with the crystal lattice, in a reprodu-
cible series (sampling) of performances.

But then instead asking "how does the neutron know" we are en-
forced to ask what in reality happens in the diffracting crys-

tal.



Plane waves versus individual particles: Alternative inter-

ference scenario
» or what can be saved from Buonomano's hypo-

thesis?
According to our previous discussion the plane wave notion

&> >
expi(kor - wt) appears as a local approximation of the traveling

wave function:
£(F - B % t)expi(R 2 - - B2
m Ko pi(k, wt) where |£(x - m Xot)|” stands

for a Gaussian probability density. Its variability with ¥,t

is considered negligible against rapid oscillations of the plane

wave factor in the areas (crystal) or interest.

Since in all our manipulations it is jd3r[f(F - % k'ot)l2 = Pg

which refers to the probability with which the f-beam excites

the detector (counter), hence the Gaussian probability density

informs us about a distribution of individual particle members

of the f-beam in space. Thus the phase factor must definitely

play another role.

It is rather customary to attribute a plane wave to a single

particle in quantum mechanics, and we find it consistent with
the previous analysis.

However a plane wave cannot describe a single dot on a photo-

plate or a single click in the counter. The relevant probabilis~-

tic information comes from the definite state preparation pro-

cedure and is thus given (if we confine attention to pure sta-

tes) in £ - L& ey )2,

Nelson’s approach is unique in attributing a physical meaning

to space-time variability of phase factors, and the role of such

(usually plane wave) factors becomes really unquestionable when

passing to a description of individual stochastic (sample) tra-

jectories, see e.g. at the computer simulations(47).
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Another computer simulation (48) 1inks Wilson chamber tracks
with the plane wave as a symbolic description of the correspon-
ding random medium (call it a background field as Nelson does)It
suggests that plane waves really apply to description of par-
ticle motion through a gas, liquid or another structureless
(albeit perhaps not too dense) material body.

As mentioned before such understanding of quantum mechanical
plane wave instead referring to a single particle, refers rather
to random response of the environment on the presence of momen-
tum E particle in it.

Pursuing this line of thought, the wave field in the crys-
tal (slab I , incident beam splitting) describes again a random
response of (this time structured) the material body on being
penetrated by the incident ﬁo neutron.

slab II discussion essentially exploits the above feature,

but we supplement it by the assumption that a macroscopic spa-

tial separation, in virtue of crystal internal ecitation noise

is capable of destroying any communication (correlation inter-
ference) between random fields active inthe beam splitting areas.
Thus the random field response of the crystal to the incident
neutron has definitely a localized character.

The situation at slab III is critical for the understan-
ding of what a quantum mechanical superposition principle really
means.

To implement interference theoretically, we have followed tra-
dition with the wave function continued to the overlap area

along path I and path II simultaneously. But this procedure is

in fact a rather subtle ansatz, since we know very well what is

a random response of the crystal to t he KO neutron,
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We know as well how the ?b + G beam would be split by the (¢=m) is implemented. The interesting feature of interference

crystal. The superposition of the phase shifted wave with unsh-  experiments is the relatively high counting threshold

ifted bears features of the simultaneous presence of the EO and ~ about which the phase dependent oscillations are seen,

¥
ko+§ neutrons in the crystal, which is never the case during " and for which no convincing explanation exists in the literatu-

neutron interferometry experiments. Our possible explanation is ' re: most people believe that low neutron fringe visibility comes

based on the following hypothesis (Buonomano (49)), from the difficulty of the experiments background counts and

each single neutron while travelling through a crystal the partial coherence of neutrons. :

apart from being randomly perturbed along its flight through Remark 1: The ideal case considered previously shows that

“neutrons come from the phase shifter with the probability (rela-
Fal

lattice potentials leaves behind an imprint of its flight
2

and perturbations. | tive to the whole beam) vVl 2=sin®scos®s, while these

One should not forget that we follow at this point the Wilson from the KO direction with the probability sin%s. Depending on

chamber intuitions. The life-time of the neutron imprint in the the particular value of & they may substantially differ.

crystal is certainly finite but as show the experimental data ~ As a result in any sequence of single neutron flights through

of the size ~10" s at least. . the interferometer, there may arise a relatively long series

If a single neutron enters the crystal, its random guide through n . of beam I neutrons which is intermitted by either single or re-

it is plane wave. If after sufficiently short time another latively short series of beam II neutron arrivals to slab III.

member of the coherent beam penetrates the crystal, the random : If the time intervals between single neutron emissions are com-

response of the crystal depends on what kind of field is still parable with the excitation (trail in the crystal) life-time,

in existence and what kind of random response induces the newly it is obvious that a significant fraction of jEo+a neutrons 'gets

— =0
born neutron itself. diffracted by the crystal slab III according to the kb*fs rule

i.e. with the outgoing ﬁo and ﬁ°+§ neutrons, irrespective of

It means that neutrons do not literally interfere with themselves

what a phase shift is.

Rather random fields induced by migrating neutrons do interfere.

It at least justifies the use of plane wave superpositions 1like Remark 2: Investigations of the longitudinal coherence [8]

this related to slab III. show a significant reduction of the interference contrast (ampli-

The finite life-time of the neutron imprint in the crystal com- tude of cosine oscillations of the counting rates gets lowered)

bined with the obvious probabilistic arguments allows to predict with the growth of the thickness of the phase shifting material.

that: Since phase shift of the wave packet is always accompanied by

there is always a non-zero probability of neutron transmis- a spatial shift of its centroid, it implies a delay of the phase

sion to both 0- and H counters even if the ideal phase difference shifted neutrons compared to the normal transit time. In statis-
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tical terms this phenomenon can be interpreted in terms of the
finite life-time of neutron trails in the crystal. The original
explanation of the phenomenon [8] refers to the decreasing over-

lap of the interfering wave packets,

There is an isolated attempt (49)to understand
particle aspects of interference in terms of crystal memory
effects. However this non-ergodic approach to quantum mechanics
allows the interference to happen only after a sufficient num-
ber of neutrons has travelled through the interferometer (memory

accumulation). Recent experiment (50) provides a convincing dis-

missal of the memory accumulation ansatz. However the remain-

ing part of the Buonomano's scenario is the emergence of the

memory effect itself.
From purely mathematical viewpoint Nelson’s stochastic mechanics

shows an exact equivalence with the well established Schr&dinger
equation formalism. However stochastic mechanics is unique in
allowing in a consistent way to study the individual particle
propagation (stochastic sample paths) and so to address the par-
ticle aspects of quantal wave phenomena (e.g. interference and
diffraction). Moreover as shows the analysis of [23,37] it adds
to the standard quantum formalism new observables (like first
hitting times) which could not be even imagined in the standard
approach. Although it is consistent with the standard inter-
ference scenario (nice dicscussion of the issue is given in (51))
it allows as well for the alternative picture based on the
still remaining piece of the Buonomano's hypothesis:

the neutron while travelling through the crystal picks up

its stochastic behaviour from the crystal (via unknown in detail
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interactions with crystal lattice centres) and also leaves

a trail in the crystal that allows the crystal to“rememhsr"the
hase of the neutron wave function. Although the life-time of the
trail is certainly finite, it is responsible for the observed
interference of low intensity beams: neutrons passing the in-
terference region cannot interact (interfere) directly, but only
.in the indirect way - via memory effects in this region.

The above scenario can be subject to an apparent experi-
mental verification (much more conclusive than in case of the
;dismissal of the report [12] about a possible destruction of the
interference pattern for very low intensity photon beams) .
Namely in the standard setting used by Vienna group, neutrons
come to the apparatus with the interval of about 0,28 .

Since quite efficient neutron beam shutters are available, it
‘1s enough to repeat standard neutron interferometry experiments
under the condition that:

(1) approximately the same number of neutrons is registe-

red (2000 or 3000) during the single exposition time

(2) each experiment is repeated for a sequence 0,2s, 0,4s,

0,6s, 0,8s... of controlled intervals beteen the single
neutron emissions to the apparatus.
The expected outcome is the definite decrease of the interfe-
. rence contract (call it a destruction of the interference pat-
tern) with the growth of the emission interval.
. Unrealizable in case of photon interferometry [12], such cont-

rolled lowering of the neutron beam intensity is a technically

feasible, but missing (50), decisive test against or in fa-
vour of the memory effect scenario for low intensity beam

interference. Albeit current paradigms view it as unnecessary.
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THE VALUE OF QUANTUM MECHANICS
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ABSTRACT

We may summarize our work stating that Quantum Mechanics is a

ractical partly irrational creation of the human mind. Such a
sreation is not univoque to the physical world of the microcosmos;
here could be quite different formulations of Quantum Mechanics.Pre-
ent day Quantum Mechanics allows us to dominate the microcosmos but

es not quite present an onthological objective description of the

SCIENCE AND HUMAN BEINGS
Science is often defined as the universal agreement of all human

beings on experimentally obtained knowledge.

It is essential that such knowledge be obtained by means of experi-

pents, i.e., using measuring instruments.

The observable qualities are defined by the proper measuring instru-

nents that are always instruments submitted to Classical Mechanics since

¥key belong to the macroscopic world.

Inspiration plays no less a role in Science than it does in the

ealm of Art. It is a childish notion to think that a mathematician

ittains any scientifically valuable result by sitting at his desk with

ruler, calculating machines or other mechanical means. Both kinds

= work require "frenzy" (in the sense of Plato "mania") and inspiration.
In contrast with these preconditions which scientific work shares with

, Science has a fate that profoundly distinguishes it from artistic



