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The major unsolved problem in the framework of Nelson’s stochastic mechanics is addressed 
and an attempt is made to provide a description of relativistic spin-i particles in terms 
of Markovian diffusions on Ss. Random rotations are here labeled by the proper time of a 
particle in relativistic motion and are continuously distributed along a space-time 
trajectory followed by the particle in Minkowski space. 

I. INTRODUCTION: THE PROBLEM OF RANDOM 
ROTATIONS IN SPECIAL RELATIVITY 

The description of spin-i in the framework of Nel- 
son’s stochastic mechanics”’ involves a harmonic analy- 
sis on the group 3 of rotations in R3. For functions on 
the group the Hilbert space structure is induced by the 
invariant Haar measure on S,. The scalar product reads3’4 
as 

(flJ;> = J 4Km)f2(g) 

=$ ;“d$ ;dO 
I s 

I 

2r 
X dlF, sin WI (g)flk), 

0 

s3g= (wJ,$h (1.1) 

where 8, 4, and $ are the Euler angles locally parame- 
trizing the group manifold in a given Cartesian frame of 
reference. The transformations U,,f(g) = f(ggi) are 
known to form an infinite unitary representation of the 
group of rotations in the Hilbert space L2(S3), whose 
resolution into irreducible components gives rise to a 
four-dimensional space Ht,z characterizing spin-f. The fa- 
miliar SU (2) harmonics form an orthonormal basis sys- 
tem in it. 

Let G(t) be a random variable taking values in S3, 
which undergoes a nondissipative (rotational) Markov- 
ian diffusion.lV2 The ith SU(2) harmonic describes the ith 
state of stationary diffusion, i= 1,2,3,4. For each state we 
can introduce a vector-valued function of this random 
variable L = L(G( t)), which following Refs. 1 and 2 may 
be attributed the role of an angular momentum induced 
by the rotation G(t) in a given state of rotational diffu- 
sion. Let ei(g) denote the SU(2) harmonic for the spin-: 

*)Permanent address: Institute of Theoretical Physics, University of 
Wroclaw, PL-50 205 Wroclaw, Poland. 

case. Then 1 ei(g> 1 2 stands for the probability distribution 
of G(t) in the state ei(g). We can evaluate the expecta- 
tion values: 

1 

+l, i=1,2, 
Ei= 

-1, i=3,4, (1.2) 

where s is the unit (spin polarization) vector in R3, iden- 
tifying the direction of the quantization axis in space. In 
the standard quantum mechanical lore it is the direction 
on which spin projections are equal to *fi/2. 

In Dankel’s paper,’ the case of s=k (the z direction 
in the Cartesian frame) was investigated. In virtue of Ref. 
2 the mere change of Euler parametrization allows us to 
consider quite arbitrary s, eventually allowing for a 
smooth time dependence s=s( t) characteristic for the 
spin precession. 

According to Ref. 2 rotational diffusions characteriz- 
ing the spin-$ particle at rest involve the Cartesian system 
frame, whose orientation relative to the laboratory frame --- 
is given by the Euler angles (e,$,$) =g. They determine 
the quantization axis direction, 

R(&k=s= (sin qsin &OS Fsin &ZOS @. (1.3) 

All random fluctuations (e.g., rotations) are intrinsic to 
the system frame, and described in terms of another set of 
Euler angles (0,&q) =g referring to intrinsic rotation 
axes ee, ed, e+ in the system frame. 

The discussionlP2 of random rotations implementing 
spin-i is purely nonrelativistic and effectively confined to 
the system rest frame (inhomogeneous magnetic fields 
alter this picture2). 

We denote by K’ the inertial rest frame, in which the 
spin-4 rotational diffusion takes place. We admit, further- 
more, that K’ moves uniformly with the velocity u, 
1 u 1 < c relative to another inertial frame, and address the 
following relativistic problem. 
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3394 Piotr Garbaczewski: Rotational diffusions 

How does the K observer perceive the Markovian dif- 
fusion taking place in K’? Is it a stochastic d@usion pro- 
cess again? 

The nonrelativistic treatment of Ref. 2 suggests that 
we should first establish the transformation properties of 
the polarization axes when passing from one inertial 
frame to another. The issue has been solved in the context 
of the Bargmann-Michel-Telegdi equation.“6 Specifica- 
tion of the rest frame polarization is known to determine 
the components of the polarization four-vector in any 
inertial frame. Indeed, if s is the rest frame polarization, 
its K frame image [via the Lorentz transformation A-’ 
taking (c,O,O,O) into ( ~c,~QJ) with y= ( 1 -a’> -1’2, j? 
=u/c], is given by6 

cos 8 = S-E?, %s/lsl, sS=l+ 

ISI =( l+wsP~ 7/ [P&+2] j”: (1.7) 

and 8 is uniquely defined, given s and u. 
Once in R3, passing from s to S amounts to a rotation 

by an angle 8 about the axis sXP (the same as about 
SXS), 

(0,s) -+ (SOS), 

g@-d3=g@% (1.8) 

From now on, the directions s and S will be the fixed 
z-axis directions in the system frames located in K’ and 
K, respectively. 

so=ps= yps, ( 1.4) 

9 s=s+- l +y mm, 

while in reverse we have s=S-[‘y/(y+l)](pS)p. 
The normalized vector s, Is = 1 has the unnormal- 

ized spatial image in K, since ( sa ) 2 - S2 = - 1. Neverthe- 
less, S properly, identifies the polarization (quantization 
axis) direction as seen by another (e.g., K) inertial ob- 
server. 

Consider a unit vector n, initially along the z axis of 
the system frame in K’. Let us execute a rotation n+gn. 
In view of (2.4), we have here 

(PWB =&I , 1 (1.9) 

With a fixed A-’ in hand, we have given a stationary 
group of the four-velocity vector as a subgroup of Lor- 
entz transformations, which leave this vector in place 
(i.e., do not take this vector away from a given inertial 
frame). In K’ this stability group coincides with the 
group of rotations while its isomorphic image in K is 
given4 by 

where j?‘=g-‘p induces a rotation of azgle u’ about the 
axis nxfi’. Accordingly, a unit vector N, is recovered, 

fG~=giG~,=gge~n=gg~~g~l~, (1.10) 

where $ was initially along the z axis of the syste? frame 
lgcated in K (i.e., parallel to S). If we consider Ngl and 
NB2, then 

Y=Y(u)=A-‘9’A. (1.5) 

Unfortunately the action of 3 in K is a nontrivial trans- 
formation of four-vectors, which modifies the length of 
their spatial component (unlike 3 in K’). Let us con- 
sider the spatial part of the transformation (1.4) as a 
mapping in R3. The vectors S,s,u, are coplanar in R3 and 
the map is realized merely by the alteration of the longi- 
tudinal (along u) component of s, 

Gg, =g1g1e&= (glgle~) (&g2e*) -‘fig2 * (1.11) 

In the above, ge was introduced as the rotation by 8 about 
the spatial axis. Each element of the rotation group can 
be represented that way. Let gi refer to the rotation axis Gi 
and angle ai. By passing to pi=$i tan oi, we arrive at a 
particularly convenient representation’ of spatial rota- 
tions by 3 x 3 matrices R (cl) : 

with the composition rule 

s-S*s,,=P(kw/P2, 

S,,=s,,+P(~s)~/(r+l). (1.6) 

We are interested in the relative orientation of the polar- 
ization axes along s and S, respectively. This purely ro- 
tational output of the Lorentz transformation A-’ be- 
comes isolated through. 

If= w+P+p’xPv(l -P’P)t (1.13) 

allowing us to attribute to each rotation g in K’ a respec- 
tive spatial rotation g in K, 

gS*Sg= (gg,gf)g~‘S&&~‘iZ. (1.14) 

Notice that, together with S, we have automatically de- 
fined an orthogonal reference triad in K. The right screw 
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convention for the vector product allows us to introduce 
the analogs of the x and y axes as Sxv and (Sxv) xS, 
respectively. 

All rotations can be parametrized by Euler angles 
introduced in this frame. Respective parametrizations are 
not the same for Gg; ‘} and Cgij. However, the very 
concept of the invariant integration on S3 implies that a 
given go displacement on a group g-gg, does not affect 
the integration formulas, hence the respective Euler pa- 
rametrization. We have4 dg=d(ggo) and Jf(g)dg 
=Jf(ggo)dg. Consequently, the effective image of the 
group of rotations in K’ under the Lorentz transforma- 
tion A-’ is 

Y’3g+ 9 3g=g*g(y , 

which well fits with ( 1.11) : 

(1.15) 

h 1” 
m=gd(md -N,,=iK Ng2. (1.16) 

If now the g’s represent random rotations about the s 
polarized frame in K’, then g’s are their images as ran- 
dom rotations about the S polarized frame in K. 

Irrespective of whether we refer to K’ or K, the pre- 
vious discussion and arguments of Ref. 3, Sec. IV tell us 
that once we have fixed the polarization axis direction 
(i.e., the z axis of the orthonormal triad), then the in- 
duced Euler angle parametrization of S, allows us to de- 
termine the spin-i SU(2) harmonics as eigenfunctions of 
the Laplace-Beltrami operator on S3, 

s-g= (WZCI) -Q-‘(g) =if’k>, 
--- 

S -+,-= (W+) + &ff(iTl = $fGl, 

a2 

AI=A(g-g7, (1.17) 

As=@+cos 8 -+7 iti9 slnl 8 ($+$) 

cote a2 
-2sinw9 

so that solutions acquire the same functional form, albeit 
with respect to entirely different parametrizations, 
thereby showing up different polarization directions in 
R3. 

The change of the local S3 parametrization from --- 
(0,#,$) to (e&q) implies creplacement of the angular 
momentum vector L(g) by L(a, 

(1.18) 

where the vectors e indicate directions about which rota- 
tions by the respective angles are executed. Since the e’ s 
are defined in the system frame (with the z axis given 
either by s or S), the transformation from ee, e+ e+, to eg 
eq, ea is effected by the previously considered spatial ro- 
tation ga taking s into S. Accordingly, 

m = w.J k-a (1.19) 

i.e., the change of arguments is accompanied by the over- 
all rotation of L. We then have 

=ge 
I 

J-4~ 1 eiGl12 4Cge 
s 

L(g) 1 eAg> 1’ dg. 
(1.20) 

Consequently, four stationary states of rotational diffu- 
sion, ei(g)p 8= (W,$) in K’, can be mapped into four 
states of rotational diffusion again, while their polariza- 
tion s is taken over to S. 

This map we shall study in more detail in connection 
with solutions of the Dirac equation. 

II. ROTATIONAL DIFFUSIONS AS SEEN BY A 
RELATIVISTIC OBSERVER: CASE OF UNIFORM 
MOTION 

The description of a stochastic process is usually con- 
fined to a fixed time interval, which eventually might be 
extended to an arbitrary size. Let us choose [0, T’] 3 t’. A 
random variable G(t’) is represented by a rotational 
event g taking place at time t’, while x’ is the location of 
the origin of the rotating triad. Hence we deal with g at 
the space-time point (cI’,~‘). By virtue of our Eevious 
considerations, G( t’ ) induces a random variable G( r’ ) in 
K that refers to a rotation g taking place at the space-time 
point (c&x) in K, 

x=x’+u[ (~-l)((VX)/V2+yt’], 

, 
t=y tr+F . 

( 1 
(2.1) 

Since x’ is fixed and the time label t’ is only allowed to 
vary, we can rewrite (1.1) as ~=x’~+pt’, r=~(t’~ 
+t’). It tells us that the process is perceived in K as 
taking place in the time interval [&,r( t; + T’)] while the 
rotating triad origin is propagated uniformly with veloc- 
ity II from the spatial location x = r& to xr = & + ~LJT. 
Here & is associated with the origin of the rotating frame; 
hence it is a valid assumption to consider & = 0 only. 
This yields 
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x=ylJt’, t= yt’, TV [ 0,yT’ 1. (2.2) 

If u is the speed of the particle relative to the reference 
frame in which the time interval is measured, the notion 
of proper time comes from Ar=At/y. 

Apparently it gives rise to a proper time labeling of 
random variables, 

f(iZd =f(ihp[ -i(p”ct-px)/fil, (2.7) 

which is characteristic of plane wave solutions of the 
Dirac equation, except for the explicit g dependence of 
the coefficient f(a. 

K’+KjG(t’)+Z;(t’)=&/y)=&), 

under the assumption (2.2). 

(2.3) 

At this point it is quite instructive to invoke an ex- 
haustive discussion of Ref. 4 on the determination of the 
rest mass and spin of the particle in the context of rela- 
tivistic invariant wave equations. 

Consider a small surface on S3 with the area Ag cen- 
tered about the point (rotation) g. Let ei(g) be the ith 
state of rotational diffusion. Then 1 ei(g) 1’ Ag represents 
the probability with which rotations close to g are met 
along sample paths in the infinite sampling limit: then the 
frequency of an event approaches a probability of its oc- 
currence. 

Remark I: The notion of randomness automatically 
induces the notion of sampling: a repeatable processing 
confined to a fixed time interval. In particular, the notion 
of sample paths’ of a given stochastic process is of pro- 
found importance. In K’ it amounts to representing the 
random propagation on S3 by a collection of random 
trajectories: they are different realizations (samples) of a 
given random motion scenario in the time interval [0, T’], 
executed by the random variable G( t’). 

The same process, but seen from another inertial 
frame K, induces sample paths as rotational events, which 
are continuously distributed along the relativistic path. 
The K’ eigenvalue problem ( 1.17) refers to stationary 
solutions of the Schrijdinger equation on S3, 

Usually one deals with arbitrary plane wave solutions 
and attempts to extract their rest frame properties. We 
have proceeded in reverse, while having a detailed rest 
frame picture (of random phenomena) in hand. Let us 
view (2.7) as an arbitrary plane wave, i.e., allow t and x 
to take any value. We can always pass4 to the rest frame 
of the wave and recover a corresponding stationary plane 
wave, which is (2.5) in our case. Indeed, the Lorentz 
transformation A: ( yc, yu) + (c,O,O,O) implies 

f(aexp( -i&#/+5) -f’(g)exp( -imc2t’/fi), 

m&‘=p&& (2.8) 

for all x and t. Although the spatial image x’ of x under 
A is not manifestly present in (2.8), it is implicitly there, 
since in our framework spatial rotations g take place as 
rotations about this point. 

The transformation A affects only the longitudinal 
component xi of x’, 

i+idpj-‘(g,t) = (-+?/21)A$‘(g,t’), 
(2.4) 

xII=Yq+ut’), 
(2.9) 

t=y(t’+x~/u), x,,=udIvI, 

f’(g,t’) =f’(g)exp( -mc2t’/+i), 

where we set I=3#/8mc2 to deal with spin-f. The re- 
spective eigenvalue problem in K is given by the Schrii- 
dinger equation on Ss, but with a proper time r instead of 
t’, 

ifia,f(jZ~) = ( -+?/2I) Ati( 

f(Er) =f(aexp( -mc’T/fi). (2.5) 

Then (2.4) is related to the stochastic pro_cess with a 
random variable G(P) while (2.5) induces G(r). 

On the other hand, the manifestly covariant form 
pP X of mc’t’ emerges by setting p= ymv, p”= ymc 
=E/c, v=q/E, fl=p/E, i.e., 

mc2t’ = - px +pOct =pP xcl, (2.6) 

with x=x(x’,t’), t=t(x’,t’) given by (1.1). It means, 
however, that f’(g,t’) should take in K the form 

while on the other hand, pP ti=p, x0- I p I xl1 ; hence at 
each given time instant xc/c the plane wave effectively 
describes a transversal plane (wave front) labeled by xl1 . 
The formula (2.9) maps the xi plane in K’ into the xl1 
plane in K. The space-time location of the plane in K is 
uniquely defined by a corresponding time instant t’ of the 
rest frame evolution. By (2.9) the one-parameter family 
of wave fronts at rest (in K’) is perceived in K as the 
one-parameter family of traveling surface (planes) : 
att’=Owehavexi= yxi,to= yxi/v. 

Consider a plane xi at t,,. Each point of this transver- 
sal plane is uniquely mapped into the respective point of 
the image plane x;f at time T by following the uniform 
motion path: paths do not intersect and the moving sur- 
face traces their flow in configuration space. In the frame- 
work of rotational diffusions, the plane wave thus ac- 
counts for all alternative (purely classical) motion 
scenarios to be followed by the origin of the rotating 
frame in the sampling series. Consequently, they are 
much akin to the Hamilton waves of classical mechanics’ 
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and not at all to what we usually call traveling waves 
(Ref. 10 addresses the issue in more detail). 

Ill. DIRAC EQUATION IN STOCHASTIC MECHANICS: 
REVIVAL OF SOME OLD IDEAS 

The stochastic implementation1P2~*‘P’2 of the quantum 
spin-f system involves four distinct states of rotational 
diffusion, which reflect13 the existence of left and right 
representations of the SU(2) on Z1,2. In K’ we have 

(8$)‘%(g) =icos f exp i ($+$I -di/,i &g), 

(8d)“2ez(g) =isin i exp k (#-JI)-d&2(g), 

@A=; k 
(3.1) 

04 ;k, 3= -- 

(8d)“2e3k) =isin f exp i C-#-t+) -d!!$, ,,2(g), 

(8d)‘“e3(g) =icos t exp f (-#-$) -dd’_/t,,-,,,(g), 

(L)4= -5 k, 

where d”,, is the standard notation for SU( 2) harmonics. 
The respective stochastic processes are determined by 
computing the angular velocity w(g) induced by the ro- 
tation g and w(g) is a sum of the current w, and osmotic 
w, contributions behaving differently under time reversal. 
Namely t’ -+-t’ implies w,+w, while W”-P -0, 

As a consequence (compare, e.g., Sec. IV of Ref. 2), 
we arrive at 

1 4 @“-W”, w&B;, 

wr,-*Wt, o;+w;, 
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gation. Apparently, the discussion14 of how to describe 
effects of time reversal in stochastic mechanics as a for- 
ward propagation again may be adopted here. Usually the 
reverse process is viewed as the random propagation in 
the backward direction, which allows one to reproduce 
past (statistical) data of the process given the present, 
hence as a mere mathematical artifice. It appears that in 
the case of spin-f diffusions it is no longer so. The argu- 
ments of Ref. 14, the Introduction, tell us that for Mar- 
kovian diffusions we can define a forward process that is 
the exact time reversal of another forward process, and 
the diffusions underlying (3.1) provide us with explicit 
examples. 

Let us recallle3 that the SU( 2) labeling of eigenfunc- 
tions (3.1) is provided by the eigenvalues of the operators 
M3, N3, where M is the generator of left rotations while N 
is the (abnormal) generator of right rotations. We 
have4 M2 =N2= -#A, on the S3 manifold, and M, 
= - iha/@, N3 = - iha/&/. The eigenvalues of MJ cor- 
respond to expectation values (L)i of the angular mo- 
mentum (spin) arising due to the rotational diffusion. 

The ordering ( e1,e3,e2,e4) of the basis system refers to 
a ( +, -, +, - ) sequence of the M, eigenvalues and to 
( + , + , -, - ) for N,. Analogously, ( e2,e4,e1,e3) refers to 
(+,-,+,-) for M3 and (-,-,+,+> for N3. In view 
of this, formulas (2.8) and (3.3) give rise to two distinct 
evolution equations in K’ that encompass the time rever- 
sal in a manifest way. Namely, e$g)exp( -imc2t’/fi), j 
= 1,3 and ek(g)exp(im&‘/ti), k=2,4 form a set of inde- 
pendent solutions of the equation 

i&3,,f’(g,t’) = (2/6)mc’N;f’(g,t’), (3.4) 

while ek(g)exp( -imc2t’/fi), k=2,4 and 
Xexp(imc2t’/fi), j= 1,3 for 

ejk) 

which amounts to the map 

(3.2) 

i?iJ,J’(g,t’)= -(2/fi)mc2N;f’(g,t’). (3.5) 

The “positive energy” solutions of (3.4) and (3.5) con- 
stitute the orthonormal set in GY1,2. The prime refers to 
the rest frame Euler parametrization. 

Remark 3: The above observation, if combined with 
the previous Remark 2, lends weight to Barut’s conjec- 
ture15 that perhaps there is no real need to invoke the hole 
theory or the notion of backward propagation in time to 
describe antiparticles. 

Let us address the question of how the rest frame 
evolution (respectively, the eigenvalue problem for N3) 
equations (3.4) and (3.5) are seen in another Lorentz 
frame. 

elk) -4(g), e,(g) -e3(g), 

f’(g,t’)-*f’(g,-t’)=e(g)exp(mc2t’/+i). 
(3.3) 

Remark 2: Four states of rotational diffusion (3.1) 
were introduced in connection with the forward propa- 

In accordance with the standard rules of the gamei 
the Lorentz transformation A: K+K’ should imply a 
nonunitary map in the function space, replacing the K 
frame data by the K’ ones, 

f’ (x’,g) = ( T,d 1 CGI. (3.6) 
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We shall investigate the outcome of (3.6) in the Hilbert 
space spanned by e@j with the L’(S,) scalar product 
Jfi(af2(ad(g3 = (f,,fi) valid in K. Let us consider a 
transformation, 

A.:K+K’*f (3 = ( T,d 1 Ci3, (3.7) 

where T,,= T,,( M, N) is given by (this formula was first 
introduced to represent Lorentz transformations in Ref. 
13) 

T,i=cosh; [c+& (;)2N,W)], 

with 

(3.8) 

E 
, p”=;=(~+m2cZ)“2. (3.9) 

In the above, N and M are the previously defined differ- 
ential operators on S’s whose explicit form displays the --- 
local (f3,#,$) parametrization. 

By exploiting the formulas4 valid for an irreducible 
representation of the group of rotations in L’(S,), 

(Ml~iM2)~~,=ti[(s~m)(s*m+l)]“2dS,,,,, 
(3.10) 

(Nl~iN2)dS,,=~[(s~m)(s~m+l)]1’2d~,,,, 

and specializing them to spin-f, we obtain 

Nld$,= (+i/2)d!!:,,,, M2d$,= -i(+i/2)d!!i,2,, 
(3.11) 

Nld!,$2= (fi/2)dg? 1,2, N2d!,$2 = - i(W2)dLt 1,2. 

This entails an immediate evaluation of the action of T,, 
on any of the eis. Let us introduce the notation 

Remark 4: Let us emphasize that our analysis is car- 
ried out in a four-dimensional vector space, which is a 
natural module for the compact group SU ( 2 ) L x SU( 2) R. 
In order to establish a relativistic description (rather to 
exploit what is known16 about the relativistic covariance 
of the Dirac equation) the same space is required to act 
as a module for the noncompact group SL( 2,C). The 
latter action does not seem to arise that naturally, except 
for rather conspicous affinity (dimension four) with the 
standard bispinor transformations induced by the Lor- 
entz mapping. In fact, T,, (3.8)) in view of its irreducible 
action on the four-dimensional carrier space, is equivalent 
(matrix form!) to the well-known mappings: (3.13) and 
(3.14) should be compared with the formula (3.7) of 
Ref. 16. Our procedure should not be confused with the 
general SO(4) complexification problem. In fact, this 
point makes the original Dahl’s proposal13 indigestible: 
the SL( 2,C) covariance cannot be naively replaced by the 
SO(4) covariance. Although the SO(4) covariant 
(SU( 2) X SU( 2)/Z,) spin-f system is our starting point, 
we pass to a new SL( 2,C) covariant spin-i system built on 
the carrier (representation) space of the former. This 
task is accomplished by means of the nonunitary repre- 
sentation of SL( 2,C) for which finite-dimensional realiza- 
tions are known to exist. The role of M,N generators is 
different in the SL(2,C) case if compared with SO(4). 
One of them, instead of generating rotations, gives rise to 
Lorentz boosts. This feature is completely revealed by 
formulas (3.8)-( 3.14). 

Let wr= w’(p) be the rth column of the matrix S. We 
can rewrite (3.13) as follows: 

(T&J (iTI = kil W;(P)+&) =+:(p,E). (3.15) 

(eld$eZ~e4) = (h#29#39#4). 

Then we arrive at 

(3.12) 

The L2(S3) orthonormality relations imply here (we use 
the bispinor normalization identity in the second step) 

(TA#~> GI = ,.., (TA)dk= k.l s%, v (3.13) 

where one recognizes ST to be a transposed bispinor 
transformation matrix [see (3.7) in Ref. 161, 

(~:(E~P),~:,(E,rP))=W~*(E,rP)W’(E~p) =$ s,fl , 

(3.16) 

S=exp -5; 
( ) 

y ‘=FCXi 

(3.14) 
e,=+l, r=1,2, E,=-1, r=3,4, 

$‘(x’>=~‘(Ax)=S(A)~(x)=S(A)~(A-Ix’). 

Accordingly, the 4~ 4 matrix S comes out by evaluating 
matrix elements of the operator Th in the {+Ja} rota- 
tional basis. 

and allow us to introduce a new orthonormal basis sys- 
tem in Xl,2 encompassing the effects of the Lorentz 
transformation K -+ K’, 
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mc2 “2 
e;(i3=4;(d -jj- , e;(i3=&(d --jj- , ( ) mc2 “2 

( ) 

mc2 “2 
ei(~=~S(--Pi9 -y- , ( 1 

mc2 1’2 
eZl=4i(-Pd y , 

( 1 

(3.17) 

where (e;,ei)) = S&eJ(ae,! (g2 = Sii is a positive defi- 
nite sesquilinear form. 

More explicitly, 

X [PP2Gl +p+di?ll , I 

e;Gl = ( F)“2[e3(p7 +E+cmci 

X [p-e2(i3-p8c4(i31 , 
I 

(3.18) 

X 1 -pfi~Gl -p+e3Gll , 
I 

X [ --p-9 (i3 +~~3Gll , I 

P = (px,pP~J9 P k =pX f ipv , 

where ei(gT have the form (3.1), except for the replace- --- 
ment of &P,lcI by &W. 

It was demonstrated for the first time in Ref. 13 that 
the functions 

fj(~x)=(T*~j)eXP(--~P~XCl/fi), 

solve the evolution equation 

(3.19) 

ifid&( 
1 
2mc2N3+$N,[M(-itiv)] fj(~X). 

I 
(3.20) 

Its matrix form in the {$j(a} basis is the familiar Dirac 
equation 
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[mc2/3+ca( -ifiV>]$=ifit3& (3.21) 

The image of (3.5) under A is obtained through replacing 
m by -m in the above. 

The equation (3.21) is known to be Lorentz invari- 
ant. Then what about (3.20)? By setting 

L”=I, L’= -NIMi, i= 1,2,3, (3.22) 

(3.20) can be cast in the manifestly covariant form 

i mc2N3fi= i&V’ aJj . (3.23) 

The standardI Lorentz covariance arguments require 
that (3.6) be a map of the K frame data into the K’ frame 
ones. Accordingly, 

N3= T,,N;Ti’, (3.24) 

reflects merely the change of the Euler parameters from --- 
&I$,$ to &+,lc, as a result of the Lorentz transformation, 
while there holds 

T,,LPT;‘a; ay;(g,xy =L”ayj(g,d), 

adv 
a;=-. (3.25) 

The K’ frame version of (3.20), 

1 mc2N;fi’ (g,x’ ) = i+i.L” ay; (g,x’ ), (3.26) 

reduces to (3.4) in the case of plane wave solutions. 
As a consequence of (3.6)) we realize that stationary 

plane wave solutions Bj(g)eXp( -mc2t’/fi) of (3.4) are 
represented in terms of the K frame data by the solutions 
(3.17) of the evolution equation (3.20). A serious prob- 
lem comes here from the covariant normalization state- 
ment16 

W’(p>w’(p) =&tE,. (3.27) 

Before, the plane waves were found to refer to four dis- 
tinct stochastic rotational processes in K’. Because of the 
improper (negative) normalization, the r=3 and 4 im- 
ages of random motions in K’ do not admit any reason- 
able probabilistic meaning in K, hence they cannot be 
perceived as stochastic processes in K. It is the normal- 
ization identity (3.15) that allows us to introduce an or- 
thonormal basis system (3.16) with prospects for a cor- 
rect probabilistic content (due to a positive 
normalization). Apparently (3.16) arises only if we con- 
sider a complete set of “positive energy” solutions of both 
(3.4) and (3.5). Both these evolution equations are in- 
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dispensable for a covariant transformation of the ortho- 
normal basis given in K’ into an orthonormal basis in K. 
In fact, the formulas (3.16) identify these functions in 
x1/2, which provide us with the K frame image (via 
Lorentz transformation) of four distinct stochastic pro- 
cesses in K’. This map allows us to perceive certain K’ 
frame diffusion as genuine diffusion processes in the iner- 
tial frame K. 

Since all ei(a solve the eigenvalue problem A#(3 
=g(g7) the basis functions (3.16) solve it as well. A 
complete stochastic decoding of ( 3.16) amounts to a rep- 
etition of Dankel’s strategy’ once the e’s are cast in the 
canonical ( Madelung) form e’ = exp (R + is). Now 
1 e’i(a 1 2 represents the probability distribution of the ith 
stationary diffusion as perceived in K. The respective ran- 
dom variable is labeled by the proper time. 

We may now formulate a definite answer to the ques- 
tion raised in the Introduction. What is perceived in K as 
a stochastic rotational diffusion is no longer a diffusion 
associated with the forward time development exclu- 
sively, i.e., ei(g)exp( -imc%‘/fi) for all i= 1,2,3,4. The 
answer ispositive if we go over to the rest frame diffusions 
associated with the evolutions ej(g)exp( -imc2t’/+i) for 
j=1,3 and ek(g)exp(imc2t’/fi) for k=2,4. The backward 
evolution for k=2,4 can be represented as a forward ev- 
olution again by invoking the arguments of Ref. 14, but is 
irreducibly different from the one associated with 
ek(g)exp( -imc2t’/fi). 

of Dirac particles in the non-Grassmann vein.‘2718P’9 It 
especially pertains to random walk representations of the 
Dirac propagator,2G22 where one generally assumes that 
at each step of the random walk executed by the spinning 
particle in Minkowski space, its quantization axis is ro- 
tated by a certain angle. Compare, e.g., our discussion of 
the Introduction, where momentum change induces a 
well-defined rotation of the polarization. 

References to numerous relativization attempts in the 
context of Nelson’s stochastic mechanics can be found in 
the recent papers;23’24 also see Refs. 25 and 26. A problem 
worth a deeper exploration in the presented probabilistic 
framework is the physical meaning of different notions of 
position invented for the Dirac particle, and also of 
Zitterbewegung, which from our perspective is definitely 
not the intrinsic mechanism27728 implementing the elec- 
tron spin. On the other hand, the recent magnetic top 
model 29 albeit devoid of any explicit randomness, shows , 
up all basic features discussed in the present paper. 
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Our analysis allows one to associate diffusions on S3 
with plane wave solutions of the Dirac equation, which is 
possible due to the implicit validity of the proper time 
Schriidinger equation on S3. We then deal with rotational 
fluctuations that are intrinsic to a particle in uniform 
motion. There is no essential difficulty in extending the 
arguments to cases covered by the semiclassical regime 
for solutions of the Dirac equation in the presence of 
external electromagnetic fields (inhomogeneities in- 
eluded) . The proper time evolution governed by the 
Bargmann-Michel-Telegdi equation’ amounts to a 
purely rotational diffusion process, which is effected 
along a space-time trajectory of the particle. The motions 
show the same feature: randomness is exclusively intrin- 
sic and does not affect the space-time path followed by 
the origin of the rotating frame (on the contrary, it is 
rather that the spin precession is strongly path depen- 
dent). 

Note: Since the submission of the present paper some 
new developments took place in the domain of stochastic 
mechanics. Let us mention that the extension of this 
framework to the encompassing one30-33 of Markov- 
Bernstein processes was found to remove ambiguities as- 
sociated with Nelson’s acceleration formulas. Since 
Schriidinger-Bernstein processes are extremely close to 
classical diffusions (generalization of the heat transport is 
involved), a natural open question in the framework of 
rotational diffusions is to give the alternative to Nelson’s 
(Bernstein) diffusion theory. The work is in progress,34 
and we expect it to lead toward the statistical description 
of rotational random motion (asymmetric tops) devel- 
oped by the Dublin School. 

The problem we have left aside at the moment is the 
probabilistic analysis of general wave packet solutions of 
the Dirac equation, where a nontrivial input of the ran- 
dom process affecting a particle velocity (extrinsic ran- 
domness) is expected to show up. 

Since random paths of stochastic mechanics are quite 
akin to Feynman paths,‘4*‘7 it should, in principle, be 
possible to establish a unifying framework for an increas- 
ing number of path integral approaches to the description 
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