On quantum solitons and their classical relatives: Reducible quantum fields
and infinite constituent “elementary’” systems

Piotr Garbaczewski

Institute of Theoretical Physics, University of Wroclaw, 50-205 Wroclaw, Poland

(Received 30 November 1982; accepted for publication 1 April 1983)

We demonstrate that the emergence of translation modes in the quantization of some at least
nonlinear field theory models (like, e.g., ¢ * or the sine-Gordon systems) implies a specific
structure of their state spaces namely this of the direct integral Hilbert space, which follows from
the reducibility of the involved quantum field canonical commutation relations (CCR) algebras.
As a special manifestation of this structure, one recovers infinite constituent ‘“‘elementary”
quantum systems living in the commutant of the CCR algebra, which appear as the Schrodinger
or the two level ones. The corresponding Hamiltonians are derived. In addition, we propose a
modification of the standard infrared Hilbert (photon field) space construction employed in
quantum electrodynamics. We demonstrate that, in principle, Fermi (CAR) generators, carrying
the spin—charge-momentum labels of Dirac particles, can be defined as operators in the
electromagnetic (photon field) Hilbert space. The photon field (CCR) algebra is highly reducible,
and in the present case fermions arise in the commutant of it, playing the role of intertwining

operators.

PACS numbers: 03.70. 4+ k, 11.10.Lm

1. MOTIVATION

Usually one quantizes the classical field theory models
under a tacit assumption that the field ¢ exhibits at most a
space-time functional dependence: ¢ = ¢ (x, ¢),x € R’ (or
rather that the x, ¢ dependence only is relevant for the quan-
tization). An example of a classical field theory where the
configuration space variable x is augmented by an auxiliary
real variable w was considered in Ref.1:

L =Lx,w)=4[4, ¢ (x,w)]’> — im*s*(x, w)
— V¢, x, w] (1.1)

with x € M*, 3, being the space-time derivative, x = (x, ¢ ).

One insists there on a dynamical independence for all
space and time of fields with distinct w value. This w-ultralo-
cality of the field (1.1) has been exploited in Ref.1 to con-
struct a relatively simple quantized model. However, under
an assumption that the quantum field CCR algebra is de-
fined as follows:

[4;(w), 4 F(w)] - =6y 6w — w'),
(1.2)

[4,(w), 4,)]_ =0, 4,(w)2=0 Vi, w.

Here I = 1, 2, - - - enumerates the oscillatorlike degrees of
freedom of the wth field, and £2 is the Fock state. Let us recall
that a conventional quantization procedure for the neutral
scalar field theory model [omit w in (1.1)] would result in the
commutation relations
[4,AY]_=6y [4, A4, ]_=0=[A41A4F]_
(1.3)

A,02=0 VI

and, as noticed, for example, in Refs. 2—4 still remains suc-
cessful for models of the type (1.1). An oversimplified model
with local fields which are at most bilinear in the generators
(1.2) does not occur in case (1.3).
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On the other hand, the quantization procedures devel-
oped during the 1970s for, for example, the sine-Gordon
model, did ignore the fact that classical solutions of its field
equation, at least in the soliton sector, exhibit a parametriza-
tion additional to x,z. In the simplest 1-soliton case it reduces
to the real w-parametrization of (1.1), while for N-solitons
the situation becomes more complex. The underlying para-
metrization enters solitonsolutions ¢ = ¢ {x, ¢ )ofthe(1 + 1)-
dimensional field equation:

(g (x,t)=m?sind(x,1) m>0, (1.4)
via nonplane wave solutions ¢ (x, ¢ ) of the free field equation

(- miex,1)=0,

Px,t)=g@,x, t)=exp[my,(x —v,t) + 6],

|a|2~—1 2\ — 172 1.5
U, = Wy Yo = (sgna)(l —v7) ) (1.5)
aeR', |a|€(0, »)

so that (see Refs. 2-5)
p=dxt)=¢[@.](x: 1) =,(x, 1)
=1ltan"'@,(x, 1) (1.6)
for one soliton, while
806, 1)=& [@uyrrPuy ] 062 1)
=G ) (1.7)

for N solitons, in the absence of “‘breathing” components.
When the latter are present the parameters may become
complex, and then are required to appear in complex conju-
gate pairs as, e.g., in the N-soliton (one breather) case of

¢ (x’ t) = ¢aa2a3 ..... a*,..., aN(x’ t )’ (1'8)
where N-2 parameters are real and there is a complex conju-
gate pair.

Let us mention that in (1.5)—(1.8) one has still a freedom
of choice of the phases 8, ,...,6 5. For 1-solitons, the sine—
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Gordon Lagrangian density has the form (1.1) with the pa-
rameter w replaced by a. In the N-soliton case the parameter
w of (1.1) may be replaced by a sequence (2, _a,)= (a).

As mentioned before, the (@) parametrization is insuffi-
cient for a unique characterization of the sine-Gordon soli-
ton fields: the (6 ) parametrization should also be taken into
account. In the notation

@alx, 1) = exp my,(x + ) = @, (x),

=4, = Ua(tO - t):& = 5a = m?/avatO’
we have absorbed both § and time ¢ dependence of ¢, in a
new parameter ¢. The a dependence of ¢ = ¢, can be ignored

due to the freedom of choice of the initial time instant ¢,,.
Hence (1.7) can be rewritten as

B 1) =G X} =, .. gy anlX) (1.9)

thus leading to the (2N + 1)-parameter family of N-solitons,
where both (a) and (¢) are viewed as independent parametric
families. Notice that the time variable completely disappears
from the formalism, which is obviously an effect of the trans-
lation freedom of (1.4).

Let ¢, (x, 0),77;, (x, O) be a canonical pair generating the
CCR algebra of the mass m neutral scalar field in 1 + 1 di-
mensions:

[P (%, Oy T (7, 0)] _ = i8(x — ),

alk) = J dx exp( — ikx)[ k7 + mZAin (x,0)

+ T %, 0)],
alk}l0)=0 Vk.
We introduce the coherent states (coherent soliton states of
Refs. 2—-4) as these states of the field (1.10) which satisfy
alk)lp)=alk)lp),
(@ o x)l@) = (0){@in (x) + @ (x)}|0) = @ (x),
(- m2p(x)=0.
Here a(k ) is not a square-integrable function, since we make
an identification of @(x) with either @, (x), (1.8) in the sine—
Gordon soliton case, or with 2Y_, @, , (x) as required in the
N-soliton case (without breathers).>* Coherent states (2.11)

should be viewed as continuous generalizations of the more
familiar direct product coherent states

@) =g |0) = [[{explaa* —@a) £,},

(1.10)

(1.11)

(1.12)

with an ultraviolet cutoffimplicit, f ° being a Fock state of the
Schrodinger representation of the CCR algebra. If one takes
a coherent soliton state |@), then applies polynomials in cre-
ation and annihilation operators (1.10) to |@), and finally
closes the resulting set of vectors, one arrives at the Hilbert
space IDPS (|@ )), which is separable and carries an irreduci-
ble representation of the CCR algebra. IDPS (| )) is the one
among infinitely many separable subspaces of the complete
(von Neumann’s) Hilbert space 7 of the quantum field
(1.10).

Since we use coherent product states as the generating
vectors for IDPS (|@ ), the theory of Ref.6 can be applied to
classify the unitarily (in) equivalent representations of the
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CCR algebra affiliated with different coherent states, In
Ref.2 we have done it for the soliton coherent states of the
sine-Gordon fields; compare also Ref.7.

Because the above-introduced parametrization (g, 8)
characterizes uniquely both the soliton field (1.9) and its free
field constituents ¢, , we arrive at the unambiguous labeling
of quantum soliton (Hilbert space) sectors:

|¢)) = Ial! “eey aNr qb,qN):IDPS(W) )) = %(1: q)°
(1.13)

It happens because the free fields 2_ | @, 4, [x) are the boson
transformation parameters of (1.11). Suppose we have two
distinct coherent soliton states |@) and |@ ') in 5. If the re-
spective boson transformation parameters ¢ (x) and ¢ '(x) sa-
tisfy

| axtow— g e,

then the representations of the CCR algebra in IDPS (|¢ )
and IDPS(|@ ') respectively, are unitarily inequivalent,>¢
and the scalar product (@|¢’) = 0 is conventionally intro-
duced in ¥ for ¢ # ¢’ while ||¢|| = ||¢’|| = 1 and

llell* = (@|@). Obviously, the function @,,(x) of (1.8) is not
square integrable on the real line R ! and the same concerns
both =Y, ¢, (x) and any (¢ — ¢')(x) with p£¢’.

For an example of the one-soliton boson transformation
parameter @, (x), let us notice that even if g = ¢’ and
a= —a'(ie, |a| = |a'|), westill have (p|@’) = 0. More gen-
erally, classical N-soliton sine-Gordon fields give rise to the
rich {(nondenumerable) family of normalized and pairwise-
inequivalent vectors together with the related CCR algebra
carrier spaces of (1.13) {770 10 -0,
where each %7 = IDPS (|a,,..., dy, g1s..., ) is by defin-
ition separable. We get in fact the field #°, of separable Hil-
bert spaces labeled by a continuous index set 73¢. The pres-
ent paper is the fourth one in the series of investigations
devoted to the problem of quantum solitons and their classi-
cal relatives. We continue the discussion of different aspects
of the quantization of nonlinear fields, with emphasis on the
(1 + 1)-dimensional models (Refs. 2—4; see also Ref.5). The
presence of the soliton solutions is known to complicate the
traditional local quantization program by giving rise to zero-
energy modes (related to translations} and then necessitating
the “collective coordinates.”

In the present paper we show that the translation free-
dom implies a very specific form of the state space of the
quantized nonlinear system, namely, this of the direct inte-
gral Hilbert space, which we describe in Sec. 2 together with
the derivation of the (inherent) infinite constituent “elemen-
tary” quantum systems. In Sec. 3 we introduce the “elemen-
tary” two-level systems, and investigate possible forms of
their interaction. In Sec. 4 we propose a modification of the
standard infrared Hilbert space construction employed in
quantum electrodynamics, to allow the direct integral proce-
dures of Sec. 2. Then, we construct Fermi (CAR) generators
and represent them as operators in the electromagnetic field
Hilbert space. The fermions carry the spin—charge-momen-
tum labels of the Dirac particles and belong to the commu-
tant of the photon field algebra (this is a consequence of the

(1.14)
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reducibility of the latter).

Remark: Our knowledge of soluble models in 1 + 1 di-
mensions is not broad enough to state that the above sine—
Gordon structure (1.4)-(1.15) may always be found. Since,
however, some of these features were observed to be valid for
¢ * and appeared also in the quantization of the c-number
massive Thirring model, we feel that, even if not quite gen-
eral, the sine~-Gordon structure assumption may be of some
use for the construction of the nontrivial quantum field the-
ory models, preserving a correct classics—quanta relation-
ship.

2. A LITTLE BIT OF THE OLD-FASHIONED
MATHEMATICS: CONTINUOUS DIRECT SUMS OF
HILBERT SPACES AND “ELEMENTARY” QUANTUM
SYSTEMS

A.Let {h },_, , ... beacountablesequence of separa-
ble Hilbert spaces. By /# we denote the set of all sequences
E=1{& -1 2..., & € Ry, subject to the restriction
3, 1€ II? < o and satisfying the linearity properties
E+n={&+miehatb={at }eh acChisaHil-
bert space called a direct sum of separable Hilbert spaces #,..
To deal with a continuous generalization of this concept, we
shall follow Refs. 8 and 9.

Let T"be a z-measurable set, where 4 is a positive mea-
sure. We introduce a field of separable Hilbert spaces labeled
by elements of the index set T {h,, 1€ T'}.

By h we denote the set of all vector valued functions:
& t—€, E={{ €h,, teT]suchthat

[ 6 maute)| < oo 2.1)

for any two functions £, 77 € A. In particular, from (2.1) there
follows the requirement:

LH§.H2dﬂ(t)<oo Véeh. (2.2)

In addition to (2.1) the linearity is introduced via

§+77={§l+771}’ a§={a§,}. (23)
The scalar product formula in 4 is given by (2.1):

&) = f (€, 7,) dult);

h is a Hilbert space called a direct integral of Hilbert spaces
h, with respect to the measure p:

h= f : h, du(t). (2.4)

Let g(z ) be a continuous (together with derivatives) function
T—L (T) with the property

fT 1@ (8) 21, I dyelt) < 0 2.5)

for all £ € h. We shall define a linear operator L p iNA:
Ly §—Li={plt)s.}. (2.6)
Here upon § ;)@ (¢)|* du(t ) < « we have
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IL, €| = j ()6 dutt)

<[ [t r dute)] e e
=g LIE N 2.7)

and, consequently, L, is a bounded operator in 4.

By taking a set of suitable functions {@} we get a corre-
sponding set of bounded linear operators in 4, which form a
weakly closed commuting ring of bounded in 4 linear opera-
tors with unity. Notice that if L,,L, eR thenalso
L,+L,=LseR andL,-L, =L,eR.

Moreover, if @ is a real function, then it gives rise to a
self-adjoint operator in 4. If @(z )| = 1, the corresponding
operator is a unitary one.

In this way to each direct integral of Hilbert spaces we
have assigned a commuting ring of bounded operators. An
inverse problem of the decomposition of a Hilbert space into
a direct integral, with respect to a given commuting ring, is
much more involved,” albeit useful for the solution of the
reduction problem once an operator algebra is given in a
Hilbert space. Let us mention that for an example of the
sine-Gordon system we have a detailed knowledge about the
state space of the system, but no clear understanding of the
sine-Gordon field algebra.>>'-!!

B. Let uschoose a one-parameterindexset Te R 'and a
related one-parameter family {4,, A € R '} of Hilbert
spaces. Let U, be a unitary element of the commuting ring in
h={%h, du(l):

Ui§ = U lIA)} = {explidt) - |A)} =¢,. (2.8)

Each 4, is separable Hilbert space; hence it can be equipped
with an orthonormal complete basis system

{m A con... (n, AlmA)=8

nm?

S in AN, A) =1, Lk, =h;. (2.9)

n

A definition of U, equivalent to (2.8) can be given as follows:

U = J‘&jexp(it/?~ )Y |n, A)n, A | duf(d). (2.10)

Let usintroduce an operator ¥, which is not an element
of the commuting ring:

v, =L.Z |n,A —s)exp(—s%)(n,/l | duld),
(2.11)
Ve =V {I4)}

Jd
= {;| n, A —s)exp( —sg)(n,/l | ;|m,/l )m, A |1)}
= {Z“‘,'”’/I —s)exp( — s%)(n,/l [A)}

= (Sln A —slin, A —sld — )} = {14 — 5)}.

Consequently,
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V.U§ =V {explitd )|A)}

= {exp(itd )|A — s)}exp( — its), (2.12)
U V€=U, {J4 —3)) = [explitd |4 —s)},
which yields
V.U, = expl —its\U, V,, (2.13)

i.e., a typical definition of the CCR algebra as given in the
Weyl form.
Notice that

WV = | h—sih—sdud) =€) 214

hence V, is a unitary operator. Moreover, in addition to
U, U, =U,,, wehaveasemigroup property for V', as well:
Vs I/x§= V:{ M’ —S')} = {M' -5 _S')} = V:+s’§'
(2.15)
A strong continuity for both U, and V is apparent; hence, by

an application of the Stone theorem, the infinitesimal {self-
adjoint) generators Q and P of U, and V| are recovered,

0= A3 | dln | duid)

(2.16)
P=J;I Y |n,/1)(—i§[)(n,/l | du(d)
such that
0Pe = (A3 In, 2 ) —i-o Jim 2 14)),
PQE=P{A|A)} ={3 ImA)N—i)nAlL)
+A3 |n, 4 )( _ ia%)(n,ﬂ. 4)] 2.17)
which implies
[0, P]_&=iE, (2.18)

provided an appropriate domain is chosen to guarantee that
both PQ and QP have a meaning in it (see Remark 1 below).

In this way we have demonstrated that, in addition to
the commuting ring, the noncommuting pair can be intro-
duced, which generates the CCR algebra representation in
the direct integral h = {8 h,; du(d) of separable Hilbert
spaces. The respective creation and annihilation operators
read as follows:

A=—V13—(Q+ip)

® 1 d
i tn,MW(HH)(n,M duld),
A*= —(@—iP)

® 1 a
= [ Smar i Zmaidu)

n

[M4,4%] &=¢
Let us recall that if one intends (as we do) to choose A
= IDPS(|4 )} as determined by starting from (2.10) and

(2.19)
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(2.11), i.e., by the canonical generators {a*(k), a(k )} cx'»
then the received generators (2.19) are essentially new quan-
tum objects, since we cannot reconstruct 4 and A4 * solely in
terms of a*(k ) and a{k ). This last feature is rather common
for these nontrivial field theory models which lead to reduc-
ible field algebras; see, for example, Refs. 1216, but also
Refs. 5, 17-20, where an infrared problem for charged parti-
cles involves reducible electromagnetic field algebras. The
pair {2.19) gives rise to the Schrodinger representation of the
CCR algebra, with the (direct integral) vacuum

2€h=fg h; du(d)selected by the requirements

2={124)), [ Slnd|2A) duid)< .

(2.20)

1

W(’H a%)(n,i[!),/l):O Vn.

Notice that all 4, can be inequivalent to the Fock space of
the field algebra (2.10). Moreover, an index n in {n, A |£2, 1)
identifies the nth basis vector in 2 which can be received
from |4 )by applying the nth function of generators a*(k )and
a(k ). It has nothing in common with an index N of

L gvoi— (v ay

VN!

={>InA)nA|N,A)] (2.21)
which corresponds to the &V th excitation level, but in terms of
the secondary quanta (2.19).

Remark I: Asis well known,® the direct integral of sep-
arable Hilbert spaces with respect to any standard measure is
a separable Hilbert space again. Hence properties of the re-
presentation (2.13) and its generators (2.17) can be under-
stood on the basis of general results described in Ref. (9).

It is not useless to mention that elements of the direct
integral space &, = f ®IDPS(|4 )) du(4 ) have the form

¢(f)=f FUANS,A)duld), |4 A) € IDPS(|A),
WA A =0, A £4",
W ) = I = [P dald ) < o

Notice that we can formally represent the continuous set of
orthonormal (in von Neumann’s space) vectors

W, A, A')=0, A #£4', (¥, 4|¥, A)= lasgeneralized vec-
tors associated with %, :

0il0 = [ 84— )i ) duid )
so that if considered in the topology of 7, we arrive at

(¥2(8), ¥ (8) =64 — A7)
It demonstrates how the continuity of the orthonormal set
{|4)]} is lost while passing to the direct integral Hilbert space
. ¥,(6) is not a Hilbert space vector.
Because of #/( f) = §® f(A)|¢, A ) du(d ), where f(1)isa

WAl A)=1 VA,
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function R '—C whose modulus is square u-integrable, the

problem of finding a dense in #°, domain

D C D(P)n Z(Q)reducestothisof finding an appropriate
domain & in the set of functions f(4 ). Notice that if

¥ A)=2,9,|n ), ¥, €C, Yf)=F5SA) A)dud)
then the action of P, @, PQ, and QP on ¢{f ) reduces to

QPW)-——feAzln,i)-;ﬁn(—t%)duw

- (-5

Pour) = [ auit)
x| =)+ a (- LYy, 1)),

i.e., to the well-known Schrodinger representation problem
in the Hilbert space of square u- integrable functions.
Remark 2: The representation (2.10) of the CCR alge-
bra in the separable Hilbert space is unitarily equivalent to
the direct sum of Schrdodinger representations. Consequent-
ly, the vector £2 of (2.20) would be unique in the irreducible
case only. However, this is not the case in 77, . Let us define

n=n"==f Fold ) m, A) dgld ),

where |n, A ) is the nth basis vector in IDPS (|4 )) and f{4 )
satisfies: (1/v2)(A + 3/34 }fy{A ) = 0. Then

AL, =F [%(&+ — O(A)]]n,/l)
XduA)=0 VYn=0,1,---

) W, ) duid)

and

|V, n) = ———A e

><|n A) du(L (N, n|M, m) = 8, 8.

Hence the representation (2.13) is not irreducible in 77, .

C. Since we have in & = (3. h; du(A ) a canonical pair
P, Q, it seems rather natural to follow a conventional quan-
tum route, and to search for a Hamiltonian systemin 4. In an
abstract scheme, there is no natural choice of the Hamilton-
ian. However, for a particular quantization procedure for
the classical (e.g., sine-Gordon) model H can be determined
once time-dependent trajectories are established in the set of
parameters A € R . This is the case when the (underlying)
classical dynamics is taken into account.

Let us consider a family of sine-Gordon 1-solitons,
each one with a fixed a value, but differing in the choice of
g=gq, =A of(1.8). In fact,

A=A(t)=v,lto—t)=A—v,t =4+ A1, (2.22)

and A =v,t, € R ' is quite arbitrary. We look for the time
development generator H such that

={1|A)}-Q )

= exp(iHt )Q exp( — iHt )¢

={A'A AR 1)), AU t)=A+Ar (223)
Notice that for the infinitesimal time variations we have
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= w050 )

Qdr)=Q+41Q, Q= —i[QH]_,
) . (2.24)
QAr)s={(A + 41 )4 4 A41)},
and, consequently, because of (2.23),
Q= —iQ, H]_=0 (2.25)

so that the form (2.24) persists for allz € R 'in(2.23). Notice
that H = H (Q) solves (2.25).

We shall deduce an explicit form of H = H (Q) by fol-
lowing the idea of Ref. 21, which, if appropriately modified,
can be applied to our case.

For the translation operator P we have the formula
(2.17). Let us rewrite it in the form

— [ @) T Tt =Toid)  @26)
(e 3
= z": |n,/1)(13}:-)(n,/1 | dufd ).
Analogously for H
H= f du(A ) Toold ) (2.27)
N

with T4(4 ) being still unspecified. Let us now introduce a
symmetric stress energy tensor 7, (4 ) so that the generator
of Lorentz transformations in /4 can be introduced as follows:

Mio= [ duld) (A Tuld) — T2 ) 228)
R 1
=HQ—
Upon a standard requirement
0= My, _ My —i[M,H]_
dt ot
= —P+HQ- (2.29)

provided with a momentum conservation demand P= 0, we
arrive at the identity

P=HQ, (2.30)
which yields
i=[Q,P]_=[Q, Q] H+iQ> (2.31)

Recall now that H = H (Q ); hence formally one can intro-
duce the notion of H /3Q. Suppose that in the domain of #
there exists at least one vector on which the following two
operator identities hold true (the nature of the constraint will
be investigated below):

6H1 .
[Q9 'az B =1
g . 0H
2iQ = = =
i0=10201_ = 0.0 232
In (2.32) for some vectors the following holds :
2i0=1001_ 2% 1, (2.33)

3Q
which by taking into account (2.31) leads to the conclusion
that, for such vectors,

9H _ 0

% - 15 H, (2.34)
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which is satisfied by

H=M/1-03"? (2.35)
with Mbeing an integration constant, M € R '. Furthermore,

P=MQ/(1 — Q32 (2.36)
and

(001 =il—Q%H ' =(i/M)(1 - Q%" (237)

Because of (2.36) a conventional relativistic formula for H (in
1 + 1 dimensions) follows:

H=(P?+M?}"2 (2.38)
Dueto Q= Q(P)and H = H (P), the representation of P in

h={fg: h, duld)as given by (2.17) and (2.26) leads to

0= f S InA)

32)1/2 (n, 4 [ dpid),

(2.39)
H= fe S |n, A)M? =37 n, A | dul(d).

D. Let us now analyze the constraints (2.32) which di-
minish the arbitrariness in the choice of H, by demanding the
existence of suitable vectors in the domain. By making use of
the first constraint (2.32) we get formally

OH _ MO _ PH’ (2.40)
0~ -0~ M
with [P, H]_ = P = 0. Hence the second one reads
OH _ 1
[Q,@]lzm— Q. PHY W)
2P
[Mz +:—]|¢)—z|¢) R.41)

where [Q, H] _ = 0 is taken into account. From (2.41) it fol-
lows that |¢) is a common eigenvector of both P and H:

Ply)=0, H|p)=VP*+M?y)=M]|y) (2.42)
Then we find

2iQ = [Q,Q—Q] ~A%[Q,P2H],, (2.43)
and hence
(P2+2HY/2M? Q |¥) = Q |¥)

=Q|y)=0or [QH] =0=[QP)_ , (244)

which may impose a restriction on Q if applied to |¢). Conse-
quently, (2.32) is equivalent to

H|y)=Mly), Ply)=0, (2.45)

and thus the parameter M corresponds to the rest mass of the
elementary quantum system associated with the direct inte-
gralh = (2. h, du(Ad )of separable Hilbert spaces. The main
problem now is to find M while maintaining consistency

with the classical field equations (e.g., the sine-Gordon one)
which underlies the whole derivation of (2.42). Recall that M
appears in (2.35) as an integration constant, but is not at all
constrained to be a c-number. The more natural requirement
is that M belongs to the commutant of the {P, Q } C *-alge-
bra. Since the { P, Q } pair arises in the reducible representa-
tion of the primary scalar field, (2.10} algebra, both Pand ¢
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do commute with the CCR algebra generators
{a*(k),alk)}icr - If Misac-number then H does commute
also, as being solely constructed in terms of P and Q. How-
ever, an integration procedure leading to (2.35) does not ex-
clude the fact that M = M (a*, a) is an operator element of
the neutral scalar field algebra. This route has been followed
in Ref. (22); however, the authors start from another as-
sumption: {1) about the Hilbert space structure, which is a
direct product of the Fock space for collective modes and the
Hilbert space for the primary quantum field; (2) about the
existence of the particle number operator for the neutral sca-
lar field in its soliton sectors.

Let us assume to have a rest frame vector |¢) of (2.45),
and let us further assume that H |¢) = M,|¢), M,€R'.By
applying to |¢) polynomials in a*(k ), a(k ) and then making a
Hilbert space closure of the set obtained, we arrive at the
previously introduced notion of IDPS (|#)). Consequently, if
one has any Hamiltonian operator Hya*, a) = H, generat-
ing a unitary in time evolution in IDPS(|¢/)), it can be safely
added to M, thus giving rise to the following modification of

H=P*+M}:
=JPT+ (M, + H,)}), H,=Hya* a). (2.46)

Recall that #i = ¢ = 1. In Ref. (22) H,, is supposed to be a free
neutral scalar field Hamiltonian, which, however, has no
eigenvectors outside of the Fock space IDPS (|0)). Our
IDPS(|¢)) is inequivalent to IDPS (|0)). However, H, can be
regarded to be (if specialized to our example) the quantum
sine-Gordon Hamiltonian, constrained to the particular so-
liton sector. Then we can expect®>1%'! that the conventional
sine-Gordon spectrum and eigenvectors can be produced in
IDPS (|4).

Remark: A construction of coherent soliton states for
the sine-Gordon system is motivated by the following as-
sumptions: If 1;5 (x, t )isan interacting sine-Gordon field, then
it admits the Haag type expansion in terms of (asymptotic-
like but not asymptotic at all) free mass m neutral scalar field
generators a*(k} and a(k), i.e,d(x,t)=¢(a* a,x,1).
Then, a coherent state expectation value of ¢ in the tree (zero
loop) approximation,

=(0|:d (@* + @, a + a, x, 1):|0)
=@ a,x, t)=4dqlx, 1), (2.47)

should allow us to restore both the classical sine-Gordon
field, its equations of motion, and the Hamiltonian

(a|:H (¢ ):|a) = (a|-H (@ )a*, a)|a)
— (0|:H (¢ }la* + @a + a):|(0)
= H(¢)@ a).

In the above, |0) is the Fock state for the {a*, a] field algebra.

Consequently, the quantum sine-Gordon Hamiltonian,
consistent with the above tree approximation mappings,
should implement an evolution unitary in time in each of the
irreducibility sectors for the {a*, a] field algebra, i.e., in each
IDPS (|a)). Hence it is a rather natural choice to identify
H, = H(a*, a) of (2.46) with the sine-Gordon Hamiltonian,
while constructed solely in terms of a*(k ) and a(k ).

Let us add that the original Haag expansions in terms of

(al:d(a*, a, x, 1 ):]a@)

(2.48)
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free asymptotic fields of the model are of the perturbative
nature. In the above we admit expansions which formally
have the Haag form (infinite power series), but {1) are non-
perturbative and (2) can be defined with respect to the free
fields which are not asymptotic ones for the model under
consideration (“confinement”).

The choice of the c-number constant M, is to some ex-
tent arbitrary, but we are motivated by the fact that the sine-
Gordon parameter m of (2.4) gives rise to the classical 1-
soliton mass equal 8m. The 1-soliton momentum
k, = 8mv,/y/1 — v} isinarelativistic relationship with 8m:
E = \/(8m)* + k Z. Hence an identification M, = 8m is quite
natural.

Suppose now that we have solved the spectral problem
for H, in IDPS (|¢)). If | E, ¥) is an eigenvector of H, in
IDPS(]#)), then it is also an eigenvector of H,

H|E,¢)=VP + 8m+ E} |E, ). (2.49)

Hence we are in principle capable of producing quantum
corrections (due to the primary field excitations built over
the extended particle state) to the 1-soliton mass 8m. If we
adopt the discrete {bound state, WKB) spectrum of the sine-
Gordon Hamiltonian: {E;},_,, .. then the secondary Ha-
miltonian H = H(H,, P, Q) = H (a*, a, P, Q) has a discrete
mass spectrum with H,|0, ¥) = 0 corresponding to the

H |¢) = 8m|¢) equation.

Let us emphasize that in contrast to Ref. (22), but in
agreement with the observations of Ref. (6), the asymptotic
problem for the neutral scalar (sine-Gordon) field cannot be
solved in IDPS (|#)). There is no unitary mappings (solely in
the scalar field algebra) of the soliton Hilbert space
IDPS (J#)) into a Fock space IDPS (|0})). Consequently, we
have a typical “‘confinement ” of the quantum scalar field con-
stituents of the extended particle state (soliton) generating
IDPS (|¢).

On the other hand, a folk-lore statement is to attribute
the notion of a quantum particle to an elementary quantum
system (i.e., an irreducible representation of the CCR alge-
bra, which the pair P, @ does indeed generate). Consequent-
ly, for each fixed a value, the 1-soliton Hilbert space
h, = Sg:+ h,, du(ld ) can be interpreted as the carrier state
space for a quantum particle, which though ‘‘elementary” is
still an infinite constituent object, see, e.g., in this connection
Ref. (23). The constituents can never be seen in the conven-
tional (Fock space) sense, due to the above-mentioned “con-
finement” property.

Let us emphasize a paradoxical situation: a folk-lore
understanding of P, Q is that an elementary particle is struc-
tureless. Quite the contrary, our derivation of P, Q is based
on the rich infinite constituent structure underlying the con-
struction of the state space for the sine-Gordon field, while
soliton sectors are taken into account.

3. “ELEMENTARY” TWO LEVEL SYSTEMS AND THEIR
INTERACTION IN 1 4 1 DIMENSIONS

A. The modulus |a| of the 1-soliton parameter a is rel-
evant to the velocity v, andv, = v_ ,. Here sgn a is relevant
to the topological invariant value:
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R= Lf 9 4, (3.1)
47 Jr Ox

which for the ath 1-soliton reads
R=R(a)=R(%|a|)= + . Weassume a0 and then
compose a direct sum of the + ath soliton Hilbert spaces:
hl@=h,®h_,, aeR™. (3.2)
One can observe (see, e.g., Ref. 3) that a classical 1-soliton
momentum value reads k = 8m(a® — 1)/2|a| and hence the
a label can be replaced by a joint (R, k) label: & _ ,—hpg, so
that
hiag)=h, = Or— 112 Ay (3.3)

It means that now we are able to give a quantum meaning to
the topological invariant R. For this purpose, we shall define
the spin-1 SU(2) group raising and lowering operators, as has
been previously done in Ref. (3), in a slightly different con-
text:

ot = [ Sink 4 dln, = k2| duid),
R' n
(3.4)

o =J:E|n,k, — A, +, kA dpld).

Becauseof(n,a, A |m, —a,A)=0 VYn, m, A,wefindimme-
diately that

O sk =8 § k€M 1§ _rEM_y,

(of)*=0, (3.5)
ie,

bk =(£Y 10 o =(— Pl + oo,

L= [0t o0 ] (3.6)

In accordance with Ref. 2 and 3 the N-soliton coherent state
(without breathers) exhibits the following parametrization:

'kh R]’/lh'"’kNy RN,/lN)= |I_(’ Byé)Ny (37)

ki<ky< - e <ky

where, due to the classical momentum ordering, R, is a topo-
logical invariant of the &,th (asymptotic) 1-soliton.

A generalization of the previous direct integral proce-
dure reads now as follows:

|k, R, 2)v—IDPS(|k, R, 1)),

B, oy = h g = f duldy) - J dulix)
R' R!
XIDPS(k, R, 4)y). (3.8

By our choice of the sharply ordered momentum sequence
k, <k, < .-+ <k, we have guaranteed a fulfillment of the
“classical Pauli exclusion principle” regarding that neither
a; in the parametric sequence {a,,...,ay } can appear more
than once. By composing a direct sum with respect to all
possible configurations of + ’s in the sequence {R,,...,Ry }
we firally arrive at the N-soliton analog of the two-level Hil-
bert space 4, of (3.3):

B, ..y = D confiR) Ak,R, - kR (3.9)

The corresponding set of spin-1SU(2)" generators can be
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constructed by adopting the idea of Ref. (3) to our (direct
integral) case:

) ® @
o =iy = 3> [y duti)

conflR ) R!
X |k1, R], /11, ...,R‘. = + %’
ks Ry AWK R, Ay uR = — %’""kN’RN’/{NL

i)

o= 5 "o duit) - duny

conf[R)
X |kyy Ry ARy = — Lok, Ry, Ay) (3.10)

X(kl! R,, /ll""’Ri = + %w--’km RN, /1N|,
where 2 -, means that we perform summations over all

admissible configurations of {R,,...,R ] under an assump-
tion that R, is left untouched. Obviously,

[0 ] - =0=[07,07]_,
[o7,07]_0, i#),
[Ui+’ o; ] + = lk,---kN = 11’(\’,
1hy=nh%.
All mappings changing a configuration of {R,...,Ry} ata
fixed choice of k; < ... < k leave the Hilbert space A, ,, Ky
invariant. Since with such configuration-to-configuration
mappings we have automatically associated the spin-} xyz
Heisenberg model Hamiltonian (see Refs. 2 and 3), 4, , .. .

can be viewed as the carrier Hilbert space for a system of N
interacting spins 1 on a linear lattice with sites labeled by

(3.11)

kiyeoky:

3 N
nyzz_z E/aafofﬂ»l’
a=1i=1
(3.12)
= Lot oy, e o o
Ut \/2(0-1 +01 )’ i ‘/z(al al )’

o= —4i+or0 .
Needless to say, the spectrum of the weakly anisotropic xyz
model, while going to continuum is mapped into the WKB
sine-Gordon/massive Thirring model spectrum. Hence a
close relationship with the quantum sine-Gordon model still
persists despite the direct integrals involved. Be aware, how-
ever, that (3.12) is not a continuum but an (irregular) lattice
Hamiltonian.

An explicit construction of the eigenvectors of (3.12),
which can be easily reproduced in each A, ..., , Was given
together with the derivation of the eigenvalues in Ref. 24; see
also Ref. 11. Let us emphasize that the spin-} notion arising
in the above is of the purely topological (classical topological
invariant) origin; hence, with H, , in mind, we should say
rather about an interacting system of topological spins 1.

B. Before, we have introduced the Hamiltonian system
inh, .. by allowing mappings among configurations
{R,,...Ry] atafixed choice of k| < - - - < ky, which resulted
in the spin § H,_ operator as the appropriate generator of
time translations.

We can, however, define a more restrictive set of map-
pings, by following the route of Refs. 25 and 26, which aims
at the description of particle scattering in 1 + 1 dimensions,
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for systems subject to the infinite set of conservation laws.
Namely, let us adopt the following scattering principles: (1)
absence of particle production; (2) equality of the sets of ini-
tial and final momenta {p,,....px } = {p’,...,px }; (3)if there s
more than one type of particles involved, then the numbers
n; of particles of the same type are unchanged in the scatter-
ing process.

Now let us make an assumption that the classical soli-
ton momentum indices appearingin #, .., arethe *“particle
momenta” of the would-be scattered extended quantum sys-
tems. Then &, .., appears as a substitute (albeit completely
different in its structure) of the conventional N-particle Fock
space sector: ® ,_ ; ¥ (4;). Instead of speaking about different
(topological R = + 1) spin projections for a given “parti-
cle,” we can view them as completely distinct species, having
thus introduced a soliton and antisoliton as the two-“parti-
cle” types. Due to requirement (3), the number of soliton or
antisoliton labels remains unchanged in any scattering, and,
moreover, by (1)—(3) we find that®® the S operator acts on the
statesin &, ., by a possible permutation of momentum
labels. In terms of soliton states

S: |k1»R1-~'kN,RN)_“’|kmmRly-u»knﬂv)yRN)
= |k1,Rﬂ(l),...,kN,R,,‘N]], (3.13)

which means that the scattering process is described by an
“exchange” of topological charges at a fixed k; < - - - < ky
sequence, which is subject to our requirements (3). Here

hkl.A.kN 3 If;kl""’kN) - |f).

= >  fr.. . rlkiRy kg, Ry) (3.14)
(R, Ry}
so that
S:|f)—’ z le . --RNIkl’ Rﬂmwwkzv’ eruv))
{R]
= zfR,ﬂ,,-.-R,,,N,|k1:R1’---’kN’ Ry)= 11" (3.15)
iR}
with the normalization
(ks Ryyeoskn, Rylk, Rk R ) = 5R|R;W<SRNR .
(3.16)

Because of (1)—(3) the S operator should be factorized if de-
fined on states in 4, .., (see Refs. 25 and 26):

&' f) =8 kyoskn IS | f kysky)
:(g’kl""’kN‘ H S(kf’kj)[f;kl""kN)’
o (3.17)

where, since the two-particle S operators S (k,, k ;) in general
fail to commute, it is necessary to specify the order of factors
occuring in (3.17). A possible choice which corresponds to
the ordering of momenta k, < ... < k (see Ref. 25} is

'S12)= H Sij’

I<i<jsN

SN72.N e (S?.N ot 'S23)(S1N ot

(3.18)

where
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88 = SuS,

i
(3.19)
8,848 =S 4 SuS,

iy
i,j,k, all unequal. Let us once more recall the sharp mo-
mentum ordering we use in the above.

Suppose for a while that &, .., is formally construct-

ed without any reference to the &k, < ... < ky demand. Then
let us notice that the antisymmetrizing symbol

atky,....ky) = H [e(ki ""kj)_e(kj _ki)]
S (3.20)

with @ ( p) = lforp>0and O ( p) = Oforp<Oequals 1 except
for the case of an odd permutation when it equals — 1, and
for the case of coinciding momenta (k; = k ; for some choice
of i, j) when it equals 0.

Therefore, o7 is nonnegative and equals 1 for any choice
of noncoinciding k’s in the momentum sequence. It implies
that

1 -0 =0, o*=o,
(3.21)
Pu .. ky =0'2hk|~.kN@(1 “Ul)hk,...k,v
=h;‘l"'kN $hil
and i ., canalways be written in the form (3.14) with

k, <+ <ky. The analysis of Ref. 27 (see also Ref. 11) shows
thath; ... x, includes Fermi states of the Bose system de-
fined in A, ..., with ks unrestricted by (3.20).

Because the soliton Hilbert space of (3.14) respects the
sharp ordering of momenta, we have o*4, ..

=hy, ...k, = Px,...x, Consequently, the soliton “particle”
scattering is the same as the scattering of particles subject to
the Pauli exclusion principle.

Since R = + }—»R = — limplies the soliton — antiso-
liton, i.e., the “particle” — “antiparticle” mapping, the gen-
eral features of the scattering (3.15) should coincide with
these observed for the conventional Fermi massive Thirring
model, irrespective of the fact that we make the whole of the
construction for the Bose system only.

The state | f; k,...,k ) is a normalized vector for any
hence the two-particle S matrices S;; can be studied in more
detail:

Sy =T; + R,

(fs ki k| T fo Ky k) =

(S5 ks k4|Rij | £, ko ki) = Tye
In particular, if we consider a particle-antiparticle (i.e., soli-
ton-antisoliton) pair, we have only four functions occurring
in (3.22): t33, t77, t77, r77, which are still related by crossing,
symmetry and unitarity. If to introduce the rapidity O,

k$=m,cosh6,, k!=m,sinh6,

(k. + &k, =m} +m}+2m;m, cosh9;, 6, =6, -6,
(323)

(3.22)

(k; — k;) = m} + m} + 2m,m  cosh(ir — O,),

then, by making use of the crossing and unitarity relations,
one arrives® at
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t=ly, r=rg u=l,=Ily
(3.24)
t@)=ulir — 6), HO)=rir—0B),
and
#Oe)=t}0){1—[t(—6)(©) ']}, (3.25)

which proves that the scattering is described by only one
independent function, ¢ (@), say.

A particular choice of 7 (© ) determines the quantum
field theory model which governs the scattering process. If
we, for example, decide to follow Refs. 25 and 28, then the
choice of the transmission amplitude-

—imk /A
1) § H e 11: //11
K=1€ +e
corresponds to the so called soliton-antisoliton scattering,
and ¢ (O ) has poles at 6, = im{l — k /A ) which is in relation
with the WKB sine-Gordon spectrum:
m, =2m sin 7 k /24 provided that A = 87/y = 87/
B*1 — B?/8m) and the coupling term of the sine-Gordon
equation reads (m>/f )sin Bé. Due to the fact that A is chosen
to be an integer, the reflection amplitude /6 ) vanishes.
Consequently, we have found it possible to introduce in
the soliton Hilbert space 4, ..., a concept of what is usual-
ly known as the ““soliton-antisoliton scattering” for the
quantized sine-Gordon system. If we make one more identi-
fication, A = 1 + 2g/, the amplitude (3.26) describes the
transmission phenomena in the massive Thirring model with
the coupling constant g.

tO)={— A integer, (3.26)

4. ON REDUCIBLE FIELD ALGEBRAS IN QUANTUM
ELECTRODYNAMICS

A. One says that a representation 7(% ) of some (field)
algebra % is reducible in a Hilbert space 57, if there is at
least one nontrivial (i.e., different from zero and unity) oper-
ator R, which (1) commutes in J¥° with the whole of 7{%)
and {2) is not an element of 7(%)

In terms of quantum fields, one may assume that % is
generated by (say) the CCR algebra creation-annihilation
operators {a*, a} of some Bose field. Then the weakest state-
ment about R is that it cannot be solely constructed in terms
of {a*, a}'>~'*: Obviously, for an irreducible representation,
any element of 7(% ) can be given as a function of {a*, a}. A
particular example of such a situation was considered before
in Sec. 2. One of the observations of Ref. 29 was that a quan-
tized solution of the free massive Dirac equation, satisfying
the usual CAR algebra commutation relations can be recon-
structed in terms of the two potential Maxwell (Bose) opera-
tors. Then, upon imposing suitable constraints, one can ar-
rive at the free electromagnetic field (the Bose quantized
Coulomb  gauge potential A .. ) reconstruction of ¢(x) so that
dix) = v(d, x).

If by 7/(A ) we denote the electromagnetic free field al-
gebra, then z// is necessarily an element of it, as all its spinor
components can be solely expressed in terms of A . How-
ever, then 1/r does not in any case commute with A

[¢(x), 4 W] - 760 while the mutual commutatmty re-
qulrement [¥(x), 4,(¥)] — = Olies at the foundations of the
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conventional (perturbative) investigations in the infrared
quantum electrodynamics.'”"" On the other hand, this as-
sumption is not at all necessary for the understanding of the
QED Hilbert space structure, as described in Ref. 20. At this
point, it is worthwhile to recall the fundamental conjecture
of Ref. 20 that the asymptotic electron (Dirac) field must not
locally commute with the electromagnetic field. Conse-
quently, even if one follows the traditional route by starting
from the mutually commuting free fields

[#x), 4,.(y)] — = O, the final goal must be a construction of
the asymptotic free fields (arising as weak limits of the inter-
polating ones) which do fail to mutually commute.

In the Kulish-Faddeev-Zwanziger approach,'”'® one
incorporates the radiation/Coulomb phase operator so as to
arrive at the asymptotic electron field z//as =90, ,/, A )
which is a nonlocal function of the mutually commutlng
plane wave solutlons to respective free field equations: nona-
sympotic electron ¢(x) and photon 4, ones (see also Ref. 30).

While constructing ¢ras ,one belleves that an appropri-
ate Hilbert space is the direct product of the free field repre-
sentation space for photons and the traditional Fock repre-
sentation space for electrons. Let us mention that this kind of
assumption has been made by Matsumoto, et al.?*? to give
account of the collective degrees of freedom for soliton
fields.

On the other hand, it is well known that the free electro-
magnetic field algebra has a highly reducible representation
in the Hilbert space of infrared states,®'2%" hence quite a
natural way of getting the mutually commuting free fields
{4, A } would be to follow the construction of Sec. 2. Then
the nonasymptottc free Fermi field would be in principle iden-
tifiable in the commutant of the (reducible) free photon field
algebra.

For this purpose we need, however, an appropriate set
of electromagnetic field (coherent) states. In the traditional
perturbative framework ®3!'719-30 gne encounters the coher-
ent photon states, which describe the soft photon clouds ac-
companying one or more Dirac particles. Like the soliton
states |p;, Ry, A15..., Py» Ry, Ax) of (3.7) the photon coherent
states |py, €y,....0n,€x) can be used to generate the respective
incomplete direct product spaces, which carry pairwise uni-
tarily inequivalent irreducible representations of the CCR
algebra. However, in the photon case the parametrization is
not rich enough, and the translation freedom, which is so
crucial for the procedures of Sec. 2, is lacking.

B. Let {b ¥(k), d *(k), b, (k), d,(k)} = , , bethe CAR al-
gebra generators associated with the free Dirac field,

Px) = (7”‘)—, I g’—) (8ol ple™

+d *pjv,(ple ~™] dp,

k) = (2—7‘)7 I pﬁ) 5620/ ple

+ d,(p)v;(p)e™] dp, (4.1)

[bi(l’)’ bf(ﬂ)] + =06(p—4q)5;
= [d(p), d]*(p)] +
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and let {a*(p), a, (p)} be the CCR algebra ones for the free
Maxwell field:
dk

(ko)
4.2)

4,0x) = J [aX(kle ~ ™ + a, (Kje™] ———

7 )3’2

[au(k), a¥(p)] - = —g,.6(k —p)
withdiagg,, =(1, — 1, — 1, — 1),
p = ((p* + m?)"?, p), k = (|k|, k). The mutual commutativ-
ity condition

[af(k), b¥p)] - = 0= [af(k),d¥p)] (4.3)
is imposed according to convention.

The electric charge operator for the Dirac particles
reads

0= —efd“pa(f—mz)e(p%z (6% p)b,(p)

—d ¥ pd.(p)]. (4.4)

One knows that the n-particle-antiparticle Dirac state vec-
tor

bl bEP)dY(A) - d? (Q,)]0); (4.5)

induces the infrared coherent photon state describing the
associated radiation

™ el,...,p,.+m,e,.+m)=exp[ o )mj[fzm( Kjax(

— - +|k)a, (k)] (4.6)

(Zk )1/2 ] [ )B
Here |0); and |0), are the respective Fock vacua and one
should realize that |p,, e,,..., P, ; m>» €, . ) is DOt an element
of the Fock space, since

“m(---lk)=(i

Ehpick

5

i=1 ql
X¢7(k, Pise-sPr sl )! (47)

where g(k, p;..., P> 4y,.-4,,) = 1 for|k| <6< 1 while @ ra-
pidly vanishes for k| > §. Notice that because of (4.5) no
coinciding (p, e) pairs can appear in (4.6). By introducing the
orthonormal transverse polarization vectors €*(k),

s=1,2, k) = 0, € + k = 0 we can rewrite (4.6) in the (non-
covariant) Chung form,?'

|pl7 €yseesPr 4 ms en+m) = Xp{ Iﬁ#
Z,‘ [ e Klad (k)
T+ e, 09] ),,2]|0)B
: =W, (D, €)|0)s,
(4.8)
where
Srmlee [K)=F0 (- k)€ (k) (4.9)
so that
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[a:k), atp)] - = €(k) €lp)[a.(k), a¥p)] -
= 8,80k — p)

provided 2, ( — g,.. Je7'(K)ej (k) = §;.

C. In the above discussion we have distinguished a ball
{2 with the radius smaller than & in the momentum space.
Let & be the photon momentum detectability threshold.
Then photons with |k|<& may be called “soft”” while those
with |k| > & the “hard” ones.’' The soft photons are de-
scribed by the previously introduced coherent states, while,
for the hard ones, the conventional occupation number re-
presentation is adopted in the literature.

Let £2, be the momentum space region with
s - 8<|k| < (s + 1)8. The previous {2 is {2, in the present nota-
tion. Let y, (p) be the characteristic function of the set £2,:
xs(p) = 1forp € £2,, 0 otherwise, and let V' be the respective
momentum space volume of £2,. Then we introduce

(4.10)

a¥s) = %fdp (o). (b,

[ais), aXt)] - =6,6,, i,j=1,251t=0,1,2,--,
(4.11)
and quite analogously

[bi(s)’ b]*(t)] + = 5:‘1631 = [di(s)’ dj*(t)] +
for Fermi operators (4.1).

At this point let us consider a single hard (s > 0) photon
mode {a*(s), a;(s)};_, .- By W,(a’, @) we denote a polyno-
mial in a*(s), a,(s), { = 1,2, s fixed. Let us consider the set of
all such polynomials { W (a*,a)}, s fixed. Then the Hilbert
space closure of the set of vectors { W (a’, a)|0)p } isa Hilbert
space h, = [ W, (a*, a}|0); ] of the sth photon mode.

The lattice index s will be, for simplicity, omitted in
below. While in 2, = & we have the two Bose degrees of
freedom {a¥*, a;};_, ,. By using them we can easily con-
struct the infinitesimal generators of the £ (2) group Lie alge-
bra in A, namely, the obvious formulas:

a=gq+ip, a*=q—1ip (4.13)
allows us to introduce in 4 the two translation generators
N; =(1/2ifla;, —a})=p;, q; =la; +ar), j=12,(4.14)

which together with the rotation generator

(4.12)

=P~ @p (4.15)
form the E (2) group Lie algebra
[/3:N1]_ =iN2,
[#3 N,]_ = —iN, [N,N,]_ =0. (4.16)

In the most obvious Schrédinger representation (4.14)(4.15)
read

a

N = _"':97’ g,=u, N, = —iE, q, =0,
[ J )

= —fu— —v—|), i=c=1. 4.17

% ( w o ¢ &7
The unitary in 4 translation operators have the form
x4
T, = exp iAN = exp 211 ——2L (@, —ar); (4.18)
=
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hence, if applied to the Fock vacuum, they generate the co-
herent states for the sth (hard photon) mode, parametrized
by real labels A, 4,:

T, |0) = |4y, 43), ajl’ll’ﬂ-z)=%/1j|/11s'{2)- (4.19)

If to recall that the coherent soft photon states (4.8) were
constructed under an assumption that all entering photon
modes belong to 12, we find that each soft photon state may
be considered as a substitute for the (Fock) vacuum for all
non-{2, (i.e., hard) photon modes:

aj(s)!pl’el""’pn +m? en + m) = 0
Vji=1,2, ¥s>0. (4.20)

On the other hand, due to the sufficiently bad k = 0 behavior
of the boson transformation parameters f*,

a,(k) > a, (k) +f1,.(- - -[k) (4.21)

the hard photon (but soft) vacua (4.7) generate the rich family
of unitarily inequivalent representations of the photon field
(CCR) algebra, despite the fact that one exploits only the

k € £2, modes for the construction of generating vectors. It is
rather clear that the concentration on the infrared aspect of
the radiation field made people®'’-22%3! not even notice
that theory does not seem to forbid such boson transforma-
tion parameters for the radiation field, which (1) behave like

# ol |K)of (4.7) for k € £2,i.e., |k| <], but (2) behave as

badly at |k| — o0, as, say, the sine-Gordon parameters (1.8).
Property (1) would allow for the standard infrared construc-
tion, while property (2), upon appropriately varying the bo-
son transformation parameters with respect to their (bad)
|k| — oo behavior, allows in principle for the construction of
the set of unitarily inequivalent families of infrared represen-
tations: Within each family the unitarily inequivalent in-
frared representations would still persist.

Below we shall not enter into the problem of determin-
ing the boson transformation parameters which in addition
to (1) and (2) would exhibit a consistency with the equations
of motion for the radiation field [as /* ,, of (4.8) do]. Instead
we shall assume the appropriate parameters to be granted,
and analyze some consequences of this ansatz.

D. Let us notice that f%4 . (- - - |k) may be written as a
sum of contributions following from single charged parti-
cles:

ol ll) = ;pfi_,(w(k,p.-)— ilq_if‘k-mk,q,.)

n+m

= 2 f”(exj »T; Ik)’

i=1

(4.22)

e, =1, r,=p, i<n, r,=gq, i>n,

ek, r)=1 for kef2, Vi=1,2,..,n+ m.

Our idea is to introduce a modified boson transformation
parameter in the place of this in (4.7)—4.8):

SHe,r, A, 4" k) = yolk) f(e, rlK)
+ [1— xolk)1gHe, r, 4, A" [K) (4.23)

with y(k) = 1 for k € £2,, 0 otherwise. We demand further
that the |k| — « dependence be regulated by the choice of
two real parameters 4, A . An analogy with the sine-Gordon

Piotr Garbaczewski 979

Downloaded 30 Mar 2010 to 217.173.192.73. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



considerations of Sec. 2 suggests that the modified coherent
photon states

Iply el) /11’ /{ ;"'-r pN’ eN, /{N)A 1’v)

:exp[a—% Z Z[f(p],ej,/lj,/l Ik)a* (k)

= =

s 2, 45 K 0] 1,2] 0)5
should form the set of vectors, whlch are pairwise neither
equivalent nor weakly equivalent, unless the respective para-
metric sets Z and Z' with

P ={ppe,AnA by en Ay, Ay} do coincide:
PnP =P = ' Then at a fixed choice of N, and
{Ai» A [} 1cicy We remain on the level of standard infrared
recipes. The infrared photon Hilbert spaces received from
the generating vectors |p;, €,....Dy> €x) 1. by varying p;, e;
carry pairwise inequivalent representations of the photon
field algebra. In addition, the infrared families arising for
different choices of {4, 4 [}, ;c» are unitarily inequivalent,
albeit for each fixed choice of {4;, 4 [}, ;. the same in-
frared physics is described.

At this point let us fix N and the other charged particles
data {e;, p,}, .y For each sequence {4, 4/}, .y We deal
with a separable Hilbert space IDPS (|e, p, 4, 4 ')y) [Whose
orthonormal basis system we distinguish by an additional
index n = 1, 2,...; compare, (2.9)]. We shall adopt both the
direct integral procedures of Sec. 2 [see (2.20)] and the spin-}
SU(2) operator construction of (3.10) to arrive at operators in
the Hilbert space:

(4.24)

= ;f IDPS(je, p, A, A ')y) duid, A").  (4.25)
e] YR'
Let us introduce

a l a DO
Aji=E(jS+’Pji

=conf(‘)J ! f d'u(i ﬂ’ )

X 2'”3---ypjy + ,/1},11?',' * ')

d

xL(A;’+—
s

B )(n,..., By £ AL A% |

(4.26)
with (A =A%+, a=1,2,4, =1,

Aj=A42% j=1,2.., N, thesum 2 . having exactly the
same meaning as the one in (3.10). The object 4 *** differs
from 4 ¢ * in the replacement of (1/V2)(A { + 8/94 {) by
I/V2A ¢ —3/3A%).

Due to the orthogonality of inequivalent coherent states con-
stituting objects (4.26) we have

ASEATF =0 =AFEA¥F,

(4.27)
[A5* 4375 4[], 4377 =1
so that the operators
BH =A%t 4 i(—10 45,
! ! ! (4.28)

a=12,49=1,2,j=12,.,N
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together with their Hermitian adjoints satisfy the (infinitesi-
mal) CCR algebra commutation relations

[B7% BF"] - = 8uboy Sy

(4.29)

(B B3¥] _, =0=[Br™, B3] _,

The operators (4.28) do carry the charge-spin-momentum
labels of the Dirac particles (fermions), though acting expli-
citly in the (direct integral) Hilbert space of the (reducible)
electromagnetic field algebra and satisfying the canonical
commutation relations (the CCR). Notice that by construc-
tion, operators (4.28) belong to the commutant of the electro-
magnetic field algebra and the Fock-ness property for the
representation (4.29) can be introduced analogously to this
of (2.21).

Once the CCR algebra generators are given, one can
exploit the study of isomorphisms between Hilbert spaces of
symmetric and antisymmetric functions,?” to construct the
CAR algebra generators and then to represent them in the
Hilbert space of the Bose system. For Dirac fermions, this
construction has been accomplished in Refs. 32, 29, and 5
(see also Ref. 33, and the number of integral degrees of free-
dom {a, ¢} is preserved in this CCR - CAR = CAR(CCR)
mapping.

Operators (4.28) completely suffice for the construction
of the Fermi set {b,(s), b *(s), d,(s), b *(s)} of (4.12), where,
however, in contrast to the case of Ref. 29, the Fermi opera-
tors do belong to the commutant of the photon field algebra,
and obviously (this time like in the case of Ref. 29) do not
need any separate Fermi Hilbert space to have them repre-
sented.

Let us once more emphasize that the present construc-
tion differs essentially from the one given in Ref. 29 and Ref.
5, example 2, where a possible electromagnetic field content
of the massive Dirac field was analyzed. Namely, in the lat-
ter case fermions were essentially arising in the photon field
algebra, while in the present case they arise in the commu-
tant of this algebra, thus not belonging to it (but acting in the
photon field Hilbert space).

It seems to be a quite appealing idea that the asymptotic
solution for the quantized coupled Dirac-Maxwell system
given for example, by Zwanziger'® (on the basis of the ansatz
concerning the asymptotic limit of the renormalized Heisen-
berg electric current operator) can be given in terms of the
objects we have introduced above. However, for this pur-
pose, we find it unavoidable to have solved the existence
problem for boson transformation parameters (4.23). By ex-
istence we mean a consistency with the classical equations of
motion for the coupled Dirac-Maxwell system.

Let us recall®® our statement of belief: A necessary con-
dition for the existence of any physically meaningful quantum
field theory model is that the corresponding classical model
exists and is soluble.

For the classical Dirac-Maxwell system both the exis-
tence and (local in time) solubility were proved,>*** but in
contrast to (1 + 1)-dimensional models the explicit solutions
are painfully lacking.

Let us mention that, despite the latter problem, the rela-
tionship between the quantized Fermi-Dirac-Maxwell sys-
tem and the corresponding classical (c-number) one has been
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investigated in the series of papers of the present au-
thor?>2%%36 on the quantization of spinor fields, see also
Refs. 37, 38.

!J. R. Klauder, Phys. Rev. Lett. 20, 763 (1972).

?P. Garbaczewski, J. Math. Phys. 22, 574 (1981).

3P. Garbaczewski, J. Math. Phys. 22, 1272 (1981).

P. Garbaczewski, Ann. Phys. (N.Y.) 139, 293 (1982).

*P. Garbaczewski, J. Math. Phys. 24, 341 (1983).

¢ T. W. B. Kibble, J. Math. Phys. 9, 315 {1968).

L. Mercaldo, I. Rabuffo, and G. Vitiello, Nucl. Phys. B 188, 193 (1981).
*1. M. Gel'fand and N. Ja. Vilenkin, Generalized Functions (Moscow, 1961)
{in Russian), Vol. 4.

°M. A. Neumark, Normed Rings (Nauka, Moscow, 1968) (in Russian).

'°A. E. Nussbaum, Duke Math. J. 31, 33 (1964).

"'P. Garbaczewski, J. Math. Phys. 24, 651 (1983).

'2R. Haag, Nuovo Cimento 25, 287 (1962).

H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963).

'4J. R. Klauder, J. Math. Phys. 8, 1666 (1965).

'3J. Lopuszafiski and H. Reeh, J. Math. Phys. 7, 148, 1821 (1966).

'*R. T. Powers, Commun. Math. Phys. 4, 3 (1967).

7P, P. Kulish and L. D. Faddeev, Teor. Mat. Fiz. 4, 153 (1970).

'#]. Frohlich, Ann. Inst. H. Poincaré, 19, 1 (1973).

'“D. Zwanziger, Phys. Rev. D 11, 3481 (1975).

981 J. Math. Phys., Vol. 25, No. 4, April 1984

2], Frohlich, G. Morchio, and F. Strocchi, Ann. Phys. (N.Y.) 119, 241
(1979).

2'H. Matsumoto, N. J. Papastamatiou, G. Semenoff, and H. Umezawa,
Phys. Rev. D 23, 1339 (1981).

22H. Matsumoto, N. J. Papastamatiou, G. Semenoff, and H. Umezawa,
Phys. Rev. D 24, 406 (1981).

3]. G. Taylor, Ann. Phys. (N.Y.) 115, 153 {1978).

24L. A. Tahtajan and L. D. Faddeev, Usp. Mat. Nauk 34, 13 (1979).

25M. Karowski and H. J. Thun, Nucl. Phys. B 130, 295 (1977).

26A.B. Zamolodchikov and A. B. Zamolodchikov, Ann. Phys. (N.Y.) 120,
253 (1979).

7P, Garbaczewski, Commun. Math. Phys. 43, 131 (1975).

28V, E. Korepin, L. D. Faddeev, Theor. Math. Phys. 25, 1039 (1975).

9P, Garbaczewski, J. Math. Phys. 23, 442 (1982).

30y, M. Jauch and F. Rohrlich, Quantum Theory of Photons and Electrons
(Springer-Verlag, Berlin, 1976).

31V, Chung, Phys. Rev. 140, B110 (1965).

32p. Garbaczewski, J. Math. Phys. 19, 642 (1978).

33P. Garbaczewski, Phys. Rep. C. 36, 65 (1978).

3L. Gross, Comm. Pure Appl. Math. 19, 1 (1966).

35J. M. Chadam, J. Math. Phys. 13, 597 (1972).

36P. Garbaczewski, “Quantization of spinor fields IV. Joint Bose-Fermi
spectral problems,” J. Math. Phys. (to appear).

37P. Garbaczewski, Nucl. Phys. B 218, 321 (1983).

38P. Garbaczewski, Ann. Phys. (NY) 149 (2) (1983).

Piotr Garbaczewski 981

Downloaded 30 Mar 2010 to 217.173.192.73. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



