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A formulation of the c-number classics-quanta correspondence rule for spinor systems requires
all elements of the quantum field algebra to be expanded into power series with respect to the
generators of the canonical commutation relation (CCR) algebra. On the other hand, the
asymptotic completeness demand would result in the (Haag) expansions with respect to the
canonical anticommutation relation (CAR) generators. We establish the conditions under which
the above correspondence rule can be reconciled with the existence of Haag expansions in terms
of asymptotic free Fermi fields. Then, the CAR become represented on the state space of the

Bose (CCR) system.
PACS numbers: 11.10. — z

1. MOTIVATION

Our basic purpose is to deal with quantum field theory
models (irrespective of the space-time dimensionality) whose
elements of the field algebra admit a reconstruction in terms
of one or more quantum free fields. By free we understand
the field solutions of standard sourceless field equations like,
e.g., the Klein—-Gordon, Dirac, Maxwell, etc., ones. In addi-
tion, we require the equal-time canonical (anti)commutation
relations to be satisfied on appropriate domains. The latter
are, however, not required to belong to the Fock space.

For quantum fields with well defined asymptotics, the
above reconstruction is realized in the form of the Haag se-
ries. In what follows, by Haag series we understand any pow-
er series in terms of the normal ordered products of the CCR
or CAR algebra generators, denoted: F(a*, a);, :F(b*, b):,
respectively.

As is well known, the asymptotic condition is not an
obvious notion even for the simplest Fermi system; compare,
e.g., Ref. 1 and references therein. In this connection we
admit the Haag series reconstruction of quantum fields in
terms of free fields which are not the asymptotic series in the
usual sense of the word.?

In 1 + 1 dimensions, for all models solvable via the
Bethe ansatz technique, the construction of the eigenstates of
the Hamiltonian explicitly involves the fundamental free
fields; compare, e.g., Refs. 3—-5. We know, for example,® that
in case of the sine-Gordon system the underlying field is the
massive neutral scalar. In case of the massive Thirring model
the free massive Dirac field is used to construct the energy
eigenstates. However, to relate this quantum model to its
completely integrable c-number (semiclassical) relative, one
is forced to adopt a “bosonization” in terms of the massive
neutral vector boson.'

A quite analogous situation appears in the infrared
QED, where a bosonization of the quantum Dirac field
weakly coupled to the photon field is realized in terms of the
Coulomb gauge free Maxwell field potential.’

A common property of both the Fermi and Bose models

“Permanent address: Institute of Theoretical Physics, University of Wro-
claw, 50-205 Wroclaw, Poland.

341 J. Math. Phys. 24 (2), February 1983

0022-2488/83/020341-06$02.50

mentioned above is that to relate quantum and classical (c-
number)} levels of a given ﬁ/gld theory model, one starts from
the Haag-like expansions F = F (a*, a) in terms of the funda-
mental CCR algebra generators. Then one makes a boson
transformation a—a + A, a—a + A, where A is a c-number
function, and finally calculates the Fock vacuum expecta-
tion value in the tree approximation

(0|, |0}—(0|:F; :|0) = (O:F(a* + A, a + A ):|0) = F(1, A).
(1.1)

The functional power series F(, A) stand for classical, c-
number relatives of the quantum objects F' = F(a*, a), to
which :F (a*, a): corresponds in the tree approximation. One
knows that the tree approximation prescription can be used
to recover the classical Euler analogs of the quantum equa-
tions of motion.

It is of special importance to know these boson transfor-
mation parameters A, which in the tree approximation give
rise to the classical solitons. This problem was partially
solved (for solitons) for the Korteweg—de Vries’ and A *
models,*° and more generally for the sine-Gordon sys-
tem.*'%!! The latter case, using the Orfanidis’ formulas,'?
allows an identification of at least some soliton solutions of
the massive Thirring model. For a few other models in con-
nection with a coherent state description of hadrons, see Ref.
13. The tree approximation procedure can be described as
follows:

F=F@a* a—~Fla*+1,a+1)=F,

OIF (a* + A, a+A)|0): = (1 [F(a*, a)l4) = (A |F|A), (1.2)

(A |:F(a* a)|A)=F(L,A),

where |4 ) stands for a generalized coherent state for the field
(CCR) algebra. In general |4 ) is not an element of the Fock
space and hence gives rise to its own |4 )th Hilbert space

irreducibility sector for the CCR algebra, incomplete direct
product space IDPS (|4 )) CH in the general Hilbert space
H. For the particular case of Fermi models one can start

from the Haag expansions in terms of the CAR generators:
F (b *, b): but then the bosonization enters via b = b (a*, a),
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b* = b*a*, a),'*'®so that
F(b*, b)=F[b* b]a* a) = G(a*, a),
(0|Ga* + 4,8+ A)|0)=(A|F[b* bla* a)|d), (1.3)
(A :Ga* a):ld) =G4, A).

In particular (4 |b (a*,a)|A ) = b (1,4 ), (A |b *(a*.a)|A)

=b(A,A)=b(A,1)correspond to b, b *, respectively. Here
the CAR generators are by construction acting on the Bose
domain, hence we are confronted with a serious problem of
representations of the CAR algebra living in the non-Fock
representations of the CCR algebra the latter being based on
generalized coherent states.

Let us recall that the case of Fock representation has
been investigated and solved in Ref. 14, while the non-Fock
case was not considered in full generality. We know only"’
that the CAR do allow a local representation in the Hilbert
space of the Bose system, i.e., that the CAR hold true (while
on a lattice) for a finite number of degrees of freedom, but
may not hold true for almost all would-be Fermi degrees of
freedom, upon bosonization.

As we show below, only a very special class of (Bose)
coherent states allows the existence of fermions (representa-
tion of the CAR) on subspaces of IDPS(|4 )) and that in gen-
eral the CAR are prohibited. In the latter case, the interact-
ing spinor field does not possess an asymptotic spinor
partner (“‘confinement” property), and this role is played by
the fundamental boson(s) affiliated with the underlying re-
presentation of the CCR algebra. More precisely, it means
that in the von Neumann-Hilbert space H of the Bose sys-
tem we can find irreducibility domains for the CCR algebra
such that the CAR can be irreducibly represented on a sub-
space. On these subspaces an asymptotic expansion of the
interacting spinor field ¥ = ¥ (¢, ) in terms of the free fer-
mion ¢, makes sense. Whenever the CCR algebra irreduci-
bility sector in H does not carry an irreducible CAR algebra
representation, the underlying expansion makes no sense,
and ¥ should be expanded with respect to the free boson:
The free fermion is then “confined” and ¥ does not possess
an asymptotic spinor partner.

2. MAIN THEOREM

For clarity, we shall abandon the explicitly continuous
case and restrict considerations to the product representa-
tions of the CCR and CAR algebras.'”?° We refer to Ref. 20
in connection with the role of coherent states in this case.

Let H=112h,, h, = hVk =1, 2, ... be the von Neu-
mann infinite direct product Hilbert space. It is an infinitely
reducible carrier space for the representation of the CCR
algebra generated by a countable sequence of Schrodinger
representations {a*, aj;:

[a,-,aj]_[zﬁ):O: [aF, a}"]_W),
[a:, a*]_|¥) = |95, {2.1)
Vij, |¢)eH.

Let {¢) = 11?2 f,, fi€h, be a product vector with the proper-
ty || fi |l = 1V&. With each |¢) we have associated a separable
Hilbert space IDPS{|#)) on which a representation of the
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CCR algebra acts irreducibly. Among all possible product

vectors in H, we shall distinguish the coherent states, which
can formally be obtained from the Fock vacuum |0)eH, a; |0)
=0V}, |0) = II? £ 2, by applying a product mapping U 9 :

UR|0)=T2(U; fO:=T2|A), = |4),

U, = exp(Aa* — Aa), A,eCVk. (2.2)
Here |4 ) is determined by fixing a denumerable sequence (4 )
of complex parameters. We have g, |4 ) =4,|4), (A |[1)= 1.
The incomplete direct product space based on |4 } we denote

IDPS (|4 )). Two coherent product states are equivalent:
|4 )~ |y} if and only if the series

Sy —HAE Al 2.3)

converges.” When 2, |1 — |{(4, 74|l < «, we talk about a
weak equivalence |4 }={y). One knows®® that the weakest
condition for the CCR algebra representations acting in
IDPS (|4 )), IDPS (|y)), respectively, to be unitarily equiv-
alentis that |4 )z|y). In particular {¥)~ |4 }=>|y)z |4 ). Notice
that if 2, |4;[*4 oo then |0)£|y). If 3,|4; — 7;|* £ oo then
1)
Let us denote

P = exp( — a*a): + a* :exp( — a*a).a 2.4)
a projection on a two-dimensional subspace 4, of # spanned
by vectors f° and a* f° = f'. For a countable sequence
{a*, a}; we introduce a corresponding countable sequence
{P,}, and observe that the operators

o;" =atrexp( —a¥ a;):=P,a*P,,

(2.5)

o, =:exp(—a*a;}a;=Pa;P,
satisfy the following commutation relations on the Hilbert
space:

IDPS(|0)) =1 ;IDPS(|0)), 1, =I2P,:
[or o7 l.=0=[o",0"]_=[o7,0, ], i#j(2.6
[o77 0t | =P, Pl¢)=[U)Vi, V[¢)eIDPSL(|0)).
By applying the Jordan-Wigner transformation to the set
{o™, 07}, one can easily reproduce a sequence {b ™, b }; of

the related CAR algebra generators. We wish to emphasize
that the condition

lo7 .o L) = [¥)Vi (2.7)
is a crucial requirement, to have the CAR algebra represented
on a domain to which a vector ) belongs. Notice that the
relations (2.7) are immediate if |¢) appears in the form of the
product vector:

19) =NE@sr’+B

‘ak|2+ |ﬂk]2____ 1v,, (2.8)
af’=0, a*f°’=f"
Vectors of this form are the conventional product ones used
to investigate representations of the CAR algebra.'®'® No-
tice that (2.7) does not hold true if applied to a coherent

productstate |4 ). Werelate the above mentioned representa-
tion of the CAR algebra to that of the spin | algebra (2.6) via
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the Jordan-Wigner trick:

k—1
b? =exp(i1r 2 ot o )a,;* ,

J=1

k=1,2,.. (29

k—1
b, = exp(iﬁ Y o o )ak".

=1

It is easy to verify that (2.7) reads

[bk»bz]+|¢)= [Uk_» 0:]+|¢)Vk, (2.10)
and that (2.6) implies

(6 0,119 =0, k#j

(b, b7 1119 =0, (2.11)

(6.0, 1.1 =0.
Moreover, if 0¥, b *, a*, 0,7, b;, a; are applied to the Fock
state |0) we find

0,710)=b}|0) =a?|0)Vi, b;|0)=0=4g;|0)=0;"|0),

(2.12)
i.e., the basic property of the Fock representation construct-
ed in Ref. 14.

Theorem: Suppose we have given IDPS(|4 )), where |4)
is a coherent product state determined by a complex se-
quence (1) = {4, 4,,...}, where 4, = |4, |exp(i8;), |A«|, &
€R'. Inaddition tothesequences (|4 |)and (8 )let usintroduce
the three additional real ones (¢ ), (¥), (@). Assume that

(1) Ek: el =, (2) Ek: lAe|* < o0,

(3) lim 4.

ke |4, |*

=4 #0, »,

1.

(5) lim —%_ —
koo |4

Then a product vector |¢) = I12 (uf° + vf '), with
u, = cos a;explid,),

is an element of IDPS(|4 )).
Proof: It suffices to prove that vectors |4 ) and |¢) are
equivalent. The equivalence cirterion is 2, |z, | < o, where

v, = sin a; expliY, ) (2.13)

2, = 1 — [cos a,explid,) + |A,]
Xexp i(¥, — &,)sin @, Jexp( — |44 |%/2).  (2.14)
Let us consider k> k> 1, when all the parameters are close to

0. Then, upon expanding z, into a Taylor series about 0, we
have

(1= 01~ 2)- %)

i 858,

M’ |2 a 2
tm a1 LN (1 2, 4 ph 0, — b |
(2.15)
i.e., by virtue of (1}H5),
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Rez,~|A,|*, Imz,~(4 + B)|A,|* (2.16)
Consequently,

lim 1444 B))"2£0, . (2.17)

k= |A[*

Because of (2) the equivalence criterion holds true, and
|#)~ |4 ). Consequently,

|#)eIDPS(|1 )).

It is worth emphasizing that we must have here lim,_, _ |z, |
=0.ItleadstoRez, — O0,i.e,

k—

[cos @) cosp, + |A,|sin a,cos (¥, — 6,)] —exp(|d, °/2),

which holds true if and only if [1,| — O.
k— o0

Remark I: Notice that in the above, at a fixed choice of
parameters |4, |eR *, westill have a freedom in the choice of
phases (6 ) in the complex sequence {4 }, which is furthermore
reflected in the appropriate freedom of choice of the phases
(¢) in the product vector |¢). The latter is obviously regulated
by

L V=8
im =

ko |4 ]2
A consequence of this is that if we have two sequences (4 ),
(A

A = |Alexplidy), Ak = |Ai|exp(id ;)Vk,

then the condition

z |Ak]?[cos(8, —61) — 1] <

k

(2.18)

(2.19)

is a sufficient and necessary condition for the product vec-
tors |¢)eIDPS(|4 )), |¢')IDPS(|4 ‘) to be weakly equivalent.
Toseethis, itisenough to notice that product vectors |4 ), |1 )
are weakly equivalent if and only if the real part of (2.3)
converges. In fact

A =espl = 33 ke =i+ S i
(2.20)
and 3, |4, — 4 ;|* < w is just the same as (2.19). Obviously,
if 2, |4 —A;]* = co, then |4 }£|4 7).

Remark 2: The above theorem can also be deduced as a
special case of a more general theory of Ref. 19. Namely, if 4
is a Hilbert space with an orthonormal basis (e, ), and p a
projection on a linear span of e, ..., ¢ sothat Py = p,-py is
a projection in IDPS(|4 )), then
(1) there exists a limiting projection P = lim P, in
IDPS(|1)); e
(2) by expanding 1), = 2, v¥e, =2, A ¥/ (k)% ey,
we arrive at the following conclusion:

N
P#0ifand only if 3 [1 - ( S lr,’-‘|2)m] < o;
i k=0
(3) the vector |¢), P |¥)#0 can be constructed as follows:

=i wi=(5 ) 3 Hee @21

Piotr Garbaczewski 343

Downloaded 20 Apr 2007 to 156.17.88.174. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



In the special case of N = 1, we have ¥? = exp( — |4,|%/2)
andA ! = A,exp( — |4 17/2),and 37_, |4 | < o0, T2, A4 |
= o, is a necessary and sufficient condition for a projection
P to exist in IDPS(|4 )).

Remark 3: Notice that states |¢) = I12|¢,) in (2.21),
(2.13) have exactly the structure required by the spin 1/2
approximation procedure of Ref. 4 for quantum Bose sys-
tems. The above (Remark 2) statement is more general, how-
ever, and allows a construction of quantum spin chain states
(with a fixed finite spin) in the Hilbert space of an interacting
(non-Fock) Bose system; see in this connection also Ref. 15.
The Holstein-Primakoff SU(2) generators

S/ =(29)aX(1 — a¥a,/(29))',
S 7 (29741 — a%a,(25) ",

S? =S —afan

(2.22)

provide us with an irreducible (at each ith site) representa-
tion of the SU(2) group Lie algebra corresponding to spin
s = N /2, given by

S, = PSP,
where P is a limiting projection of Remark 1.

(2.23)

3. DISCUSSION

Let us notice that the existence of |) in IDPS(|4 }) guar-
antees that all vectors equivalent to |¢), of the form
2 (af°+Bf %, lac|* + |Bi|* = 1V, are elements of
IDPS(|4 }). A Hilbert space closure of the set of all linear
combinations of such equivalent product vectors,
IDPS(|#)) is a subspace of IDPS(|4 )). The CAR are irredu-
cibly represented on IDPS(|¢)) provided {&*, b }; are con-
structed from {a@*, a}; according to Ref. 14. Let us also ob-
serve'® that once we have any product vector |y)sIDPS(|4 ))
with the basic property [0, ;% ] |¥) = |¥)V, then the fol-
lowing two properties cannot be simultaneously satisfied: (1)
o7 |y) =0V, (2) |¥)#0 under an additional restriction (3)
|4 }£|0), where |0} is a Fock state in H, and |4 } is a coherent
product state. Consequently, there exists a unitary inequiva-
lence of the CCR algebra representations associated with
IDPS(|4 ), IDPS(|A '), where |4 }£|4 ') implies a unitary ine-
quivalence of the related CAR algebra representations in
IDPS,(|#)), IDPS.(|¢')), respectively. Let us here empha-
size that a particular form of the boson transformation pa-
rameter for a concrete field theory model follows from its
equations of motion. This severe restriction may violate, and
in general it does, the condition (2} of the Theorem of Section
2. In this case the bosonic semiclassic (i.e., the CCR repre-
sentation based on the coherent product state) prevents us
from having represented the CAR on the appropriate do-
main. The “semiclassical Hilbert space” allows at most a lo-
cal representation of the CAR on a subspace,"” i.e., with a
property [b;, b*]. |y) = |y) for a finite, though arbitrarily
large, number of modes, |y) belonging to this subspace. No-
tice that by defining an arbitrary polynomial W ,(b*, b)in
terms of “bosonized” Fermi generators {b *, b };, (/) being
a finite set of indices, we arrive at the following definition of
locally Fermi, but globally coherent (Bose) quantum states:

A )sr =14}, =W, (b* b)|A). (3.1)
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One can easily verify that on |y),, the CAR hold true for all
Je(Jj), but not for j¢( j), albeit [b,, b *], = O for all i#/; com-
pare, e.g., Ref. 17. Suppose now that the coherent product
state |4 ) obeys the restrictions of the theorem of Sec. 2. Then,
the semiclassical Hilbert space IDPS (|2 ))does carry a Fermi
system on a subspace: the CCR algebra possesses the mani-
festly Fermi states in IDPS(|4 )); compare, e.g., also Ref. 21.
In this case, we can say that both fundamental free bosons
and fermions can exist in the same state space on an equal
Jooting. However, if the restrictions of the theorem are not
satisfied by |4 ), then the only fundamental free field that
remains is the Bose one. No fundamental free fermions are
allowed. In the case of interacting Fermi systems such a phe-
nomenon would correspond to a “‘confinement” of their fun-
damental free excitations (absence of asymptotic free
fermions).

Example I: Sine-Gordon versus massive Thirring model.

(1) Both the Mandelstam?? construction and the Orfani-
dis'? observations allow a bosonization of the massive Thir-
ring field in terms of the interacting sine-Gordon field under
appropriate constraints. Namely, we can symbolically write
an operator identity:

V=v (), =0, O-mi¥,=0 (2
so that according to the tree approximation scheme, we
should have calculated a coherent state expectation value:

W@, ]:1A) =¥ @S] =¥(d), (33

where ¢ is a free classical field {the scalar neutral one) of Ref.
6, ¢,, in the above is the plane-wave solution of the Klein—
Gordon equation in 1 + 1 dimensions, and the normal or-
dering refers to its (plane-wave solution) creation-annihila-
tion generators. Classically,'? one knows that if @ = @ (¢ ) is
the sine-Gordon 1-soliton, then ¥ (¢ ) introduced according
to

¢ 1/2
¥V, =Vi= ia‘”z(% sin —23-) exp( — i®,/r),

P \12
W, =P = a”z(% sin T) expli®, /4), (3.4)

P, =P(d.),
satisfies the massive (mass 1) Thirring model equations of
motions, which are the classical (c-number) ones:
—i0,. ¥, =¥, -2¥, Y,
(3.5)
0¥, =1W¥ 29 "WV,

The underlying coherent 1-soliton states were con-
structed in Ref. 6, and their boson transformation param-
eters satisfy

1 dk =
3 | e Ak = [axtg i = o,
{3.6)
where ¢ (x) = ¢, (x) = exp my,x, y, = (@* + 1)/2a; hence
Condition {2) of the theorem of Sec. 2 is manifestly violated.
As a consequence no free fermion is allowed in the 1-soliton
Hilbert space IDPS (|4 ) for the sine-Gordon system.
{2) On the other hand, the spectral solution of the mas-
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sive Thirring model given in Ref. 23 proves that the funda-
mental free field, to be used in the Haag expansions of the
model, is the massive Dirac one in 1 4 1 dimensions. Its
creation and annihilation operators are required to satisfy
the CAR:

[bi(P), bﬂQ)]+ = 5,75([7 -4q),

[bi(P)’ bj(q)]+ =0= [b f(P); bf(q)]+y

and¥ =¥ (zzzi,,) = ¥ (b* b). Noticethatinl + 1dimensions
one can introduce both Bose and Fermi fields on the com-
mon Hilbert space domain, without bothering about any
spin-statistics problems (this is not the case in 1 + 3 dimen-
sions). A bosonization of {b*, b },_ , involves the corre-
sponding Bose degrees of freedom {a*, a};_,, (see Refs. 1
and 14) so that

b*=b*a*a), b=bla* a)

O=w(,)=Pb*b)=V¥@*a=w0,)
where UM is the massive vector field in 1 + 1 dimensions
with no Proca condition imposed. If the construction of
semiclassical domains IDPS(|4 )}, i.e., of coherent states |4 ),
respects the coexistence of fermions and bosons on a com-
mon domain, both ¢m and U are equally fundamental and
give rise to equivalent Haag series expansions of the quan-
tum fields on the subspace of IDPS(]4 )).

(3) The above picture breaks down if the coherent state
|4 ) does not respect restrictions of the theorem. Then the
CAR are no longer satisfied by 1//,,,, and an appropriate (and
then unique) fundamental free field is U , 1.€., the Bose one.
In particular, if we impose a Proca condition we arrive at
Case (1), wtlere the fundamental free field is a massive neu-
tral scalar ¢, , i.e., a boson again.

To summarize: The massive Thirring model always ad-
mits a bosonization in terms of U Nevertheless, the notion
of a free fundamental fermion can still be saved if coherent
states |4 ) obey the theorem. Otherwise, either U or ¢m plays
the role of fundamental field in the model. Consequently,
this special Fermi model admits in principle the three differ-
ent types of Haag expansions—in terms of ¢, ¢;,, or U,,,
depending on the choice of the state space in H. Let us once
more emphasize that an expansion in terms of ¢m can always
be rewritten as an equivalent expansion in terms of U This
is obviously a peculiarity of the 1 + 1 dimensional space-
time, where the spin-statistics theorem does not apply. The
inverse statement in general is not true, because once having
specified a domain for ¥(U, ) = ¥ in H, we may have pro-
hibited the existence of the CAR on it. Then, even having
started from an expansion g=y R ) one must realize that
1//,,, is no longer a free Fermi field in the conventional sense of
the word. It is worth mentioning at this point that quite a
variety of spinor modelsin 1 4+ 1 dimensions do not meet the
requirement of asymptotic completeness; the asymptotic
spinor field related to a given interacting spinor field does
not exist on the state space of the latter, see, e.g., Ref. 24, but
also Refs. 1 and 25-27, where the spinor field asymptotic in
1 + 3 dimensions is considered.

Example 2: QED in the infrared domain, or the gauge
Jfield transcription of the Dirac-photon system.

(3.7)
j=1,2

(3.8)
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The statement of Ref. 1, that the correspondence princi-
ple allowing us to relate the classical (c-number) and quan-
tum levels of spinor systems in 1 + 1 and 1 + 3 dimensions,
involves free Bose systems with unbounded-from-below
Hamiltonians. With any element of the spinor field algebra
in hand, upon bosonization we can calculate its coherent
state expectation value in the tree approximation, thus arriv-
ing at the corresponding semiclassical entity.

In 1 + 1 dimensions, the free (asymptotic) fermion can
in prinicple coexist with the subsidiary (background) boson
on the same state space in H. Then an interacting fermion can
have its free asymptotic Fermi partner. However, in 1 + 3
dimensions, the spin-statistics theorem must be taken into
account. By using a chain of heuristic arguments, we demon-
strated in Ref. 1 that a Dirac field, if weakly coupled to the
photon field (a nonlinear system of coupled Maxwell and
Dirac equations), allows a bosonization in terms of the pure
gauge field itself. We use here the Maxwell potential in the
Coulomb gauge

Y=y, )ovd,)= 1| ¢d,)|1) (3.9)
where |4 )is an appropriate coherent photon state, 4, beinga
solution of the sourceless Maxwell equations. A really strik-
ing peculiarity of (3.9) is that an interacting spin } field ap-
pears as a nonlinear and nonlocal excitation in the spin 1 free
field algebra. This observation can hardly be reconciled with
the traditional wisdom about the (perturbative) QED, and its
asymptotic problem solution.”>"?’ Namely, in the latter case
the interacting fields, both Bose and Fermi, have expansions
in terms of free Bose and Fermi fields via the Haag series.
The Haag series is written in terms of free Fermi and Bose
fields commuting among themselves, which is distinct from
the bosonization recipe, as discussed in (2.4)—{2.17). The as-
ymptotic infraparticle states of QED found in Ref. 27 re-
quire both free bosons and fermions to commute among each
other.

In the bosonized case, while using (2.5) and (2.9), we find

that, for example,
k—1

[y, a%] . _expnrz oto” (o7, ar] .,
7=
hence neither commutation nor anticommutation occurs.

On the other hand, the observation (3.9} is fully consis-
tent with the attempts of Righi and Venturi**=*° to construct
charged fermion fields from extended particlelike solutions
in their nonlinear approach to quantum electrodynamics.
An example of the fully bosonized interacting spinor field
which satisfies the CAR, and does not at all commute with
the electromagnetic field, is given in Ref. 29. An analogy
with the previously considered sine-Gordon/Thirring case
appears to be striking.

Obviously the field A is not free, but its Haag series do
apparently fit in our framework Hence a construction of the
appropriate coherent photon states is quite in order. In the
case of the relativistic field theory, we expect that the pres-
ence of free fermions should be forbidden in the fully boson-
ized Fermi system. Hence one should look for coherent
states which do not conflict with this theorem. We still can-
not propose a final solution to this problem; let us, however,
indicate that the coherent photon states invented by

(3.10)
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Chung?® in the conventional approach to the QED do not
allow the existence of free fermions on any subspace of the
semiclassical (photon) Hilbert space. The coherent states of
interest read (a single electron case)

|4), = U210}

=exp{(2_:).3_5 f p |k, plart

(=12

~ Fk pla ] 22} o) (3.11)

d 3
(2 ko)l/ 2
where '
Fik,p) =2 6k, p) (.12
pk
and p, k, € are the four-vectors, p-k being the corresponding
scalar product formula. Here p stands for the four-momen-
tum of the electron to which the state |4 ), is assigned. The
function ¢ (k, p) equals 1 in the vicinity of £ = 0. By also
taking into account a factor 1/(2k,)'/%, k, = |k|, one easily
verifies that the coherent photon state |4 ), violates Condi-
tion (2) of the main theorem due to the singularity of
|F(k, p)| at k = 0. Let us mention that in analogy to |4 )., the
soliton states of the massive Thirring-sine-Gordon example
did exhibit a manifest parametrization |4 ) = |1 ), in terms of
the 1-soliton parameter a; compare, €.g., (3.6). Because the 1-
soliton total momentum reads k = 8m(|a|> — 1)/2|a|, |1),
provides us with a momentum parametrization as well.
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