Quantization of spinor fields. IV. Joint Bose-Fermi spectral problems
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In this continued study of the connection between classical c-number spinor models and their
quantized Fermi partners, we elaborate further necessary consequences of the bosonization. The
genuine (c-number) path integral representation of tr exp( — iHt) is derived for the Fermi
oscillator and simple lattice Fermi models. We find that the underlying Hamiltonian of the Fermi
system H . can be equivalently written as PH , P, where H , is the related Bose Hamiltonian, Pis an
appropriate projection in the state space of the Bose system, and [P, Hy | _ =0, H = PHP.
Grassmann algebras are not used. We prove further that both for the massive Thirring model
(MT) and the chiral invariant Gross—Neveu model (CGN), the Bethe ansatz eigenstates for the
Fermi Hamiltonians are exact eigenstates of the Bose MT and CGN Hamiltonians, so introduced
that H, = PH, P, [P, Hy ] _ = 0. As a consequence, through studying the c-number path
integral representation for tr exp( — iH -t ), we establish a class of classical (c-number) spinor
solutions of the underlying field equations, which at the same time make stationary both the c-

number Bose and ¢c-number Fermi actions.

PACS numbers: 11.10.Cd

1. MOTIVATION

As is well known, for simple scalar field theory models,
the U matrix of the scattering theory in the coherent state
representation is identical with the conventional Feynman
integral

Ut )=(p(t')exp[ —iH(t' —t)]|@ ()
— (@ (O) expliHot Jexp| — iH (£ — 1))
X exp( — iHt )| (0))

= J-[%]exp[if,d"xg@»??)] - (LY

However, in the case of Fermi fields the analogous formula
exists only if the classical spinor fields to be used in the path
integral are elements of the anticommuting function ring
(Grassmann algebra). It created a folklore belief that the gen-
uine classical c-number spinor fields have no meaning for the
construction and then understanding of the canonical Fermi
field theory. In fact, if one would follow the route {1.1) by
using the c-number spinor field Lagrangian and the measure
with respect to c-number spinor paths, the received result
would certainly not coincide with the result known by other
(Grassmann algebra) means to be correct for the respective
Fermi model.

However, in the preceding series of papers'™ (see also
Ref. 4), we have demonstrated that it is not meaningless to
talk about a connection of classical c-number spinor fields
with their quantized Fermi partners. Some other intuitions
about a possible quantum meaning of classical c-number
spinor fields can be drawn from Refs. 5-8. Our approach to
the quantization of spinor fields problems originates from
Klauder’s® idea to avoid the use of Grassmann algebras in
describing the canonically quantized Fermi fields, but is dif-
ferent from that work.

We have found previously that a formulation of the cor-
respondence rule between quantized Fermi and classical c-
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number spinor fields is in principle possible, provided the
Fermi model allows for bosonization. Different aspects of
this problem were studied before in Refs. 1-3. However, a
fundamental problem we were confronted with, the quan-
tum meaning of classical c-number spinor models (with the
Fermi-Dirac statistics in mind), has remained unsolved.

In the present paper we give a path integral reconstruc-
tion of tr exp({ — iH }in terms of genuine c-number trajector-
ies for simple Fermi models, to prove that it is at all possible
without any reference to Grassmann algebras. We do not,
however, conclude (as Klauder did) that Grassmann alge-
bras are an unnecessary addition to the mathematical phys-
ics. We believe they are extremely useful for explicit pertur-
bative calculations. They suffer, however, from a serious
drawback: they do not carry any true physical content,
against the naive (but popular) expectations. In the light of
the results presented below, it is possible to recover a new
face (physical content) of Fermi models, the face which is
completely obscure in the Grassmann algebra formulation.

For lattice Fermi models, the Jordan—Wigner transfor-
mation allows us to introduce the equivalent spin § lattices.
The corresponding Hamiltonians can be considered as pro-
jected Bose Hamiltonians (in the Hilbert space of the appro-
priate Bose system),

H,=PH,P, (1.2)

where [P, H; ] _ = 0. One should notice that
1=1, =P+ (1 — P)=>trexpliHt)
= tr exp(iHyt) + trexp( — (1 — P)Hg(l — P}t),
(1.3)

and the only problem is to extract the Fermi contribution to

the Bose formula, which is known to be provided by using

Grassmann algebra methods to compute tr exp( — iHgt).
If there exists a countable family of projections
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Zszl, PkP[=6k1Pk, [Pk’HB]—=O Vk,
k
(1.4)
then

trexp(—iHgt)= Y trexp(—iH it),
k=1

(1.5)

H ; =P HyP,,
and the respective Bose model can be viewed as a (infinitely)
reducible Fermi one or even as a fower of possibly distinct
Fermi models, each one with its own Hamiltonian H %.

For the (continuous) massive Thirring model, we prove
that Bethe ansatz eigenvectors of the Fermi Hamiltonian are
the exact eigenvectors (with the same eigenvalues) of the
Bose massive Thirring model Hamiltonian, see also Ref. 4,
ie.,

HYT = PHYTP, [P,HYT]_=0. (1.6)

Previously,* by using indirect (the inverse spectral trans-
form) methods we have concluded that the mass spectrum of
bound states is the same for the Bose and Fermi massive
Thirring models. If to combine it with our Bethe ansatz ob-
servation, we find supported the conjecture of Ref. 4 that the
Bose massive Thirring model can be equivalently rewritten
as the (infinitely) reducible Fermi one. Next, we deduce the
spin § type version of H }'" for which a path integral repre-
sentation of tr exp( — iHt ) is constructed in terms of c-
number trajectories. We prove that spinor trajectories such
that o, = ¢ *¢,<A4 < w0, i = 1,2, A being arbitrary, give ex-
actly the same contributions to both Bose and Fermi path
integrals via the c-number massive Thirring model action.
Its stationary points are the classical spinor solutions of the
respective field equations satisfying o; <A < «.

Finally the analogous properties are established for the
chiral invariant Gross—Neveu model. Our analysis is con-
fined to 1 + 1 dimensions where explicit solutions for the
spectral problems are available. We expect, however, that
the Bose—Fermi interplay described here will prove useful in
1 + 3 dimensions as well, see, e.g., also Ref. 2.

2. QUANTUM OSCILLATOR PROBLEM: BOSE VERSUS
FERMI

The Bose oscillator

Ly=ib*t)b(t)—wb*)b(t)=b*¢) (i%—w)b(t)
(2.1)

|

Up(At) = exp( — ihpAt) =1, — idthy = 1,(1 — idth )1,

is determined by using the CCR algebra generators (equal
time variables omitted)

[b,b*]_=1,, bl0)=0. (2.2)
The Hamiltonian reads

hy =wb*b; (2.3)
hence the infinitesimal propagator of the model is given by

U,lAt) = exp( — idthg)=1 — iAth, . (2.4)

In the coherent state representation, the infinitesimal ker-
nel'® of Uy(¢) reads

Uy(At) = exp( B *B — ih 54t),
he = (Blhs|B) =wB*B, (2.5)
|B) =exp(Bb* —B*b)|0),

so that through the standard arguments,'' we arrive at the

following (formal continuum # limit) path integral represen-
tation of tr exp( — ihgt):

Iy = trexp( —ihyt) = J [dB 1(dB*] expif, {B*e)B()
— 0B (0B(t))de = [ 14811d8* ) expi [ Lylelar.
(2.6)

One should realize that I, is given with the accuracy up to
the normalization factor.
Let us define the Fermi oscillator

L, =a% )(i% _ w)a(t) (2.7)

by using the Fock representation of the CAR algebra, which
is completely embedded in the CCR algebra as follows:

[a,a*], =1, a*|0)=|1) =b*|0), 4|0)=0,
a*¥* =0=a?,
(2.8)
a*=b* exp(—b*b),
1 =:exp(—b*b):+b* exp(—b*b):b.
The CAR generators act invariantly on a proper subspace
hi = 1ph of the Bose oscillator Hilbert space, but neverthe-
less, allow a trivial extension to the whole of h. Consequently
the Fermi propagator Uy(At) = exp( — iAth;) can be repre-
sented in the Hilbert space of the Bose oscillator, thus allow-

ing one to follow the previous path integration route. We
have

a=:exp(— b*b)a,

=:exp(—b*b): + b*: exp( — b*b):b — iwAth *: exp( — b*b):b, (2.9)

so that the infinitesimal kernel reads

Ue(At)=( B |1, — iAth.)|B ) - exp( B*B)

=1+B*B — iwdiB*B=(1+B*B)[1 —iwdtB*B /(1 + B*B)]

= exp[In(l + B*B) — iwAB*B /(1 + B*B)] .
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Furthermore

R Y- 2%~ 3 * 4 L (t)
Ip=t —ihyt)= | [dB]1[dB* i Mdt:fd dB* 'fdt__”_,
r=trexpl—ify) = [ [dB11d8 %) expi | LL—B (48115 ) exp | dr 2o
(2.11)
-
which is a c-number alternative for the usual,® Grassmann [£,6%]4 =04 [6464]1+=0,
algebra path integral. (3.3)

Remark: The semiclassical quantization procedure for
the continuous Heisenberg system'? resulted in the intro-
duction of the spin path integral with respect to genuine (i.e.,
c-number, non-Grassmann) paths in the phase space of the
classical spin system. The genuine c-number path notion is
also inherent in the approach of Refs. 13—16 based on the
SU(2) phase variables, and making use'*~'® of spin coherent
states, these being well known in the many-body physics.
The general method of Ref. 16 to construct measures for spin
variable path integrals can be immediately adopted to either
a single spin | or to the many-body spin } problem.

Attempts to introduce probabilistic ideas (i.e., probabi-
listic measures) to the study'”'® of Fermi fields start from an
appealing assumption. Consider the classical harmonic os-
cillator problem. View its equations of motion as stochastic
differential equations and then add information that one is
considering a two-level Fermi system instead of the ordinary
Bose one. It results in specifying the class of stochastic pro-
cesses in which solutions of the would-be classical oscillator
equations of motion are to be found. The underlying pro-
cesses are Markov processes with values in Z, which demon-
strates that, except for the form of the equations of motion,
the classical paths of the Fermi system are as unrelated to the
Bose oscillator paths as the Grassmann algebra paths would
be. An analogous line is followed in Ref. 19, though in a
different Poisson processes framework.

3. SPIN } LATTICES, LATTICE FERMIONS, AND c-
NUMBER PATH INTEGRALS

It is well known that at least in 1 + 1 dimensions, the
lattice Fermi systems can be equivalently described as lat-
tices of spins 4, and conversely. It happens so due to the
Jordan-Wigner (JW) transformation, realizing fermions as
strings of spins | in the linear chain. An easy example is here
in the Ising model in 1 + 1 dimensions, whose Hamiltonian,

after making the JW transformation, and then Fourier trans-
forming the image Fermi variables, goes over to the one®®
which can be unitarily transformed into

H= 2 6q(§:§q - %)7

€, =cosh™'{cosh 2(J — J')

+ (1 — cos g)sinh 2J ' sinh 2J | , (3.2)
J' =tanh~!exp( — 2J),
with
864 J. Math. Phys., Vol. 25, No. 4, April 1984

g=Q2n/N)p, p=0, +1.., +(N—-2)/2,N/2.
Since £ ¥&, is a particle number operator of the gth mode
with eigenvalues 0,1, we can replace it by the equivalent one
given in terms of Pauli operators

E¥ =oto; =bYexp(—b}b,)0,,

[bq’b;’]— z‘sqq' ’ [bq’bq’]— =0,

b,10) =0=¢,10)=0,[0) Vg,

b¥0) =£*0) =0, 0).

(3.4)

The operator unit contributing the } term to H equals
1, =111, with 1, = :exp{ — b Jb,):

+ b¥: exp(— b*b,): b,. The Ising Hamiltonian acquires
thus the Bose form

€,
H= z?q[b’;: exp(—b¥b,): b, —:exp( — b¥b,):]

q

- Y H,,

q

(3.5)
[H,, H]_=0.
Consequently, the infinitesimal propagator
U,(At) = exp( — iHAt)
=[] (1, — idtH,) = 1 — iAtH
q
=[] exp( — iH,4¢),
’ (3.6)
lp= H 1,
q
allows for the following infinitesimal kernel:
UF(At)z(exp zﬁ;ﬁq) (B [ (1, — iAeH,)|B)
q q
iAte, B*pB, — 1
=1 [(1 +B,’;‘ﬂq)[1 -t ”
g 2 1+B%5,
idte, BB, — 1
= ex In(1+8%*8 ———"—L],
pz[ e A Y 1Y)
(3.7)
where
IB) =expy (B,bF —B1b,)|0), (3-8)
q
and so
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I, =trexp( — iHt)
= [ tap11a8*)
(< BB, —(€,/2(B2B, — 1) dt 3.9
><exptj0 2;’ IYT) . 39
The lattice Fermi model of Ref. 21,
Hp= —iY (.1 —¥r ¥},
['ﬁn’ ¢m]+=0’ [¢n7 ¢:‘n]+=5nm ’ (310)
Yo= =31 — %),

can be equivalently rewritten in terms of lattice spins §:

1
HF = __E {U:on‘+l +0.nian++l} . (311)

24
However, a straightforward application of the previous bo-
sonization recipe to the spin } generators o,F is not efficient at
all. It is much more reliable to make first a lattice Fourier
transformation of the original Fermi variables,

¥, =N"12 S c, explign),
q

(3.12)
=(Q2a/N)p, p=0, +1,.., +(N—2)/2, N/2,

where the familiar lattice identity (V is large)

3 expl — igln — m)] =35, (3.1
i
guarantees that both ¢,
generators, and moreover

*,and c,, c are the CAR algebra

i 1
Ho=—-L3—
R
— ign iln + 1)p %k ipn , — ig(n + 1) 4%
Xy e e ckc, —e®" c*c,}
Pa

-l_ Z ( z e —inla— pi) [e"’c"‘c —e— iqc;:Cp ]
2o "

_ i

2

Y [ecye, —e e, ] = Y (sing)eye, .
q

(3.14)
Now the previous route applies apparently, and then
I, =trexp( —iHt)
~ [ tag 114871
1 *
X exptf z — g7 A, dt. (3.15)
15634,

The path integral formulation for simplest Fermi models on
the lattice, in terms of genuine c—-number paths is thus possi-
ble, though certainly not well suited for less trivial examples,
like, e.g., the lattice version of the massive Thirring model,**
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Ha= 5 5t i)
F= P 2 W bt

1 1
—%(«ﬁ:% - D ten —2)) - .
(3.16)
a being the lattice spacing. By using the JW transformation,

one arrives at the equivalent spin } xyz model Hamiltonian
(with cyclic boundary conditions),

1 (v m)
Hyr = —— —+ oo
MT 22[ VI +
+(5g =GRt + gy i | = Bo.

(3.17)
which is also

HMT=1 HdelFs

HEp = _—z[—-(b*b,,+1 +b%, .b,)
+ T BEBELy +byb )
ot orr D)) -
1= 1:[ [ : expl
= 1P

Here Hj, is considered as an operator in the Hilbert space
Ky =h®**N whileH, in 1,77y = h.**", hp = Ph. Be-
cause 1 is a projection operator in #°,, we have

—b%b,):+b*exp(—b*b,):b ]

(3.18)

HB =Hp + (1 - lF)HBlF + 1 B(l - 11-')
+ (1 = 1p)Hp(1 — 1),

and consequently for any |¢) = 1. |¢) € ¥, we find

(3.19)

Hy|¢) =Hpl¢) +(1 — 1p)H¢) . (3.20)
Hence the necessary and sufficient condition to fulfill

Hy|$) =He|Y), 1e|¢) =) (3.21)
is that

Hylpy el if [¥) el iy . (3.22)

Then if H,|¢) = €|¢) we get automatically Hy |¢) = €|¢)
and conversely (provided 1,|¢) = |¢)).

Since we work in the Hilbert space #°,,, the respective
spectra are discrete, and 7y, is spanned by a complete
(countable) eigenfunction system of H. 1 is a projection in
&y and 1.5 is spanned by these eigenvectors of Hy
which obey 1. |¢) = |¢). Notice that if H.|¢/) = €|t), then
necessarily
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HE['//) =HB zaa’¢’ a> = zaa€GI¢! (Z)

(a) (a)

—Hel0) =eld) =€ S a, |, a),

(a)

ie,e=¢, VY acela)

It means that once any H, is obtained for which
H, = 1.Hy1, for a given Fermi model H, then automati-
cally the eigenfunction system of H . is a subsystem in this of
Hy, and moreover the respective eigenvalues of Hy and H,.

do coincide. It then follows that

(3.23)

trexp( — iHgt ) = tr exp( — iHgt)

+trexp] — (1 — 1)Hg(l — 1.)].
(3.24)

In the N-particle linear chain, the operator 1, = II,P, is
composed from projections on two lowest levels in each sin-
gle site Schrodinger problem. Obviously, there is an infinity
of other choices. In particular, if to imagine a sequence

[1;= [P such that S 15=1, 15 1h=5,1%,
n [3
then

trexp( —iHgt) = Y trexp(—iH it),

* (3.25)

Hi=1pHpl,
provided [Hp, 15]_ =0 V k= 1,2,.... In principle any
two states at each site can be used for our construction. How-
ever, the need for the last commutation rule may play the
role of the constraint capable of removing a nonuniqueness
appearing in the construction of 1. The Bose system may
thus happen to be equivalent either to a reducible Fermi one,
or to the whole tower of might-be-distinct Fermi systems. A
speculation on the possibly infinite fower of fundamental,
say, leptons generated by the relatively simple Bose system,
does not seem to be hopeless.

Let us mention that the expansion of the Bose trace into
a sum of Fermi traces resembles the expansions which ap-
pear in the path integral quantization of spin systems. "’
Then the Green’s function is known to propagate all spins
simultaneously. Nevertheless the recovery of the usual Pauli
spinors is possible by projecting to a specific spin subspace
which is propagated into itself. One deals then with a Bose
system, which describes a particle allowed to live in several
(infinity in fact) spin states.

To compute a particular Fermi trace, we may not refer
to the original (Bose) phase-space variables, but instead we
can use the conventional Grassmann algebra tools. They
prove to be successful, indeed, once remaining in the particu-
lar Fermi sector of the Bose model.

4. MASSIVE THIRRING MODEL: FROM FERMIONS TO
BOSONS

A spectral problem for the Fermi model,
Hp = fdx[ — (¥, — P33 ) + m(YFe, + ¥3¢)
+ 28Ytr ] (4.1)

866 J. Math. Phys., Vol. 25, No. 4, April 1984

has been solved by means of the Bethe ansatz in Ref. 23. One
assumes to work with a Fock representation of the CAR
algebra,

[lﬁ,-(X), '/’,*()’)] + = 5:‘;‘5()‘ -
['/’i(x): ¢;(Y)] +=0, #,(x)0) =0,
Y i=12 xeR'. (4.2)
Then after introducing

[al,..., a,,) = J‘dxl- .o
fdan(xl""’ X, a],'..., a,,)
X I #*x., a:}l0),
i=

Y lx,a)= exp(im Y x; sinh a,)

x 11

1<i<j<n

[1+ ik, a)elx;, —x))] ,
(4.3)

Pix, a) = e, (x) + e~ hy(x),
Ala,, a;) = —igtanh Y, — q),

one demonstrates (see, e.g., the Appendix of Ref. 23) that
Helay,..., a,) =(zm cosh a,.)ial,..., a,). (4.4)

Let us now assume that the fields entering H . satisfy not the
CAR algebra relations (4.2), but the CCR algebra ones,

Hy —Hp =Hp(p —¢),
(4.5)
[¢:x), ¢ ¥ (¥}] - =6;6(x —p), [dix), ¢;(¥)] - =0,
provided the CAR algebra (4.2) is constructed in the Fock
representation of the CCR algebra, according to Ref. 24. It

means that if to introduce the antisymmetric function of Ref.
24,

3

o'=0, x,€R', =12 VYV k=12,..,n,

{4.6)
O = 0O(Xy, ijyeees Xjs Liyerry Xpoy byerey Xy £y

= — U(... xk,ik,..., Xj,l:l-,...),

where o{x,, i,..., X, i,) =0, + 1 depending on the choice
of the (x,i) sequence; then the operator

b= 3 LR

P n!

X > dy,---fdy,.dyp Eyseees Vs )
]

,,,,, iy

XO’(X’ k’yl’ il""’yn’in)'¢:(yl) v '¢:‘kn(yn)'

X exp[ — 22: dz¢ ;"(z)¢,-(z)} :

i=1
X (X)p ()b (Vu) x€R', k=12 (47)
is the CAR algebra generator of (4.2), and together with its
adjoint, obeys
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Hx)|0) = ¥r(x)I0), ¢:ix)I0) =0=¢(x)|0) V¥ ix,
Phlx) - - P2(x,)[0)
= 0(Xy, [jyees Xy L, )BT (xl) ¢:(xn)|0>’
[4:x), ()] + = 6,6(x — p)1F, (4.8)
with

IF—Z ’2 de, fdxa(xl,zl, Xy 1n)

.....

X3ttt exp| — 3 S [ dmresa)

X @i (k1) « + - By (X4 )s (4.9)

which is a projection in the Hilbert space of the Bose system
selecting the Fermi subspace in it.

Consequently the Bethe ansatz states for the original
Fermi model can be generated from the vacuum by using the
Bose operators. We have

[ gt +e “ysix)] -
[e™*y¥(x,) + e “*¥2(x,)]|0)

= 3 {otc i x,, 1,)8 261) - - 6 2(x,)[0)

X exp Y (— (4.10)

k=1

l)ik + lak/Z] ,

where {, = 1,2, and obviously

[T [t + eV ¥2x)]10)

k=1

= 3 [exp § (-1)"k“ak/2] IT #tx0/0).
ST k=1 k=1
(4.11)
Hence

|@1yes @, )

= J.dxl .. -fdx,,/y(xl,...,x,,, Ayseey A

X E O iy X, )[expz( 1)"k+‘ak/2]

iy

X¢i,(x1)"' i,,xn 110)
= fdx,---fdx 2 x @, i Fixy) - -

ti

¢ ¥(x,)|0),
(4.12)
with

7%, a, i) = yix.ajolixlexp Y (—1)*"'a, /2. (4.13)
k=1

In Ref. 4 we have proved via the inverse spectral transform

method, a close connection between the Bose and Fermi ver-

sions of the massive Thirring model. To make this connec-

tion more explicit, we shall demonstrate that vectors (4.13)

are eigenvectors of the Hamiltonian H arising as

Hy = Hp(Y*— ¢ *,y — ¢ ). For the kinetic term of

Hy, 22_ ¢ ¥x)3,¢,(x)( — 1) * ! by commuting it through

the product of ¢ *’s, and then integrating by parts we arrive at
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H%a,,...,a,)

fafan s

xz{

+x(—iv,0)] exp( z (—

X %ix,) - 4 1(x,)}10)

= [ax- ~fdx,, PC ATATHEAR
e Yt -+ Y¥a,, %,)(0)

J‘dxl J-dxnx(xli !xnyalr ,a ) 2
X 3 (-

k=1

X(exp Z (—

S =1l 2)g i) 6

=H%ay..,a,) +14).

Anexact form of H ¥ |a,,... a,, ) was given in Ref. 23, and we
shall concentrate on the spurious term {4 )} in
H%"a,,..., a,). By virtue of (4.6), we have formally
( - ivk)a(xli]"", xn’ in)
= (= iV )0 T UK s X )
=2n+ o (—iV)o=2n+ 1oy —iV,)o
=(—iV,)o, n=12,.., (4.15)
which holds true for all integers and all possible choices of
sequences {(x,i)] while inserted in (4.14). Hence the identity
(4.15) can be satisfied if and only if (up to a set of measure
Zero)
(— iV )0K iy Xy i) =0, ¥ k=12,...,n. (4.16)
It however means that |4 ) = 0 which proves the property
H%a,,..., a,) = Ha,,..., a,). (4.17)
Remark: As an example of o = o * used in the above,
one can take
a(xl,il"", xnyin) = H ij ’
1<j<k<n

I)xk+l

— iV xlo

1yt ‘a,/z)

X (™ PHx,) —
1) (—iV,.0)
*x,)|0)

(4.14)

(4.18)
[0 —xi) — O x, —x))]

61xj — Xg)
b

lilk

+ i —4I(=1)

where B {x — y) = 1, x>y, 0, otherwise.
For i; = i, we have

Pk =0 x; —x,) — Ox, — x), (4.19)

which equals either O or + 1.
For i, #i, we arrive at
Pa=(= 1757, (4.20)
which equals + 1. Consequently p, =0, + 1 and in addi-
tion to the manifest antisymmetry property,
{{;x;) <> (i x;) = 0 — — 0, we have satisfied the property
o’ = o as required by our previous definition. Notice that o
vanishes if and only if a pair (i, x) appears more than once in
the sequence {(i, x)}.
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For the mass term of H, we get
Hi=m JdX[sé Fx)dalx) + 4 ¥(x)oy(x)],
HYa,,...,a,)

=m de, _ J- dx, Y X1y Xy Qpsenn, @)

X Y o iy x,,,i,,)exp( S (- 1)‘f+‘aj/2)

=1

Lyeedy

x| 3 exp(— 1)‘kak]¢:':(x,)---¢r:<x")|0>

k=1

=m fdxl- . J dx, y(x sy X,y Ay @)

X ki [d’*(al’ X)) {eﬁak/zipf(ak’ xi)

+ e Y, ) - YHa, x,)]10)

=H{la,--a,), (4.21)
and for the interaction term
HY\ay,..,a,)
= 2gfdx1- . j X, Y (X1 X,y Ay, )
> [exp( N (- 1)5+Iaj/2)]
By =1
X Z Z 8(x, —xl)[alikam‘, +61i162ik]
k Itk
X< 2, )(0) = dg [[dx,- -
fdxnx(xl,...,xn, ag..., a,)
XD 3 8 —x)(— 1) ek — 1)
k sk
Xsinh § (@, — a,)¥¥x, J¥¥x))
X¢*(a1, xl) e ¢*(an'xn)'0) = Hiir'u(al""’ an)’
(4.22)

and by virtue of Ref. 23 we thus arrive at
(HP+HF + H ey, a,) = Helay,..., a,)

=Hyla,,..., a,).(4.23)
Needless to say,

Iplay,.., a,) =|a,.,a,), (4.24)
i.e., indeed

Hp=1;Hyly, [Hg 1,]_=0 (4.25)
holds true for the continuum field theory, the massive Thir-
ring model.

Let us notice that in contrast to lattice Fermi models we
have not made any explicit transformation of Fermi varia-
bles into spin } type variables. The formula (4.24) proves that
such a transformation exists.

Remark I: By Ref. 4 the spectrum of H, and H,. is the
same in the physical Hilbert space (which is not the Fock
space), but the spectrum of H,; appears as infinitely degener-
ate. As a conjecture we have suggested that the Bose massive
Thirring model can be rewritten as a reducible Fermi one.
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From the heuristic point of view we find evidence that

Hy= 3 1sH,15= S H%,
k=1 k=1
1515 = 8,15, ”C‘y/ﬁzkilzﬂ;’ Ky = 15K,
(4.26)

trexp( — iHyt) = i trexp( — iH k1),
=

Remark 2: A relationship between the c-number (classi-
cal} and Fermi massive Thirring models is thus established
as follows.

(1) Take Hy = H (¢ * ¢ ) and a coherent state of the
Bose spinor field [@) such that {(@|¢ |@) = (0]¢ + @|0) = ¢
is a classical c-number solution of the MT model field equa-
tions.

(2) Construct a separable Hilbert space IDPS(|@)) by
using the CCR algebra generators {¢ *, ¢ }.

(3) Check (see Refs. 3 and 25) whether |@) allows for the
existence of Fermi states in IDPS(|@)), i.e., that 1.]|¢)

= |¢) € IDPS(|@)). If so, then look for eigenvectors of H,
which are Fermi vectors, they are then the eigenvectors of
H . So the Fermi model appears and the (irreducible) Fermi
fields can be introduced.

Remark 3. One must realize that Fermi states of the
Bose system are allowed to exist in a very restrictive subset of
the set of all non-Fock sectors of the Bose model.>?* This
restriction follows from the assumption that Fermi states are
admitted to arise in Hilbert spaces (in fact in the incomplete
direct product ones of von Neumann) which are generated
about coherent states of the Bose system. The latter are nec-
essary to satisfy the (weak) correspondence principle

(pl:Hy(*d)lg) =H(p* @)= Hpsicar s (4.27)
where H ), .. is a classical Hamiltonian of the c-number
spinor field satisfying the field equations of the massive Thir-
ring model.?®

5. MASSIVE THIRRING MODEL: c-NUMBER PATH
INTEGRAL REFORMULATION AND ALL THAT

To strengthen the above introduced links between the
classical c-number and Fermi massive Thirring models, we
shall try to derive the path integral expression for
tr exp( — iHt) in terms of genuine c-number trajectories.
We are not aiming at any practical application (for which the
Grassmann algebra formulation perfectly suffices); our
problems are rather of the foundational nature. The observa-
tion that A, = [ .H 1, suggests that Bose operators in Hy
should be replaced by spin } objects like in the lattice cases.
The lattice spins suitable for our purposes are given by

o7 (k)=¢ k) exp(— ¢ Fk)p;(k)):,
o7 (k)= :exp(— @ ¥k)p;(k)): p:(k),

k=0, +1,., i=1.2, (5.1)
[C’i—(k)’ ai+(k)]—+— = l;(k)»

telk) = ] 1) 1= T 15tk

Piotr Garbaczewski 868

Downloaded 30 Mar 2010 to 217.173.192.73. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



where we assume

B = (1AB) | dx xutei )
(5.2)

Xilx) = [0’ otherwise, [4:ik), 8 M p)] - = 6,5,

& being the length of each interval 4, . Since we assume 6«1,
one can formally write ¢ ¥(k )=8 6 ¥(x,), i.e., a reasonable
continuum limit would arise after rescaling fields ¢ #(k ) by
1//5 asthen Orp—> Osp /N6 — 8{x — ). Itis inconvenient to
work explicitly on the continuum level of quantum field the-
ory, hence to avoid inconsistencies we shall use the appropri-
ately discretized model and the transition to continuum will
be investigated after achieving the c-number level of the the-
ory.

The mass and interaction terms of H, we discretize as
follows:

1, xed4,,

Hy— S Hylk),

Hk)=m[ék)p,(k)+ ¢ 2k )gi(k)], (5.3)
H 3k ) = (28/5)p 1k ) (K (K (kK ),
so that for §¢1 we would formally have
H (k) =6H F(x,),
(5.4)
H 3k )=8H §'(x,).

The main difficulty, as usual with Fermi models, comes from
the kinetic term, and we shall use a trick which differs from
those used in the literature, see for example Ref. 21.

We introduce

bikia) = [ epix+ a

(5.5)

d
Z{?ﬁi (k) lk, @)l —o

- % 821k [ dx xuie13, .

which allows for the following computation:

%Uﬂk Joilk, @)|,—o:

— ¢ ¥{k): expleh ¥(k )b, (k )
X s expl — 6 11k, @k, @) ik, @)} o
(44

=@ ¥k ): exp{ — ¢ Fk )g;(k )):0 ¢k, @) _ o
— @ Fk):exp( — ¢ ¥k ), (k)): {(Fud MK, @)lo_o)
X:exp( — Mk )pi(k)) : p k) + & Hk)
X:exp( — @ ¥k )p: (k) : (0adi(k, @)|o—o)dilk )]
=g Hk):exp( — @ ¥k )p,(k)): Fudilk, a)ao - (5.6)
Consequently we introduce

Hirk)= —i[¢ k)0atilk, @) — $2(k )3, bolk, @)] | o-
(5.7)
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With such Hy, the formula Hy(k ) — (k) Hg(k )1 (k)
arises through replacing all Bose operators by appropriate
spin § operators:

Hylk) — Hylk)
= i[gHk): expl — b 2k )ik ) : Bk, @)l
B3k ): exp( — 6 £k ok ) : Buhalh @l _o ]
+m[¢ k) exp( — S BHkMk )) : $ufk)

=1

+o2krexp( = 3 62160): k)]

j=1

+ %;%r(kwk):

xexp( = 5 oHEIK)): KB K. (58)

j=1
An infinitesimal propagator for H,.(k ) reads

f/fé(At) = exp(iHp(k)At)=1.(k) — idtH (k) (5.9)
and its functional kernel is

Ukdr) = [exp S Bk )ﬂ,-(k)] - (B|UL(A)|B)

={- i[BY(k)3.Bilk, @), _o exp B3k )By(K)
— B3k NuBulk, @)a— o exp B BLK)]
T+ m{BYKIBK) + KB (K )]
+ 2e/8)B K18k )12} — i)
+{1+ 3 pros )+ BP0

i=1

L= (1 - iAtH(k )/Hiz 1,2(1 + lﬁ,(k)[z))

X exp 3 In(1+|Bi(k)]?)

P+1

= exp{ Z In[1+4BMk)B.(k)]

—iAtH (k)/TL _ (1 + Bk )B(K)) .

We compose a product of such kernels for all sites:

U, =II, U%, and by repeating the Fermi oscillator argu-
ments, we arrive at the following expression on a lattice (time
is continuous):

(5.10)

trexp({ — iHgt) = J[dﬁ][dﬂ*]epoifdt
k ()]

X[ L . _BrkBK)

=1 14+8Mk)B.k)

B Hik) ]
I 2 (1 + BHE)Bi(K))

If now to notice that the coherent state representation of
&;(k ) reads

(5.11)

Bi(k) =% f X Bix)dx = JBB(x) xedy,(5.12)

we arrive at
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trs exp{ — iHpt)
- s rtar1en S [ ar
o[ 30 Lran__
=1 1+5B}"(x)ﬂj(x)

X 9B\(x) explOB 3 (x)B,(x)) — B $(x)9p,(x)
X exp(6B H(x)B1(x)) + mb ( BH(x)B,(x) + B $(x)B,(x))

+ 26818,)P18)11 / 1T (1+5ﬂr(x)ﬂ,~(x»].

i=12

(5.13)
Under an assumption that we restrict path integrations to
these c-number paths only for which o;(x) = 8 *x)B;(x) < o
on the whole space axis, we can consistently achieve a con-
tinuum limit. Then contributions from factors
exp(8B }x)B,(x)), TMZ_,(1 + 6B }x)B;(x)) become negligi-
ble; if compared with 1; hence

[(— ) Btx)

tr, exp( — iHzt)

_ L‘Ww] [dﬁ][dﬂ*]expifoidtjdx

x| S 8118, — [(~ 5128, ~ B398

j=1

+ m(BY, + BB+ 218,180

_ f,wm [dﬂ][dﬁ*]expiJ:dtfdx

ji=1

(5.14)

It does not overcome problems with the continuum limit if
no restrictions on trajectories are imposed, but at the same
time it selects a subset of trajectories on which these prob-
lems disappear. Then the Fermi and Bose formula for the
trace has an identical contribution from this subset, and the
solutions of the original classical field equations do make
stationary the action for both cases. Because of the impor-
tance of such stationary points in the semiclassical physics,
we conclude that it makes sense to talk about the quantum
meaning of classical c-number spinor fields in the Fermi
quantized case.

6. REMARKS ON THE CHIRAL INVARIANT GROSS~-
NEVEU MODEL

The Hamiltonian density of the model reads

Hplx)= —i Y I, 0o, — Y7 )

a=1

+ Zb AgYr VE_ o Vo (6.1)

The Hamiltonian H. is diagonalizable in the Fock space of
the Fermi fields ¢, (x), a=12,..N, a= +,

[¢aa (x)’ ¢;b(y)] + = 6aﬂ5ab5(x —J"),

Yo ®)|0) =0, VYV a,a,x.

The respective eigenvectors have the general form?’

(6.2)
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|F, &) = fdxl- .. fdx,, z F(Xiys X, @y @)
[a,a}

£ (@ @) [] 910D, (6.3)

i=1
where F (x,a) is an eigenfunction of the n-particle Hamilton-
ian

h= —i i a,d; —4g Y S(x; —xj)P'j[%(l -aiaj)].
P 2
’ ’ (6.4)

PYis an operator which exchanges chiralities ; and a;. Let
us assume that the CAR algebra representation (6.2) is em-
bedded in the CCR algebra representation, as in Ref. 24. For
this purpose we need an antisymmetric function

O = O(X 1,0y s Xy Xy A,) = O (6.5)

which changes a sign if triplets (x, @, @) in {(x, , a}} are in-
terchanged and takes the values 0, + 1. Then, we arrive at

1 #2.,x)0)

= U(xl’ Ay A1y Xy, &5 4y )¢ :,al(xl) e ¢:,,a,,(xn)lo>’
(6.6)

where ¢, ¢ * are the corresponding Bose operators (with the
same iso-indices as the fermions).

If F(x, a) is an eigenfunction of 4, then

Fx, a)=Fx, a)-olx, a, a) {6.7)
is an eigenfunction again, because formally

do=080"""=2n+ 1)0¥3,0=12n+ ljo°d,0

=d,0=0, (6.8)
which yields (up to a set of measure zero)
— iy a;d,F x, a)z(—iZajajF> ‘o (6.9)
7 J
On the other hand

3 otx, — 5P 1~ @ |Fmia)

= ; S(x, — xj)Pij[-;—(l - a,aj)}

XF'( R SRR SRR, SURRY JTI )

J J

Xa'(...xi...xj..

= [ ‘z S(x, —xj)P‘j[—;—(l —a,aj)]F] e

provided o is symmetric under an interchange of ¢; and o; at
x; = x; and (a,,..., a,) fixed. As an example of such o we
propose

.ai...aj...)

(6.10)

ox, @, @y X, a,, Q) =

H Dix >

1<j<k<n
b =5a'ak5afa"[6(xf — X)) — Ofx, ‘xj)]
6,0l — a1

_ 1)6():] — X)

+ 5a]ak6(|aj — a4 ’)(

(1= 8, N1 =8, )(— 1) ™. (6.11)
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Notice that at x; = x; we have
ajake(|aj—ak|)—6 e(laj_ak“

+(1 =820, (1 =60, — 1) (6.12)

One should notice also that an eigenvalue problem for
arises from an eigenvalue problem for H after commuting
the annihilation operators to |0) through the product of ¢*’s
and then integrating the gradients by parts. If now to use the
Bose CGN Hamiltonian Hy = Hp(¢* — ¢ *, ¥ — ¢ ) the
procedure is exactly the same and the eigenvalue problem for
h arises again, but with a wave function F °(x, a) instead of
F(x, a).

Consequently the Bethe ansatz eigenvectors of H are
also eigenvectors of H, and satisfy the property
1:|F, £) = |F, £ ), where 1; is the operator unit of the bo-
sonized Fermi algebra. All the arguments applied before to
the massive Thirring model apparently apply in the CGN
case, and for example it is not difficult to check that the
coherent state expectation value of the bosonized Fermi Ha-
miltonian reads

B1rHp1£|8)
=5 [5(—i)z [BX, exp(—68B%*, B, )B..
k a

pik(xj'='xk)"_—(S L7

— 3*

a— Cxp( - 63*-_ Ba— )aﬂa— ]
+4g8 5 2. 63 exp( 8 [FLbuc

+BLB) oo [
x{ (-2, b, —p2 3B,

+4g S B2, BE_ By, B ﬂ] (6.13)
ab
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for all c-number spinor functions which are regular enough,
i.e., satisfy o, (x) = B %, (x)B,, (x)<4 < o . The respective so-
lutions of the classical CGN model field equations thus have
a quantum meaning both in the Bose and Fermi quantization
cases (see in this connection also Ref. 28).
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