Boson approximants for lattice Fermi systems
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It is demonstrated that Bose systems can be used to simulate properties of their Fermi partners in
thermal bath, provided the spectral property Hy = PHg P + (1 — P)Hy(1 — P), Hy = PH, P
can be proved in the state space of the Bose system. The approximation accuracy can be made
arbitrarily good by varying the (free) coupling parameter A€(0, o ), and permits studying of
fermionic partition or correlation functions in a finite volume by means of the standard techniques

(Bose:path integral, Monte Carlo, etc).

I. MOTIVATION

Among many researchers studying numerical (Monte
Carlo) simulation of Fermi systems, '~ the so-called pseudo-
fermion method has gained some popularity.> Though
called pseudofermions, the objects used to replace the tradi-
tional Grassmann algebra elements are the commuting c-
number functions. Since the commuting function ring is
used to quantize Bose systems via path integration, in the
pseudofermion approach we have in fact the Bose system
attributed to the Fermi one of interest.

The customary prejudice is that if no Bose~Fermi (e.g.,
Coleman’s) equivalence can be established, then Bose and
Fermi systems are considered disjointedly. On the other
hand, our investigations on quantization of spinor fields'’
have shown that in principle each fermion system (irrespec-
tive of the space-time dimensionality) can be embedded in
the related (mother) Bose system. In application to lattice
models, this embedding observation suggests looking for
such Bose systems and such physical situations (temperature
and coupling constant regimes) which allow for an unam-
biguous separation of Fermi contributions from all relevant
characteristics of the Bose system. This idea underlies the
use of boson expansion methods in the study of finite spin or
Fermi lattices,""'? and this of the spin-} approximation con-
cept for lattice bosons.'?

Our aim is to investigate a family of Fermi models in
one space dimension (for which the Monte Carlo tests are
usually performed) to prove that their partition and correla-
tion functions can be arbitrarily well approximated by
means of those for the related Bose systems. Since this Bose
approximation scheme is considered for a family of solvable
models, the reliability of the method can be easily tested
against the exact results.

il. BOSE-FERMI INTERPLAY FOR THE SIMPLEST
FERMION MODELS ON A ONE-DIMENSIONAL
LATTICE

Let us consider the family of fermion models for which
the Monte Carlo simulation was attempted.®® We shall be
interested in the spinless fermion hopping problem

H= —JZ(CI_,_IC,( +C:Ck+1),
k

(2.1)

[ck,c;"]+ =6k » [ck;01]+ =0

2039 J. Math. Phys. 26 (8), August 1985

0022-2488/85/082039-06$02.50

and its modifications received from (2.1) by adding the differ-
ent density—density interaction terms

V= Vznk+lnk s M =cley,
%
(2.2)

1 1
Vo= V%("k -3 )i =)

plus (one-flavor case) the lattice Gross—Neveu model
H= ; { —J(CZC,‘+, +ckick) +4(— 1)"C‘Eck

— V(e — ey ’}. (2.3)
The particle number operator & is conserved for each of
these models [H,N] =0, N = 3, n;, hence the general form
of the eigenvectors is immediate

N\|fy=n|f),
(2.4)

0, ¢|0)=0, V,.

J

,f) = %f;, ,,,,, ,'"c;':-..cz:

The eigenvalue equations for the problem (2.1) can be written
as follows:

n=0, H|0)=0,

n=1, H'f)z-Jlil(f}cf+l+-f}+lcflo)
=_u2%()§_l+f,~+1)cf|0),

n=2, H|f)= =23 L{fiiy +fir))

i<j

+ Sy )]k, (2.5)

Hif)= =2 3 3 lfoorn

<<y j=1

Ffo s g )t et ]0)

We assume that our fermions are embedded in the canonical
commutation relations (CCR) algebra generated’® by opera-
tors
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[awa?] - =0u, [ara]-=0= [ata¥]_,
(2.6)
a,|0)=¢,|0)=0, Vk, a?0)=c¥|0),

which, according to Refs. 10 and 11, implies that all Fermi
states of the Bose system belong to a proper subspace [in-
cluding |0)] 7 of the Bose state space #7, so that

N=1Fle= 3 fo, cteetlO
= z f:’r--i,,, * €, a:a:,,lo) , (2.7)

where €, ..; is the completely antisymmetric (Levi-Civita)
tensor taking values 0, + 1. Consequently the tensor coeffi-
1
cient f =f; ., €., issymmetric and vanishes if any two
indices coincide.
Let us now enact the following Bose Hamiltonian:
Hy = _J;(a:ak+l +a¥. 14, (2.8)

on vectors of the form | ). For n = 2 we have

Hy|f) |
L % &® * * * * *
= _Jz.fij(ai+laj +a;,.9 +a_,q +aj—1ar]lo)

i<j
1 1 1 1 * %
= —‘,Z(fi—lj +fi-1 + iy +F541)8:000),
i<j

(2.9)

1
where f,, = €, fi. Now it is enough to observe that given

(i, j)i <jimplieseithere, =¢,_,; =¢€;,_, =€, =€;, 4,
which corresponds to i <j, i + 1 <j,i<j— l,0r€; =€, _;
= €;, 1, which correspondstoi 4 1 =j,i.e.,i =j — 1 (then

1 1
fi—1=0=f,, ;). Consequently, the coefficient function

1
[, if multiplied by €, (note that € —o,1), exactly coincides
with this appearing in 2
ploit the identity

€;arar|0) = c¥ct|0) (2.10)

implied by the “bosonization” discussions in Refs. 10 and
11.

A generalization to arbitrary » is obvious with the result
that eigenstates of H = H ¢ may happen to be those of Hy
{the joint Bose-Fermi spectral problem of Ref. 14)

ﬁM+1 =Ji» fM+l.j =f1j
=He|f)=¢|f)=Hg|f)=He|f) =¢€|f).
(2.11)

It is useful to observe that the operator unit 1. of the Fermi
algebra plays in /¥ the role of the projection operator

1l’-‘ﬁp3=%l=:

c¥cr¥|0) = | f) provided we ex-

i<f

(2.12)
e )= 1111 )%
and because of (2.11) we may expect to have
[Hs:1]-=0,
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Hy = 1gHglp + (1 — 1g)Hp(1 — 1§)

=Hg + (1 — 1g)Hg(l — 1g), Hp =I1gHyle,
(2.13)

which is an orthogonal decomposition since 1g(1 — 1) =0,
1 being the operator unit of the Bose algebra. As a straight-
forward consequence, we realize then that

Z'p = tr exp( — fHp)
= tr exp( — BHg) + trexp[ — B (1 — 1g)Hg(1 — 1¢)]
=Zr+R. (2.14)

Hence the Bose trace formula includes the Fermi trace for-
mula as a well-defined, but to be extracted, contribution.

Quite analogously, in the case of the bosonic correlation
functions

EB pk [(mp B]),""(mk’ﬂk)]

=t [ $m,( Bo) b, ( Belexpl — BH3)] »
(2.15)
Bi<~<Bi<B, $.(B)=cxp(BHp)- ¢, - exp| — BHy),

we arrive at
(Z5 + Ry [(m) By)ees(my, Be)]
= tr[ o, (Bi)0h,( Bolexp( — BHr)]
+ R [(my, Bi)-os(my, Bi)]
0,.(B) = exp BHy - 0,, - exp( — BH),
On=lbnle, bn=2""%a% +a,).

Hence, upon dividing both sides of (2.16) by Zg, the fer-
mionic contribution explicitly arises in the general formula

(Zs/Zr)pn =pr +R/Z5 . (2.17)

One problem which remains is that the observation (2.17) is
not that useful, unless the spin-} lattice (fermionic) contribu-
tion can be viewed as dominant.
There is also another big problem (I would like to thank
the referee for pointing out the issue): the discussion (2.9)-
(2.11) does not yet provide the guarantee that the projection
P with the properties Hy = PHgP and Hy = PH P
4 (1 — P)Hy(1 — P) exists in the state space of the general
Bose system. At this point it is not useless to mention that the
Kac~Moody algebra which is developed in Refs. 15 and 16 is
the infinite-dimensional generalization of the Lie algebra.
This gives a recursive procedure for writing equations like
Eq. (2.17) in terms of initial data, say ¢ and r and all deriva-
tIVES G, s seesPx ¥ sk o+~ (5€€, €.8., Sec. T of Ref. 16, where the
original bosonization of Skyrme'”!® and others'® is shown
for Kac-Moody algebras). Presumably this observation can
be used to argue that the projection operator P must exist
when the Kac-Moody algebra is well defined.

In the next section we shall give an explicit construction
of the projection P for the particular lattice Bose model.
From the technical point of view one essential difference, if
compared with Refs. 16 and 20, must be emphasized. Name-
ly, it is that in our construction of the Fermi system in the
{mother) Bose system, each lattice Bose degree is mapped
into the corresponding lattice Fermi degree. This is not the
case in Refs. 16 and 20, where it is essential that the so-called

(2.16)
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integral lattice is subdivided into the odd and even sublat-
tices. Then, while the lattice boson is defined everywhere,
the Fermi operators are attributed to the odd sublattice
merely. In connection with different aspects of Fermi—-Bose
relationships see, e.g., Ref. 21.

1. EXACT SPECTRAL SOLUTION FOR THE LATTICE
HOPPING

We study (alternative procedure) the model (2.1}, both
in its Fermi and Bose versions {Hp, c¥,c,} and {Hjg, af,
a, }, respectively. Our aim is to relate them through consid-
ering the joint Bose-Fermi spectral problem in the same
state space (this of the Bose system). We assume the periodic
boundary conditions, which implies that both hopping
Hamiltonians can be rewritten in the form

§<<i?

H=—J 3 AtW,4,
=1

(3.1)
n/ii =6:j—l +5ij+lz’ l,_[= 1,..,n,

where the square n X » matrix W can be given as follows:

n—1

W= z Clyl_l ’
I=0

=6 +6,_1,

(3.2)
r=1,
0 1 0 -
0 01 - 0
Y= ,

0 0 0 « 1
1 0 0 « O

where 7 indicates the number of sites in the chain.
Since W=y + "~ ! and ¥" = 1 the spectral problem
for W is solved immediately by making use of

vhe = fes
A, =expin/n)k=@*, @ =expil2n/n),

k=01,..n—1, {3.3)
f;t = {fka} y a= 1’2)-'-;’1,
fa=1, fiu=0* fu=0%. @u=p" ",
which yields

Wi = we fe »

(3.4)
We=A+A7 '=@p *1+o*)=¢p *+¢*
=2 cos(2w/n)k .

Vectors {g; = f,/y/n } form an orthonormal eigensystem for
w

Lifrt=LS expiZk—11g=6,, (3.9)
n n n

=0

hence a passage to a new set of conjugate variables is possible
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n n
Sk = z 8rali» SX= Z 8ra@s »
a=1

a=1
[fk’gﬂ— =5k1 ’ [5ks§1]— =0,
(3.6)
M= 3 BiaCar ME= D BkaClh
a=1 a =1
[”k’ﬂr]+ ="skl ’ [77k,771]+ =0,
which implies
Hy =Z(—2Jcosz—”k)§,':‘§k,
n
(3.7)

He =;(—2Jcos2n—1rk)772‘77k .

The respective eigenvectors belong to the n-body Fock
space of the Bose and Fermi chains, respectively,

My g = ETE T 0)g
(3.8)
| Prseensale = T3 0)g -

In the boson case we shall compose the product of two level
projections

P= I,:[Pk »  Pr = exp( _Ekgk): +Ek7exP( —Ekgk):gk s

(3.9)
which has the following properties:
[Hg, P]_ =0, Hy=PHgP+ (1 —-P)Hg(l-P),

PE¥P=o; , P§ P=oy [0’[,0’:]_,_ =Dk »
[0270'?]— =0, k#ly (3'10)
PEYEN0) = (o7 frelat 4|0}y, or O,
(Uj:t )k = O B k > 1 .

One should here notice the identity
(07 Vot YrlO)y = EFd B0y, k<1, (3.11)

On the other hand, if we start from the fermion case, then
either by using the Jordan—-Wigner transformation or by ex-
ploiting the embedding of the Fermi (CAR) algebra in the
Bose (CCR) algebra (see, e.g., Refs. 10~14), we are able to
identify all fermion eigenvectors in the state space of the
Bose system (as its Fermi states)

T Ol = (o Pt P70}

=& k00, [0p=1[0p.  (3.12)
It automatically follows that
Hy ;7|0 = PHy PI 7| O)g
*
= Hp 77| 0)g (3.13)

and in the range of the projection P there holds PH, P
== H F
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The relevant observation at this point is that the projec-

tion P, though defined in terms of § E xs&x | (and only through

a*,a expansions of E «&x, in terms of the initial operators

{a¥.,a, }), is nevertheless a projection on the state {(sub-)space
g in H’g, including all possible Fermi states of the Bose
(CCR) algebra constructed about the Bose vacuum. In fact,

either {a¥,a;},cxcn OF {Ek,é‘k]m«,, can be used to con-

struct the basis system in the (very same) subspace of
HoPE £\Hy = Hp = Pla*a) 5.

IV. FERMI STATES OF THE BOSE SYSTEM: ON
SYMMETRY PROPERTIES OF THE FERMI GROUND
STATE

It should be emphasized that in the above construction
Fermi states of the Bose system correspond to the lowest
excitation levels of the latter (i.e., the mother one). This prop-
erty is quite important with respect to the Bose approxima-
tion idea'? in application to Fermi systems. The ground state
for the Bose and Fermi systems is the same here. On the
other hand, the traditional way of thinking requires that the
ground state of the Fermi system exhibit an antisymmetry
property, while that for bosons is symmetric. Before em-
barking on the Bose approximant problem, let us clarify this
point, by analyzing properties of the harmonic chain

H= 22m+2——(q. —-g),

i<j

4.1)
[9:0,1-=i6y, [959;]-=0=1[r1p]-,
where
P= ElP, ,
=l§) = > @-gf= NZq —N?Q*
N <& WHew =
(4.2)
[HP]_ =
allow us to replace H by the new operator (m = 1)
2N ip2 ud ( 2 N 2q2
H,=H — —p2= —+—w ,.)
0 (2N) '_; >3
(2NP2+ 5 N%?Q ) (4.3)
We use the N-site harmonic oscillator basis
N
7= H (ﬁ))n ’
n=fe -8 (g ®-0f=0, Vk,
4.4)

n,=ata,, nfy=a*af,=0,

172
=@ + @)@, g ={2) ar ),
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so that

/N (5 +1)
2
=—N§j‘,p.~pj +—Zq.~q,
—ol¥ {2+ L3+ 3 fara, + atal]|
i=1 i<j
(4.5)
and
2 n, + Z (a?a; +aj*a,.)] ,
i=1 i<j
) (4.6)
[a,, ]— y’ [a,,aj]_=0, aj0=09 V])
where

a¥a; + a}"a,-)] =

03¢

We observe that (compare, e.g., the lattice-hopping problem)

l<j

Y (ata +a"a,]—za wya;, w;=(1-24§;),

i<j [2
N—1

@ = 12 o, ¢=(1—"6&, 4.7)
=0

vh=Afer 8k =(1/\/;'_)fk s

which implies

£x =a§1§k¢zaa ’ Ek = ‘;Z:l 8rals
[£eF]-=06u> ;a:waﬂaﬂ = Ek: (Z cl¢k'1)gk§k ’

{4.8)
k¢0:>2c,rp Z¢k’-_ —p%=—1,
[ I'#0
k=0=Y cp*'=N—-1,
[]
ie.,
Y atwggas = — Y Ex6 + (N —1)E3E
aff k #0
N—-1
= - z 31 +Nzo§o
After accounting for
N
Z §¥6k = Z ata, = n,, (4.9)
a=1
wearrive atacomplete spectral solutionfor Hy|E) = E |E )in
terms of
! 1 1
Ho=olW '3 (616 +7)—(§:§o+7)],
Pyeny) =EnEn 0 (4.10)

Hy? =w/NYN - 1)2,
the eigenvectors being given up to normalization and the so-
called permutation degeneracy (it is a real surprise to the
author that this complete solution was not produced in pa-
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pers devoted to the harmonically coupled chains®*—24),

In the form
tomeli 5, (1 +2) ez

or H, = H(a*,a) [(4.3) and (4.5)] the harmonic chain can be
considered either in its Bose or Fermi version by using the
methods of Sec. II1. Indeed, by using a product of two-level
projections as done previously, we can replace the Bose
problem H,, (4.10) by its spin-{ (Fermi) relative

PH,P =N [Nf (a,:fak— +%)

k=0
—(ao+ao‘ +—;—>] =Hyg , (4.11)
PE¥P=ot, PELP=o,, [PH,]_=0.

On the other hand, if we recall that each eigenvector of H,,
can be expanded with respect to the N-site harmonic oscilla-
tor basis, we find out that the choice of the Schrodinger rep-
resentation converts |n,,...,ny) into the N-point function of
spect to symmetrization or antisymmetrization of such a
function, the eigenvalue problem is quite insensitive except
that the permutation degeneracy of energy levels is removed.
In symbolic notation we have the commutation relations
{HyS]_ = 0= [HyA]_. However, the antisymmetrization
cannot be applied blindly since the lowest-energy eigenvec-
tor which persists in this operation is the well-known one

10,1,2,..N — 1) = & £3..£¥=1|0),
(4.12)

H,|0,1,...N — 1) = ng —1}0,1,.,.N—1).

The respective vector after antisymmetrization is tradition-
ally identified as the ground state of the Fermi oscillators
subject to the harmonic couplings. But in our opinion this
Fermi chain notion acquires a meaning only if we refer to the
field theory model

H= —-l—fdxv¢*v¢

2m
o f dx f dy 6 *(x) XDV (6, 1) (36 (x),

[¢ (xhg *(W- =6lx—y), [$x)hd(y)]_=0,

(4.13)
é(x)|0)=0, VxeR',

where, depending on ‘the (anti-) commutation relations
choice, either symmetric or antisymmetric wave functions
are necessary

1) = fdxl f oty f (R g} 1) op *xn)[0)

V. LATTICE FERMIONS IN TERMS OF BOSONS

When dealing with Fermi systems, except for Z -, one
tries to compute thermal averages of distinct quantities, e.g.,
the simplest correlation functions
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(cE(Bie)(B)) = (1/Z g tr{ck exp( By — B )y

X¢; exp{ — B, + B, _ﬂ)HF} »
(5.1)

(ete;) = (I/ Zetr{ckc; exp( — BHE )},
1

F
the computation of which, according to the standard meth-
ods, involves Grassmann algebra functional integrals.

A passage from Fermi variables to Bose variables can be
accomplished by first “defermionizing” the system by means
of the Jordan—Wigner formulas and then constructing boson
approximants for so-received spin-i lattice quantities. The
procedure is easy for the equal temperature correlations,
since then, for example,

(ct ek Cje; ) = tr{c} -ct ¢, -c; exp(—BHg)},

<C2‘ck+ 1 )= (0’; Op 41 Y, (5.2)
while for distant correlations we have
I—1
(cte;)) = <ak+ (exp im Y o aj‘) 0; >
J=k+1
I—1
=<0'k+ II (1—-2nj)-aj_>, (5.3)
j=k+1

n=cfe; =0 05,
which implies that the fermion correlations can be estab-
lished by using the sequence of boson approximants

<aral ) ’

(Mo pMiygata)), k<p<g<l, (5.4)

(nk+paltal> ’ k<p<l’

(np ,ne,,ata), k<p<g<r<l,...

The underlying boson approximation procedure amounts to
modifying the Bose Hamiltonian

Hy = PH,P+ (1 — P)Hy(1 — P),

(5.5)
H. =PH P, P=l,,
by adding to it the operator AL
Hy—Hg(A)=Hyg +ALA>1, A€(0,0),
(5.6)

L=an(nj—1), n, =aka; .
J

If we insert Hg {4 ) in the place of Hy in all the thermal
formulas, we realize that because of PLP =0 and A» 1, the
spectral problem for Hy (A ) is determined by solving the sta-
tionary state perturbation problem with the degenerate spec-
trum for the operator

Hy(A)=(1/A)Hgh) = L + (1/A)Hy , (5.7)

where L plays the role of the initial (unperturbed) operator.
The eigenvalues of L we denote / = 2;n;(n; — 1)>0 and the
respective eigenvectors we denote |/,a), where a enumerates
the pairwise orthogonal eigenvectors of L corresponding to
the eigenvalue /. In their linear span, we can always find
another orthogonal set {|/,a}} such that (/,a|H|l,a') =0,
a#a' and |l,a) =2, f,,|la).

The stationary state perturbation theory says then that
in the presence of the perturbation, the group of states {|/,a)}
is replaced by the new group {|l,a)}, whose elements in the
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first order have the well-known form

1 & |k)k [Hg|la)
La)=|lg}+—Y ——m——
ha) = |ka) + A }:':‘ I—k
where 2’ indicates that summations run over all eigenstates
of L except for those which form the / th eigenvector.
The (la)th energy level to the second order reads

, (5.8)

, 1 1\2 o |(k|Hg[la)?
€L =l+7(l’a|HBIl’a)+(7) zk: —T—r

(5.9)

and €, is the eigenvalue of H (4 ): €, = A€j,. Because of
(5.8) and A» 1, the spectrum of Hg(4 ) is characterized by a
large energy gap opening between the lowest (/ = 0) group of
eigenlevels and the others. In the / = 0 sector we have Hy (A )

= Hy = PHy P = H. As a consequence, the replacement
of Hg by Hg (A ) in the thermal formulas allows us to view the
{ = 0 contribution as dominant, and hence to approximate
the thermal characteristics of the spin-} (Fermi) system by
using the Bose formulas with Hg(A ) instead of Hy. The ap-
proximation accuracy can be made arbitrarily good with the
growth of 4. For A» 1 there holds

[1/Z 541} [ Bk, Beexp( — BH5 (4 )]
i tr[0h, (B, | Bulexpl ~ BH)]
B1<B<<Br<B .

Let us notice that the Jordan-Wigner transformation
makes it possible to get a Bose approximation scheme for the
genuine Fermi variables (see, e.g., the previous discussion).

[—4

(5.10)
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In the case of the short range order, the simple formula

<C:Ck+1>=(‘7k+0k_+1>5<arak+1) (5.11)

holds true.
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