Fermion excitations of the nonlinear Schrédinger field in the attractive case
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The recent inverse scattering method analysis by L. Martinez Alonso [J. Math. Phys. 25, 1935
(1984)] is extended to demonstrate that the Bose quantized (attractive) nonlinear Schrédinger
field in 1 + 1 dimensions, admits fermion excitations in its (quantum soliton) spectrum.

I. QUANTUM SOLITON EXCITATIONS
The nonlinear Schrodinger field in 1 + 1 dimensions

i) = — Y + 2cP*PY (1)
is quantized according to Bose statistics
[#(x), ¥* ()] =6(x—)),

2)
[¥(x), ()] _=0=[¢*x), ¥*(»]_,

since the choice of Fermi statistics would cancel the interac-
tion term. Hence, a priori there is no room for fermions in
this model, except for the specialized c— oo regime in the
repulsive (¢ > 0) case. Then, indeed, the Bose model exhibits
a metamorphosis into the free Fermi model, see, €.g., Ref. 1,
which is accompanied by the collapse of the (Bose) Fock
space # into its proper subspace (of Fermi states) #'¢
C x5,

The state space structure in the attractive (¢ <0) case is
much more complicated” and does not reveal any apparent
fermion (Fermi states of Bose systems®) content. The in-
verse scattering method involves here a passage from the
Fock representation of the canonical commutation relations
{4, ¥*, |0)} to a countable family of independent Bose fields
{#,, 8%, |0), n>1} such that |0) is a common (cyclic vacu-
um) vector for both ¢, ¥* and { ¢,,, 6%, n>1}, while

[4.(P), 8% ()] =6,.6(p—q),
(3)
[¢.(P)s b ()] =0,
so that the extended Galilei group generators acquire the
following form:*

1 + oo n + o0
M=t Cawri=3 2 der s o,
2 — @ n>1 2 -

L]

H=J+wdx<¢:¢x+c¢*2¢2>

4

) 2 2
o [p_._—c-—(n3 _ n)] $2(0) 8.(P),
3} n 12

-3

n>1 v —

)
+ o0 + o
p=j ey (—ig)=3 |  doper(p) 4.(p),

nplv — o
1 + o
K= —7f dx xy*v
n +

i ° 3
P - d) * —_— .
> ip % (p) % é.(p)

n>»l 2 — o0
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The eigenvectors of H due to [H, N]_=0, N

=f*2 dx y*(x)¢(x) in each n-particle sector have a
standard (Bethe ansatz) form

Nevertheless, as follows from (4) instead of the

{IT}_, ¢¥#(x,)]0)} basis, another one can be used to gener-
ate the underlying state space. Namely

[pisny; Py, 1) = $s, (P1)9% (p,)]0), (5)
n;>1, Vi
Since we have

[¢x(P) 4, (P), A ]_=0, ¥Ynk VYp,

+ o (6)
= Tdgsro so),

each operator /", commutes with the generators M, K, P,
and H of (4). Hence the single interacting Galilean (Bose)
field y*, 9 gives rise to a countable set of independent (free)
Galilean bosons ¢¥ and ¢, with H, = fdp w, ( p) ¢2(p)
Xé,(p) and , ( p) =p*/n — (c*/12)(n* — n).

Il. QUANTUM SOLITONS AS FERMIONS

Despite the fact that in the above we deal with bosons
only, the diagonal (with respect to #*, ¢, ) structure of gen-
erators (4) of the extended Galilei group, together with (6),
suggests the existence of state space vectors which respect
the Pauli principle. After accounting for the analysis of Refs.
1, 3, and 4 it would indicate that the nonlinear Schrédinger
field has Fermi states, and consequently gives rise to fermion
excitations (paralleling the boson ones).

For this purpose, let us consider the following sequence
{11,,, n»>1} of projection operators in the state space of our
Bose system (compare, e.g., in this connection the general
construction of Ref. 5):

-] 1 n n
0= — 3 |dg- Z_lqus [o(a, g5 a, 4,0 ]

<o s a, =1

X@z (g1)-9% ( qs):exp[— D fdp #% (p) ¢5(P)]:
B=1

X¢a,( ql)"'¢a, (qs)y (7)

where the (alternating) function o(a, ¢y;...; @, g,) is de-
fined as follows:
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H Pix>

1< j<k<s

a(al ql;"'; as qs) =

(8)
Pk =6ajak [6( q; —qk) —e( Gk _qj)]

+ (1 _6ajak)( _ l)l+e( qj_qk)’
provided ©( g — p) = 1, ¢>p, O otherwise.

Since 0 = 0, 0 = + 1 depending on permutations of
pairs (aq) of indices, and if coinciding pairs appear in the
sequence, then ¢ = 0, and the analysis of Ref. 5 proves that
V n, I1, is a projection indeed. Moreover, if to denote 77
the Hilbert space of the nonlinear Schrodinger system (3)
and (4), then on its proper subspace #§ = I, 7, the
following fermion field operators (Fock representation of
the CAR algebra) do automatically exist®:

) 1/2 n n
bppy= § U2 3 fag 5 [ da,

s= a;=1
Xo(a, q;..; &5 4,)

Xo(Bp; @y 5.5 @ 4,) %, (4,)9%, (4;)
X:exp| — i Jdr¢;(r) ¢r(r)]:

y=1
X¢B(p) ¢a, ( ql)'"¢a, ( qs)! (9)

where 1<8<n and

[ba(P)9b§( q)]+ =5aﬂ a(p—q) nn’

(10)
[ba(P);bg(Q)]+=0, 1<a9 B(n’
while b, (p)[0) =0,b%(p)|0) =¢2(p)|0), YV a,p.

One should realize that each projection II, selects in
g, its proper subspace #°g, on which the respective Bose
variables (i.e., ¢2, 4., 1<a<n) respect the Pauli principle.
It means that the operator

Po= Y N (Na—1) (11)

a=1

has the eigenvalue O on the whole of #7%. Because of (6),
these Pauli-principle-saving subspaces, are the Galilei invar-
iant sectors in #°g, thus giving rise to the Galilean fermion
excitations in X’y .

Moreover, projections { I1,,, n> 1} form a decreasing se-
quence

Hn l-In+1=rln-+-1' (12)
But then, according to the standard knowledge: (1) there
exists a strong limit II = s-lim II,,, which is a projection on
Hg, (2) the property I, IT = IT holds true for all n, and
(3) for any vector | /)€y for which lim I1,, | /) #0, upon

setting |¢) =lmIl, |f) we Thave |$)#0 and
I, |¥)=|¢¥), Vn On the respective subspace
Il 7%y = 7 of 7y the operator
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P=3 N (Nag—1)
a=1
has the eigenvalue 0, and the generalization of the formula
(9) to n— oo is possible. Then, however, we arrive at the
conclusion that the Bose quantized nonlinear Schrédinger
field with attractive coupling, in addition to bearing the infi-
nite set of Galilean bosons, gives rise as well to the infinite set
of Galilean fermions

+ oo
nmMi=3 2 [ " aporcm b, p,

n>1

+ o p2 c2 3

n»lJ —

Xbr(p) b, (p),

+ o

NPO=3 [ dppb2(p)b,(p),

a3l J —

in (*t= a
OIKII= -3 — dpb:‘(p)gb,.(p), (13)

n>l — @

which live in the Hilbert space of our Bose system.

Since, a priori, each field ¢, ( p) can be given as a func-
tion of the primary interacting fields ¥*(x), ¥(x), it hap-
pens so in the case of fermions b *( p), b, ( p). However we
cannot present the corresponding formulas. As well, we do
not know how the primary fields ¢(x), ¥*(x) act on the
Pauli-principle-saving domain I1 %5 = 5. Nevertheless,
since

|ty g15es @ G5 ) g
=b3 (q,)b%(g0)

= a(al qi5--5 Ay qs) ¢:, ( ql)'"¢:, ( qslo)’ (14)

the analysis of Ref. 2 apparently can be applied to determine
the scalar products

_(xp---’ xn Ial ql;"'; as q: )F’

Jn!
n=n;+ - +ng,
[X150es X, ) = 0% (x1)¥0*(x,,) |0).
(15)

It is, however, quite transparent that unlike our previous
investigations>* the property [ H, IT1] _ = 0 does not suffice
to convert the Bose Hamiltonian H = H(y*, ¥) of (4) into
the (Fermi) Hamiltonian A = I1 H II, where the primary
bosons ¥*, ¥ are simply replaced by the respective fermions.
In the present case, the fermion content of the model be-
comes manifest on another level of the theory. Albeit, the
basic (boson—fermion unduality) mechanism
Hy=PHy P +(1—P)Hy(1—P),PHy P=Hy isstill
the same as previously, see Refs. 1, 3, and 4. A more detailed
study of the issue in connection with the boson and fermion
Fock space unification can be found in Refs. 6 and 7.
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