BROWNIAN MOTION AND ITS CONDITIONAL DESCENDANTS
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Contribution in honor of the 60th birthday of John R. Klauder

It happened before [1] that I have coneluded my publication with a special dedication to
John R. Klauder. Then, the reason was John's PhD thesis [2] and the questions (perhaps
outdated in the eyes of the band-wagon jumpers, albeit still retaining their full vitality
[3]): (i) What are the uses of the classical (c-number non-Grossmann) spinor fields, es-
pecially nonlinear ones, what are they for at all ¥ (i) What are, if any, the classical
partners for Fermi models and fields in particular ¥ The present dedication, even if not
as conspicuously motivated as the previous one by John's research, nevertheless pertains
to investigations pursued by John through the years and devoted to the analysis of ran-
dom noise. Sometimes, re-reading old papers and re-analysing old, frequently forgotten
ideas might prove more rewarding than racing the fashions. Following this attitude, let
us take as the departure point Schridinger's original suggestion [4] of the existence of a
special class of random processes, which have their origin in the Einstein-Smoluchowski
theory of the Brownian motion and its Wiener's codification. The original analysis due to
Schrodinger of the probabilistic significance of the heat equation and of its time adjoint in
parallel, remained unnoticed by the physics community, and since then forgotten. It reap-
peared however in the mathematical literature as an inspiration to generalise the concept of
Markovian diffusions to the case of Bernstein stochastic processes. But, it stayed without
consequences for a deeper understanding of the possible physical phenomena which might
underly the corresponding abstract formalism. Schrodinger’s objective was to initiate in-
vestigations of possible links between quantum theory and the theory of Brownian motion,
an attempt which culminated later in the so-called Nelson's stochastic mechanics [8] and its
encompassing formalism [7] in which the issue of the Brownian implementation of quantum
dynamics is placed in the framework of Markov-Bernstein diffusions. Schrodinger’s discus-
sion of the analogy between wave mechanics and random phenomena of classical statistical
physics starts with recalling an obscurity present in the notion of probability (Born's pos-
tulate) adopted in quantum theory. For the purposes of the probabilistic interpretation,
it seems that one should decide in advance, whether one is considering a probablity after
one knows what has happened, or rather a probability of what i to happen. To conform
with the classical notion of probability (event, i.e. sample space is needed to have the
axiomatic definition of the probability space) the most natural way is to look at a classical
probabilistic system, which structurally is as close as possible to the wave (Schrédinger)
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equation of quantum mechanics. In case of the free (V=0) propagation, the heat equation
with its time adjoint well fit the purpose:

10 = =D&y ) . = DAS,
iad= DA T 88 =-_Dae (1)

where the familiar imaginary time transformation is indicated as a pedestrian recipe to
pass from quantum theory to statistical physics. Here 4,1 are complex, while 8,,8 are
real functions, and the diffusion constant D is left unspecified (D' = fi/2m gives rise to the
Schrodinger equation in its standard form). Let us consider the transition probablity den-
sity (heat kernel, the Brownian law of random displacements) h(z, s, y, ) for the Brownian
motion (¥, £ = ¢ < {3) on the interval [Ihh] 1.e.

o2
h(z,8,3.t) = [dnD(t — 5)]-172 e::p[—;l-{—‘gr—:lﬁ] 2)

where Y; takes values in B! (Brownian motion in one spatial dimension). If we prescribe
the initial partiele distribution p,(z) for the random wvariable ¥; , then all intermediate
distributions of (¥y,#; < ¢ < #3) are determined in terms of py(z) and h(z,s,y,1), including
the terminal one as well. We have indeed:

plz,t) = f Mz b, 7, E)pa (2) d (3)

where £; < ¢. Starting from the classical Brownian law of random displacements we can
ask the following question: Assuming that o fest particle originates from z, at ty , and
ferminaies 1ls roule in (nol far from) z3 al iy , what 1s the probability fo find i between
r and x + Az al the indermediate time { wmth £y <& < i3 ¥ The pertinent intermediate
probability distribution is given by the conditional transition probability density formula :

h{':-'l 1 t11#1t} h[¢1ﬁ1#11‘1,}

hizy,ty,22,13)

plz,t) = Plzy, ty;x, 829, 83) =

(4)

It is then obvious that the formula for p{z,t) can always be rewritten as a product of
solutions #{z,1),8,.(x,f) of the heat equation and its time adjoint: p{z,t) = (0, )(z,1)
provided ¢ < t < #3. Let us now define p(z,ty) = py(z) and p(z,T) = pr{z) to be the
initial and final probability distributions determined by the Bernstein transition density
P, with t; < ty < T < t3. Although we know the general Brownian transition mechanism
(the law of random displacements), h , the conditioning present in the Bernstein (in fact
Brownian, since V=0) bridge construction allows us to formulate a new probabilistic prob-
lem. We are now revisiting the original question due to Schradinger [5,6): What i the
maost hikely way for the particles to evolve as t goes from ty to T, once we have prescribed
in advance both the inibial pg(z) and final (terminal) pr(z) probability densities for the
process, given the prior transition mechanism f The answer is given by deriving from the
original (prior) process (Yi, f; < ¢ < t3), the new one (X, #; <i#g =t < T < #3) which is
now known as the Markov-Bernstein process [7]. The above discussion can be rephrased



BROWNIAN MOTION AND ITS CONDITIONAL DESCENDANTS 65

in more phenomenological terms. Suppose that the observer is measuring a coordinate r
of the event (particle entering the observation area A, the measurement accuracy does not
matter) at time ¢y viewed as the initial time instant in the repeatable series of one particle
r experiments. Accumulating the data one arrives at the empirical distribution which
asymptotically is found to approximate a probability distribution pg(z). It is then taken
to characterise the “state of the system” at time {;. Assume also that the observer is eol-
lecting the coordinate data of these repeatable events (entering particles) in the detection
area B at a later time T and let them approximate the terminal probability distribution

pr(z). If pr(z) is far from what it should be according to the law of large numbers (i.e.
when pr(z) is much different from [ h(z,to,y, T)po(y)dy, with h given before), then we
arrive at the core of the original Schrodinger’s discussion: What are the intermediate
probability distributions p(z,t) ond what is the particular transition mechanism responaible
for the probabilistic evolution from po(x) to pr(zx), if ne external forces are affecting the
particle, except for Brownian agilation (Brownian nouse) ¥ Let us proceed more generally
[6] than the previous discussion would suggest, and assume to have given a pair of diffusion
equations in duality for real functions @, 8, :

aﬂ. - ﬂﬁﬂ. - Fﬂ‘fzmﬂ
g8 =-DAR 4+ V8 [2mD

D is a diffusion constant, m the mass of a particle subject to diffusion. The potential
V' is assumed to be continuous and bounded from below, which implies the existence of
the strictly positive semigroup kernel generated by the operator H = =2mD*A 4+ V.
Let h = h{z,s,9,1), 8 < t be the fundamental solution of the first diffusion equation.
Then, the initially chosen function #,(z,-T/2), 0 < T is propagated forward #,(z,t) =
J 8u(z,=T/2)h({z,~T/2,2,t)dz , =T /2 < t while the terminal choice of #(z,T/2),0< T
allows one to reproduce the past data #{z,t), t < T/2 through the backward propagation
Nz, t) = [ h{z,t,y,T/2)8y, T/2)dy . By virtue of the semigroup property of the kernel h

we have also:
B.(z,t) ==fﬂ..{:,s}h[z,a,:,,l]dz

bz,5) = [ h(z,s,2,00(z,0)dz

where (—T/2 < s < 1 < T/2); hence a solution of the dual system with the prescribed
boundary data at £7'/2 might be given, such that [ 6,(x,1)8(z,1)dz = 1 holds true for all
times ¢ in [~T'/2,T/2]. We have here determined the Markov-Bernstein process [7], which
allows one to propagate (hence both predict the future and reproduce the past, given the
present) the probability distribution:

plz,t) = 8z, 1)8.(z,1) (7)

respectively forward and backward in time. Statistical predictions about the future can be
accomplished by means of the forward transition probability density:

ﬁ{lﬁ”
Bz, 3) (8)

(5)

(6)

P{:N"ry'ri_} = (I '51:!l"ri_:I
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while the past can be reproduced statistically by means of the backward density

Pl 0,8) =, ,0,) e (9

for the diffusion with fixed boundary probability distributions p(z, ~T/2) and p(z, T/2).
With p and p. in hand, we can straightforwardly evaluate the conditional expectation
values, which are necessary to establish the mean forward and backward derivatives in
time for functions of the random variable X(t). The backward (D_X)(t) = b,(z,t) and
forward (D X )(t) = b{z,t) drifts of the Markovian diffusions in the above read thus
bz,t) =2DVE/8 and b,(z,t) = <2DVA, /8, so that the continuity equation follows:

yp = —V(pv) = Dbsp — div(pb) = —DdHp— div(ph,) with v=(b+5.)/2 (10)
If we define & = exp(R + §5), 8, = exp(R — 5) with R and § being real functions, then

there holds:
v=2DYS wu=(b-h)/2=2DVR (11)

and the continuity equation can be rewritten as follows (with its gradient form, due to
Nelson [8], included) :

(1/2D)8;R = (-1/2)AS — (VR)(VS) — Hu=—DAv — V(uv) (12)

If the continuity equation holds true, then the necessary consequence of the dual system
of diffusion equations is the {generalised) Hamilton-Jacobi equation:

V = 2mD{8,5 + D(VS)? + D|(VR)® + AR)) (13)

which can furthermore be rewntten as :

2mD*|(VR)* + AR) = 2mD? ':&;I::ﬂ} =Q (14)

Ezcept for the sign inversion, ) has the familiar functional form of the de Broglie-Bohm-
Vigier “quantum potential” [5,6,9,10]. We can here argue in reverse, and recover the dual
system of diffusion equations, given the continuity and the generalised Hamilton-Jacobi
equations. By evaluating the forward and backward time derivatives of b(z,t) and b,(z,t)
we can verify that the gradient form of the Hamilton-Jacobi equation reads:

v = 2DAu +(1/2)Vu?® +(1/2)Ve* + (1/m)VV (15)

which in turn implies the validity of the so-called Nelson-Newton law [6] with the sign
inverted potential (conventionally interpreted as the signal that we are in the Euclidean
framework, see however [9,10]):

(m/2)(DyDy + D_D_)X(t) = VV (16)
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This stochastic acceleration (in the conditional mean) formula was primarily rejected by
Nelson [8] as the physically relevant characteristic of the Markovian diffusion. Notice that
the above equation can be written in the form :

(& +vV)v = (=1/m)V(@ - V) =(1/m)V(V - Q) (17)

reminiscent of the momentum balance equation in the kinetic theory of gases and liquids,
which should in principle apply to all conceivable osmotic diffusions.

To illustrate the previous discussion, let us come back to the previous (V' = 0) con-
siderations. We can ask for a probabilistic interpolation between the coinciding boundary
distributions:

a are

2xD{a? — ﬂ:,jllﬂ ﬂp[—m] (18)

plz,to) = p(z,T) =]

in the time interval [t;, T]. No physicist would expect such an evolution while having a
traditional picture of the Brownian motion in memory. However it immediately comes out
from the Bernstein (actually Brownian) bridge construction. Indeed, let us set t = —f =
=T, #) = —a = 13,0 < § < o« and choose ; = 0 as a source of particles. If we confine
attention to these Brownian particles only, which after time 2o from their emission are
bound to be back at (or at least not far away from) the initial location z; = 0 = z; then
the Bernstein transition density P reduces to :

@  up, g ax?
p'[.'?-,t:l = [EID[ﬂj - IE}]]- E‘Ipi ED{ni = -F:I] (lg:}

= (8xDa) 2 h(0, —cx, 2, t)h(z, 1,0, a)

where the transition densities:

r?

4Dt + r:r}]

hl:I: t,0,a) = [d:ﬂ'.ﬂiﬂ' - t:]] —1/ ﬂp[—ﬁz_t}]

solve the systems of heat equations in duality (V' = 0), in the time interval [—a, a]. Notice
that the pertinent boundary data are induced by the Bernstein (Brownian) bridge itself. By
previous arguments we have given here the transition probability densities characterising
Markovian diffusions, hence the drifts of the processes can be evaluated as follows:

h(0, —av, z,t) = [4xD(t + a)]~"/? exp|-
(20)

bz, t)At = jp[:,t,y,t-{-ﬂf}ydy -z
(21)
bo(z, t)At =z — jp,.{a:,t — Otz t)zds

where At is a small time increment, b is the forward drift of the diffusion {mean velocity
of outgoing —from r at ¢ -~ particles) while b, is its backward drift (mean velocity of
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incoming - to r at ¢ — particles) tg < ¢ < T. The drifts stand for substitutes of time
derivatives, non-existent in the naive sense for Wiener paths. Here (D X )(t) = bz,1) is
the left time derivative in the conditional mean, while (D_X)(t) = b.(z,t) is the right
one. Up to irrelevant multiplicative constants we can set :

E,[I,fj ! h[u'r -u!TTI}

—-f=t=< o
Bz, t) ~ h(x,1,0,a) (-f<st<f<a) (22)
and consequently there holds:
Wz, 1) = op¥l ___z _ _zatt) .
E oa—1t ﬂ: _t] {23}
v, = _ Ha-t)
ﬁ-[:l:i}——?ﬂ' a, - l'.|'+t_ ot — §2 = =i 4

We have here a natural decomposition into two terms, one of which (namely v) is odd
while the other (namely u) is even with respect to the time reversal. In addition, we can
easily recover the relations:

u=2DVHR v=2DVS
az? tr?
R= " 4D(a? — 17) 5= " 4D(a? — 17)
8. ~ exp(R — 5) 8~ exp(R + 5)
plz,t) = (00,)(z,t) ~exp2R — U= Ve =2DVR (24)
P

Notice the validity of the momentum balance equation (acceleration formula) (DD, +
D_D_)X(t)=0.
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