Fermi states of Bose systems in three space dimensions
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Recently an exact spectral solution was constructed by Sudarshan and Tata for the (¥@ ) Fermi
version of the Lee model. We demonstrate that it provides a partial solution for the related pure
Bose spectral problems. Moreover, the (NG ) Bose (Bolsterli-Nelson) version of the Lee model is
shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions
in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the
underlying Bose systems in three space dimensions are explicitly identified.

Let us study a specialized version of the Lee model'™ as
considered by Sudarshan and Tata.® The model consists of
two fermions &, O interacting with a boson ¥. If compared
with the original version of the Lie field theory model, the
momentum dependence of ¥ and N is lost due to their (as-
sumed) infinite mass, then ¥ and N play the role of sources,
while 6 is supposed to be massless. We have

H=mV*V + f d *k-k-a*(k Ja(k )

+ f Kk f )V *Nalk) +a*kN*V] (1)

with the commutation rules of Ref. 5
[NN*], =[VV*]_=1,
lak )a*(p)]. =&k —1),
[NN]1,. =[VV]_=lak)a(p)]., =0, (2)
[Nalk)], = [Na*k)l,.=[NV]_=I[NV*]_
= [alk),V]_=[ak),V*]_=0.

Let us observe that irrespective of whether quantum objects
¥, N, O represent bosons or fermions, and irrespective of
whether they mutually commute or anticommute, the fol-
lowing two operators are the constants of motion:

N, =N, + Ny,

(3)
N2=N9—NN,
where
N,=V*Y, Ny=N?*N, N9=fd3ka*(k)a(k),
(4)

and upon assuming that N,,N,,,Ng commute with any func-
tion of operators belonging to pairs of species
(N,B),(V,0),(V,N), respectively, we arrive at

(NH1_ = [ d*f)(VHIV.V*]_ Nalk)
+akIN VAV
+ V*[N*N1_ Nak)
+a*k)N*[NN*|_V}, (Sa)
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[NLH]_ = f a% f d3pf(P)V*N [a*(k )a( p)] _alk)
+a*(k)lalk ha*(p)] - N*V )
= fd3kf(k){ V*[N*N]_ Nalk)

+a*kIN*[NN*_V}. (5b)
If now to admit that each of the species obeys some canonical

(commutation or anticommutation) rules, then the conserva-
tion laws

(N,H]_ =0=[N,H]_ (6)

immediately follow.

The standard ansatz about the form of eigenfunctions
for H is " that they should be superpositions of the bare
states, i.e., eigenstates of

Hy=mV*V + f dk-ka*k)alk =>H = Hy + H,,, .

Since we wish to solve a common (¥,,N,,H ) eigenvalue prob-
lem, it is natural to look for states |a,b ) obeying

Nyab)=alab), N,ab)=blab),

- 1 3
la.b) —a=§'+n (mintI )12 f 4%, -

b=1I—n

X f d%k, ¢k, )
X P ¥mas(k,) wa*{k N *"(0) , )

which in the Fermi case (1) are restricted to summations over
n = 0,1 while (N, ¥V boson, @ fermion) or (N, ¥,0 bosons) al-
low n=0,1,2,.... In case of © fermionic, the coeflicient
function ¢ (k,,...,k,) is antisymmetric with respect to the mo-
mentum variables, while in case of O bosonic, is symmetric.
We demand |a,b ) to be an eigenfunction of H, to be denoted
|/1 ) = M'aaab )’

HIAY=AIA), A=Ay - (8)

To distinguish between the pure Bose version of (1) and the
(NO )Fermi case of (1) we shall use the notation Hy, |4 ) and
H, |4 ), respectively. In the pure Bose case by applying H 3,
to |4 )y, as given by (7) we arrive at
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Hgg I/lsa,b )B

a=m+n
b=1—n

[m.—l f d%k, f d%k,_, [ f Ak (k) Tk yyonrky )] m 4 L1 — Loy 1 s

+mEF D0+ 1) f" %y f A%k, 1 flR) S gy 1)im — 10+ Ly 1) )

1

|m,nky,.. k) g = T

V*7b *(ky) b *(k, )N £"|0) .

In the case of (NO ) fermionic, we must have n = 0,1, which implies that |4,a,b ) is asuperposition of the two types of bare states
only:  m=a—1,n=1Il=5b+1)and |m =a,n =0,/ =b) at a fixed choice of a,b. Consequently,

Hg|Aab) = fd’kf(k)V‘Na(k ) J d3k, - f dky,,, ¢V e ke — LKy, e Ky )

+ f d >k f(k)a*(k N *V f d’k, - f d?ky ¢ 1“0 Ky, ey ) |@,0,kr e Ky )

—(—1PVaB ¥ T) f d%k, - f Aok, [ k)6~ Whkeyonksy)] [0,0K s, k)

+ ( - l)b:t ‘\}a(b + l) stkl b J‘ dskb+ 1 f(kl) ¢ (2.0.6) (k2""!kb+ 1 )la - l,l,kl,...,kb+ 1 ) .

(10)

The particular structure of the interaction term H;,, of H as given by (1) has intriguing consequences in the Bose case. Namely,
|4,a,b ) for all b but with the value of a restricted not to exceed 1: a< 1, can always be composed as a superposition of vectors
taken from pairwise orthogonal Hilbert space sectors, each sector being spanned by vectors of the (shorthand) form

la—kkb+k), la—k+1k—1b+k—1), k<a<l. (11)
In particular let us consider the following contribution to |4,a,b )g:
l'{ra’b )(1(3»: = J‘ d3k’ - J dsk""’ 1 ¢g— bhb+ l)(kl""’kb-+. 1 )’|a - 19l9kl’---9kb+ 1 )B
+ fdskl A J‘ d3kb ¢ g’o'b)(kl,...,kb)-|a,0,kl,...,kb >B . (12)
The action of H 2, on (12) reads as follows:
HE005)9 =T8T [ a%%, - [ @[ [aksie)- 854 Wy )| 16,01y
+Vab + 1) f d%k; -~ f A%k, , 1 flke) 5% (Kpeoriky o 1 Hla — 11Ky, ok, 1) - (13)

Any domain spanned by vectors of the form (11)is in fact left
invariant by H 2, .

Remark: Let us observe that if to abandon the restric-
tiona< 1, then the action of H B, on |4,4,b )Y would produce
an additional additive term in (13) following from the appli-
cation of (@*N*V) to |a — 1,1,k,,....k, , ) . The resulting
|a — 2,2,k,,....k, . , ) contribution can be eliminated from
further discussion, but the price paid is the modification of
the pure Bose Hamiltonian to the form PHE, P with
P= wexp(— NE Ng): + N3:exp(— N3 Ng):Ng.

It corresponds to the replacement in H B, of the pure
Bose variable Ny by the spin-} Pauli operator variable
0~ =PNg P, (c" = PN} P). Hence, we in fact pass then
from the pure Bose model to the (VO ) Bose, N Fermi version
of the Lee model. It is worth emphasizing that though the
whole subsequent analysis is made for the pure Bose model
with the restriction a<1 on state vectors, all the arguments
apply without any change (up to minor modifications in
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—
H,) to the above-mentioned (¥©) Bose N Fermi system,

where a and b are completely arbitrary. It means that the
spectral solution for the (NG ) Fermi case produces this as
well for the (V) Fermi case. It is also instructive to mention
that the interaction of two static fermions with the scalar
boson was studied in Ref. 4 in the N,=N*N + V*V
=a =1 state (sub) space. The subsequent analysis estab-
lishes the © Fermi partner for this case.

On the basis of Ref. S we know how to establish the
eigenvalues and eigenvectors (i.e., ¢ @~ 110+ 1), g @08)) for
the (NO ) Fermi problem. At this point we are guided by our
earlier studies of the (1 + 1)-dimensional models,® and the
joint Bose-Fermi spectral problems arising there. For the
exactly soluble Fermi model of Ref. 5 we wish to establish its
pure Bose partner, such as the joint spectral problem makes
sense.

Let us make use of Refs. 7-9, where relations between
linear spaces of symmetric and antisymmetric functions
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were investigated. In application to our problem, the formal
realization of the isomorphism, invented in Ref. 7 by means
of the Friedrichs-Klauder antisymmetric symbol, is best
suited. The symbol reads '

ofkyy.ky) = + 1,0 (14)

depending on even ( + ) or odd { — ) permutations of mo-
menta, the value O occurring if any two momenta coincide.
Then

o’=0, ol—0%=0, (15)
and any symmetric functionf, (k,,...,k, ) allows’ for a decom-
position

f;(klﬁ'"’kn) = [0 21.; + {1 - z)f; }(kh"-ykn)

1 2
s=(f + Skpeniky) (16)
with the property that

of,=of = f, (17)

is an antisymmetric function of #7-momentum variables. The
formula (17) establishes an isomorphism between symmetric

1
functions f, (they respect the Pauli exclusion principle since

1
[, vanishes if any two momenta coincide), and their antisym-

metric partners f,.

The above isomorphism has been exploited in Ref. 8 to
construct an embedding of the CAR algebra representation
with  generators  [a(p).a*(g)], =8(p—4q), [alk),
a( p)],. = Oin the representation of the CCR algebra gener-
ated by [b(p)b*g)l_=8%p—a), [b(k)b(p)]_ =0,
provided the representation spaces are constructed about the
same (generating in the GNS construction sense) Hilbert
space vector. We refer to Ref. 8 for the explicit “bosoniza-
tion” formulas valid in the Fock case (see also Ref. 9). For
our purposes the following identity resulting from the CAR-

= CAR{CCR) construction of Ref. 8 is necessary:

K 1peeeskin Yo = (1/4/nl)a*(ky) - a*(k,)|0)
= olkyeess K, J(1/Vn1)b *(ky) - b *(K,)|0)
= ok yyees K} Ky )p - {18)
Since in (16) we deal with an object N *
N*'k],u.,kn >F = ( - 1)”‘ l,kl,..., kII)F
= ((— 1y'/nl)a*(k,) - a*(k, )N *[0)
(19)
an appropriate realization for N* = N ¥ is necessary. We
define
NE=(— Ip I N exp(— N3 Na),  (20)

which has all the necessary properties, i.e., N #? = 0 [notice
that :exp( — N# Ny} :is a projection on the vacuum state for
the boson [Ng,N§]_ =1}, and anticommutes with the
a*(k y'sin (19). Instead of { — 1) ¢°*«*)) one can obviously
use exp i §d *k a*(k Ja(k ).

A nice property of the realization (20) is that a Bose
representation for (19) is immediate:
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(LK Ky Ve = (1/ )oKy, K, ) *(K ) - b *(K,) - N3 |O)
- O‘{kl,...,kn” l,kl, veey k” )B . (21)

The notion of Fermi states of the Bose system acquires thus a
meaning in three space dimensions.

A straightforward application of (18) and (21), if com-
bined with (15)-{17), allows us to rewrite formula (16) as fol-
lows:

Houlbab) =N+ 1) [ @k [ a%,{(-1p
X [ fdskf(k ygple-vIib+hg k. ..., k,,)]
Xa(kyyeen, kb)] |@,0,k,,.... ks )

+alb+1) Jd:’k1 ---fa”k”1

X {(— 1P+ fiky) ¢ “O k..., kyi1)
Xotkyyky 1)} la — Lk, 1 ) - (22)

Since in {13) and (22) we deal with superpositions of the Bose
(bare} basis vectors, the respective expansion coefficients
(with respect to this basis system) can be compared.

The formula (13} implies

B (a,0,ky, -, ks, !Hgn M’a’b )(1(3))
— @B ¥ f Aok fk)SE= 0 Wiy k) (23)

and
sla— L1k, .k, |HE, |Aa,b)Y
=alb + 1)(sym)[ fk,) ¢ §°" kpsnkp 1)) s (24)

where

1
(sym)‘—"Sb+1 =mzpb+l

is a symbol of symmetrization with respect to all momentum
variables, 2, P stands for a sum over all permutations.
Quite analogously, from (22} we arrive at

8$a,0,k,..., ky |Hype |A,a,0 )

= alb + 1){ — l)bfd3kf(k)¢ (a—LLb+1)
KKK 1yeresky JOUK ek ) 25)
and
p{a—LLky...ky ) Hp 4,00 )
=va(b+ 1)(—- 1)**!
X (sym)[ f(ky) ¢ “O*Nkey,...ikp 4 1)
Xa(kl""’kb+ 1 )] . (26)
In addition to (sym), let us introduce the antisymmetrization

operation

(asym) =y, =——— 3 (= 1fPy ., -

b+ 1 ¥
Both S and 4 are examples of the Young’s idempotent
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operators Y, , allowing for a decomposition of any n-point
function with respect to different types of symmetry

= 2 Yn f n -
Y
We shall exploit a property (Ref. 7, Theorem 2.7), which
connects Young’s operators Y, with their duals Y¢:
Y,0,=0,Y%. 27)

In particular S¢=4,, A? =S,, hence S,0, =0, 4,. It
means that (26) acquires the form of

\/a_(b“+_)(—— 1P+ otk ks 1)
ym)[ fky) ¢ Nka...rkey 4 1)]}
= Ja‘(ﬁl‘)( — 1P+ 102k )
X {(sym)[ f(key) ¢ O Nheys..oikp 1)11 5 (28)
where

¢ SO gy 4 1) = Olhgyerky 1) B @00 Koy 1)

(29)
Let us now make an identification,
¢ Nk 1yenk) = 0K yyeniky) @ (K 0ky) (30)

relating the pure Bose and the {NG } Fermi expansion coeffi-
cients in the above. By virute of (18) and (21) it implies that
the Bose vectors {12) upon (30) satisfy

[4,a,6)9 = [A,a — 1,1,b+ 1)y + |4,8,0,b )

=Aa—1LLb+1) +|4,a0b)=|4ab),
(31)

i.e., coincide with the respective Fermi vectors in the Fock
space. Furthermore, the pure Bose expression (23) reads

valb + 1) f dkflk)p8 "t Nkk,,. k,)

=MJdakf(k)¢(““ LLb+1)
X (kK yyeoisky ) all, K 50k
=W+_l}fd3kf(k)¢<a— Lb+1)

X yyenrky) O gyennsky) 5

which by a factor ( — 1)° differs from the corresponding (NG )
Fermi expression { — 1)°(23) = (25).

As a result of (30) and (28) the following formula holds
true for the (VO ) Fermi model expression (26):

(= 17+ alb + 1)(sym){ f(k,)
X(Kseeesky 4y JolK 1y Ky 1 1))
=m‘ - 1)b+l¢72(k1w-’kb+1)
X {(sym)[ f(ky) ¢ 5% ke ks, 1)1} (33)

which upon dropping out a factor { — 1)°*+! is exactly the

o*F contribution to the decomposition formula

[0*F+ (1 — 0*F] valid for the pure Bose expression

{25) = F. By virtue of (15) the decomposition is orthogonal.
Since, because of (31) we have

HEAab)=HjAab);

(32)

¢ (@,0,6)

(34)
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the relevant information about the relationships between the
Bose and Fermi spectral problems comes from the interac-
tion terms.

By virtue of (31) we arrive at
HE |4,ab)Q
=HE |A,ab)

—(= 1)bfd3kf(k)V*Na(k)|A,a —1,1,6+1)

+(— 1)”+‘fd-‘*kf(k Ja*(kc)

XN*V|4,a0b)+(—1°+'|R), (35)
where
R) = [@%, - [a%,., VaB+T]

X [1 = P{kyyenky 4 1)]

X {(sym) [ £(Ky) $ £ ks, )]}

X |4,8,0,k,,....kp 1 Vg - {(36)

Let us however, recall that because of (30), ¢y = 0 ¢ and
that

1
) =—27% P R
(sym) (b-«}-l)!; b41
so that in (36) we encounter products of the form
[1—Plkyyks ()] 01k, 5 iks) (37)

with k,’s taken from the set (k,,...,k, . ,). But (37) either iden-
tically vanishes, or gives a nonzero contribution to {36) on
the set of measure zero only. Hence, [R )} = 0.

If we introduce the notation

HY = [k fR)V N (k) + 2RIV ],
38)
HE =fdﬂkf(k)[V*Na(k)+a*(k)N*V] ,

then (35) appears as an example of a few more relations
between Bose and Fermi Hamiltonians

H® |Aab)=(—1"HE |Aab),
(39)
H® |Aab)=(—1YHF |lab), a<l.
After accounting for the contribution of Hy, the complete
Hamiltonians of the form H, 4+ H,, become related as fol-
lows: N <1, N, = b,
b even,

(Hs +H® ) Aab)=HE+H" )4ab),

(40)
(HE+H? )|Aab)=H5+HT )Aab),
b odd,
HF+H" YAab)=H;FH")dab),

(41)

(HE + H® )|A,ab)=(HEFHE )|Aab).
In this number the pure Bose problem Hj of Refs. 3 and 4 is
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identified with H3 + H® and the (N®) Fermi problem of
Ref. Swith Hf + HY, .

Relations (40) and (41) prove that for the family of four
(VO ) Fermi models, there is a corresponding family of pure
Bose models, with the property that in the state space of the
Bose system there exists a projection /7 such that the eigen-
value problem for 4, can be solved in the range of /7, and

[hgdT]_ =0, hp=IThy 11,

hy =1IThg IT + (1 —H)hg(1 —1IT). 42)
Here Ay stands for the Bose, while &, stands for the respec-
tive Fermi Hamiltonian. Complementary studies of (1 + 1)-
dimensional field theory models sharing the property (42)
can be found in Refs. 10, 11, and 6.

The results (40) and (41) mean in particular that the pure
Bose model

hy = mV*V + fdﬂk kb *(k )b (k)

+fd’kf(k)[V‘Nb(k)—b*(k)N*V] (43)

has eigenvectors and eigenvalues common with the (V@)
Fermi model solved by Sudarshan and Tata®: all b even ei-
genvectors of A of (1) are exact eigenvectors with the same
eigenvalues for the pure Bose Hamiltonian (43). The odd
eigenvectors of A are shared with

By =mg V*V + fd3kk-b*(k)b(k)

- fd’kf(k)[V*Nb(k)—-b*(k)N‘V] . (44)

One should also notice that upon solving the eigenvalue
problem for the Fermi Hamiltonians (H § + HF ) we would
have received a partial spectral solution for the pure Bose
model of the Bolsterli-Lee type.!™ Unfortunately the Bose
Hamiltonian (H Z + H® )is related to the Fermi Hamilton-
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ian (H5 F HY ) and likewise (H§ + H® )is related to (H §
F HF, ). Thus, the spectral solutions of Sudarshan and Tata
cannot be used to obtain the solution of the spectrum of the
Bolsterli-Lee model: This entails the solution of the problem
for (Hf + HF ). For this form of the fermion Hamiltonian,
however, the simple form of Eq. (3.2b) in Ref. 5 does not arise
since the right-hand side now entails the operator V*V
— N *N instead of the eigenoperator V*V + N*N = N,.
(It was the eigenoperator structure that led to the simple
solution in Ref. 5.) This is exactly the structure for the corre-
sponding equation that would occur if one were directly
dealing with the Hamiltonian for the Bolsterli-Lee model.

One more problem arises in connection with the (for-
mal) non-self-adjointness of operators H ®F. However, since
we relate them to self-adjoint operators via (42) it appears
that projections /7 identify the appropriate (Hermicity) do-
mains.
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