Non-Grassmann quantization of the massive Thirring model
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A direct quantization of the c-number (semi) classical massive Thirring model in the inverse
scattering formalism leads to the Bose massive Thirring model, which is equivalent to the
conventional Fermi one, both having identical S-matrices and bound-state spectra.

PACS numbers: 03.70. + k, 03.65.8q

A. There is a wide-spread belief among quantum field
theorists that (semi) classical c-number spinor fields are un-
related to their quantized Fermi partners. A spectacular
manifestation of this situation is the use of Grassmann alge-
bra-valued spinor models as the would-be-the-only-reasona-
ble pseudoclassical levels for Fermi systems. For example,
the path integration methods if applied to spinor systems, by
the very assumption do exclude the conventional path no-
tion in the c-number function ring. An anticommuting, i.e.,
Grassmann algebra valued ring is then conventionally in
use. From the practical point of view (perturbative calcula-
tions) this idea is quite justified, and it was consequently the
main motivation for the studies of the Grassmann algebra
valued massive Thirring model, which has been proved to be
acompletely integrable system.' There appeared, however, a
problem of the quantization of this system via the quantum
spectral transform method (which is successful for many
other 1 + 1 dimensional models). This quantization route
which we call a Grassmann quantization of the massive Thir-
ring model still remains uncompleted.

Quite the contrary, in the series of papers, Refs. 2-4, we
have investigated the relationships between the (semi) classi-
cal c-number spinor systems and the respective quantum
Fermi models, following the idea of Ref. 5 that the c-number
solutions of the classical spinor field equations should have
some relevance for the construction of the appropriate quan-
tum field theory. In Refs. 2 and 3 we have demonstrated that
the relationship exists provided the Fermi models admit a
“bosonization” in terms of free Bose fields. In the practical
application of Ref. 4 it means that the Fermi massive Thir-
ring model admits three different types of the asymptotic
(Haag) expansions, depending on the choice of the state
space, and provided one takes into account spaces generated
by soliton coherent states, see, e.g., Ref. 4.

The underlying expansions appear either in terms of the
massive vector boson without the Proca constraint, or in
terms of the neutral massive scalar (then the relationship
with the sine-Gordon model can be established), and under
special circumstances only, in terms of the free (asymptotic)
two-component fermion. The latter case fits into the conven-
tional asymptotic completeness condition, otherwise the fer-
mion being confined.

Because in the light of Ref. 4 there exists an indirect
relationship of the c-number massive Thirring model (MT)
to the Fermi MT, it is quite natural to state a problem of the
direct quantization of the c-number massive Thirring model.
This route we call a non-Grassmann quantization of the MT.
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We accomplish this quantization in the quantum inverse
transform formalism of Ref. 6, by exploiting both the results
of Refs. 7 and 8 concerning the complete integrability of the
c-number MT and those on the quantization of the sine-
Gordon model.’

We demonstrate that in the quantum inverse method,
the Bose quantized MT has a lattice approximation, which is
equivalent to that of the quantum sine-Gordon model. By
repeating the arguments of Ref. 9, one is then capable of
deriving a continuum limit in which both models have the
bound-state spectrum (and the S-matrix) identical to this of
the conventional Fermi MT.

B. The classical {semiclassical in fact) c-number massive
Thirring model is known to be a completely integrable sys-
tem.”® The field equation

(— iy, +m)Y=gry(Yy,¥), v=01,8>0,

7= @ ) e
Y=y (1)

can be rewritten as the system

— iy, — ith,, + miy + 28|86, =0,
(2)

— iy, + ity + mip, + 28|00 *, =0,

which is known to admit classical (c-number spinors) soliton
solutions.® An equivalent description of Eq. (2) is known to
be provided by the commutator [X, T]_ = 0 of the two ob-
jects:

X = 20, + gy ¥y’ + (2mg)'”?

0,/11/)’2"—/1_11,&?‘)_& 23 -2
<o a g0) 3 =277, 5

T =2id, + g[@yod)y” + (2mg)'?

0, Ay + 4 _1;[/““) m ., _2
X(}”/’z-i-/l_lz//l,o 2(’l +4 739,

i.e., by the condition that all terms standing in the commuta-
tor at different powers of the spectral parameter 4 do vanish.
For X = X (1), we shall adopt the form
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X' =4iX=—-d,+Lix,4),
L(x,l):i(

Pi= |¢’i|2! i=12

imld 72— A7) + gl py ~ pa), (A¥F — A T Yt)ime/2)Y 2) “
(mg/2) Ay, — A "), A m(A % — A "% —g{p, —po)/)

According to Ref. 6, a straightforward quantized version of the problem(1) appears if one replaces the classical fields ;(x) by
the quantum operators ¥, (x), satisfying the (equal ¢t = O time) canonical commutation relations, not the canonical anticommu-

tation ones (CAR) as demanded by convention:

[#:(x), 9011 - = ad,8(x — 3) . [Bilx), §( 9] - =0, (5)
provided we make a changein L (x, A ); L (x, A }>L (x, 1),

B d)= i(}.m( —A% =2 7) 48l ~ £p, + o), (me/2)!HAYE — 4 —‘ifm)‘ 6

) - \img/2)" Ay, — A '), §mld * — 2 77) + glnp, — £p)

pilx) = ¥HxWi(x), i=12, n=expy/coshy,

& =exp(—y)/coshy, y = liarcsinq, aeR.

I

With the operator valued matrix L (x,4 ) in hand, let us intro- a 0 00 a=1,
duce the tensor product matrAices R = 0 b ¢ 0 , b =sinh 2y/sinh{u + 2y),

L'=Lel, L"=1IeL (7) g (c) l(’) S ¢ = sinh u/sinh(u + 2y),
according to the rule (10)

rod= (1 ) ®

Then the matrix equation

RAAN xAL"(xA')=L"(xA)L'(xA)R(AA"),
(9)
can be solved by means of the 4 X 4 matrix R = R (4,4 ), with
the c-number matrix elements,*

L (x A )i (

¢ =c(A,A’) =sinh (v — v')/sinh(v — V' + iu),
b= (AA") =isinu/sinh{v — v' + iu),

A=expv, A =expv.

C. In general how to apply the quantum spectral trans-
form method on the continuum level is not straightforward.
Usually one adopts some discretization scheme, like that in
Ref. 9, where the quantum inverse scattering formalism as a
basic ingredient includes a matrix equation:

XW=((% +iQ)W=0, (14]

withQ=0(x}= il {x,4 ). Its discretized version on a linear
lattice of length L and spacing 8, N = L /6 reads
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— Imsinh [2v — iy — 7/2)] + gle**p, —
(mg/2)'2(e'g% — e~ *P¥), ymsinh [20 — ilu — 7/2)] + gle*"p,

whereexp u =A /A" =explv — V'), expv=A4A,expv' =41".
Let us notice that the change of variables in (6),

VU — Y, UV — ¥ (11)

does not affect the R-matrix (10) because ¥ = v — v'—u. No-
tice that (11) corresponds to the replacement A
—A exp( — y). We shall adopt a bit more sophisticated ver-

sion of (11), namely,
V—U — (}/ — 117'/4), vV'—u' — (y — l7T/4) (12)

Recall that the parameter y is purely imaginary: ¥y = iu/2,
4 = arcsin a. Consequently we arrive at

e—i/—‘/2ﬁl),(mg/2)1/2(ev,‘22* _efvizjr (13)
_e—z}u/sz ’
I
Wn+l :Ln(x)wn’
X, + & Xy, + &
L,,(,l)=1+if Q(z)dz=1—f LizA)dz,

(15)
X, = —L/24nb,

In particular one finds

n=0,1,.,N, N=L/b.

Nl
Y5 =¥Y:=TA)= H L,(A)=Ly_(A).-Loih).

(16)
The so defined transition operator for an interval L = N5,
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4(4) B4 ))
iy = ,
“=\cu) pu
RAANTA)eTIA)=(TA)eTA)RAA),

is a fundamental object of the quantum inverse method.
Upon discretization of (15), one represents
AA),B(A),C(A),D(A)by operatorsinthe 2V particle Hilbert
space %,y = [IX_, ® (h® h); carrying a (2N particle) Fock
representation of the CCR algebra:

(17)

N
B2 =0,Vi=12 n=12..N, 2= ] ew,ed)

(B pm)) - = 8,8, [Wilmbiylm)] =0, (18)
hin) = —— | iy

I, xe[x,.x, +6],
X0 =1,
X xe[x,,‘,x,, +4].

In particular we can consider the action of matrix elements
of the operator L, (4 ) on the Fock vacuum (2. One immedi-
ately verifies that
L, 2=0,
L2 ={1 — limésinh[2v — ilu — 7/2)]}02
= {1 + Imébcosh(2v — iu)}2
=exp[imdcosh(2v — ju)]+42 (19)
= expla(d )6 1-£2.
In the above we use an identity
sinh [(2v — iu) + im/2] = icosh (2v — iu),
Analogously,

L, 2=exp[d (A )6]02 = exp{ — Imbcosh (2v + iu)}12,
(20)
and consequently,
expla{d )} + d (1)]6 = exp(imb-sin p-sinh 2v), (21)
ie.,
exp[a(d ) + d (A }]N = exp ikL = (exp ik6)-7%,  (22)
k = (m sin p)-sinh 2v,
with [make a product of matrices L, according to (16)]:

AAN2 =expla AN ]2, DAM2=exp[dAN]2.  (23)
Hence in addition to the R-matrix (13), we have specified the
reference (Fock) state £2 solving the eigenvalue problem for
A(A),D(A), Egs. (19)~23) and being annihilated by C (4 ).
These data completely suffice to specify a representation of
the algebra of A, B, C, D operators as defined by the commu-
tation relation (17). Then we can construct the eigenvectors
of the transfer operator

TiTA)=TA)=A(A)+DA), (24)
as follows
Riveda) = T[] BR2, (25)

i=1

provided we have satisfied the periodicity condition

1808 J. Math. Phys., Vol. 24, No. 7, July 1983

n sinh(v, — v, + i
exp ik, L = H %n v — v + i)
j=n sinh(y; —v; — iu)

(26)
k; = (msin g)sinh 20, v, =1nd,, i=1,.,n.
The respective eigenvalue reads
T AN Apedn) = A A A AL AN A e AL), (27)
n 1
A A, A,)=explald)L ]
l jIJI C‘/ij,/1 )
ad 1
+expld(A)L]
jI—:Il c(d,4))

with ¢(4,4 ) given by (13).
D. By recalling Ref. 9 we find that upon a mere identifi-
cation [compare, e.g., (1.29) in Ref. 9],

M2 +6/4 = myr, (28)

the above representation becomes isomorphic with this
found for the quantum sine-Gordon model on a lattice. Ob-
viously letting §—0 (continuum limit) must be accompanied
by m— o to keep my,; finite. The m g - demand is
quite natural in the light of our previous analysis of the rela-
tionships between the sine-Gordon and xyz Heisenberg
models.'®!! These two models can be considered as equiva-
lent in the continuum limit, upon the lattice identification
analogous to that of (28):

17/168 = ml;+6 /4 (29)

of the xyz model parameter /' {an elliptic modulus of Jacobi
theta functions), see, e.g. Refs. 11 and 12 and the sine-Gor-
don coupling constant m;, where 5—0 means both

m.;— oo and /'—0 (the weak anisotropy limit of Ref. 13.).

In the above discussion one must, however, remember
that the Bose MT algebra (17) is represented in the Hilbert
space %y = IT™_, ®(h & h),, while this for the sine-Gordon
system in 5, = I *_, ®h,, and this for the xyz model can
be represented in a proper subspace P57, = I1Y_ | ®(ph), of
&, with p being a two-level projection of Ref. 10 in 4. P
&, can be equivalently rewritten as /1%_, ®(C,),, where C,
is a two-dimensional vector space.

On the lattice level both the Bose MT and sine-Gordon
representations of the algebra (17) are equivalent and both
become equivalent to the representation of the xyz Heisen-
berg model algebra in the continuum limit. In this case the
Coleman’s equivalence with the Fermi MT is a straightfor-
ward consequence.

E. With respect to the mass spectrum or the S-matrix
arising in the continuum limit of the above models, the (Cole-
man’s) equivalence of the Bose MT and the Fermi MT is
guaranteed by the lattice identification of the Bose MT with
the sine-Gordon model in the quantum inverse method. The
procedure of Ref. 9 allows then the recovery of a continuum
limit for the spectrum of the lattice models.
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A few words should be said about the related quantum
fields. One knows that while passing from the xyz model to
the Fermi MT, there is a natural way to recover Fermi fields
from renormalized lattice spin 1/2 degrees.'®'* However, if
one starts from the lattice Bose models, '° like the above sine-
Gordon or Bose MT, the emergence of fermions is not appar-
ent at all. The lesson of Refs. 4, 10, and 11 in this context is
that these lattice models can be constrained via the so called
spin 1/2 approximation to the xyz model. A continuum limit
of such a projected lattice Bose model gives the S-matrix and
the spectrum identical to that of the sine-Gordon/Fermi MT
models. However, in contrast to the full Bose MT, the result-
ing state space is precisely the space of Fermi states of the
quantum Bose field, see, e.g. Refs. 4 and 11.

On such a space the irreducible Fermi fields can be con-
sistently defined. Certainly the Bose MT can be rewritten as
the reducible Fermi model. For 1 + 1 dimensional models, a
formal relationship with the spin (1/2) xyz Heisenberg model
can be introduced by means of the previously defined projec-
tion P:

Hy = PH,P + PH,(1 — P)

+ (1 —P)HzP+(1—P)Hp(1 —P), (30)
where (this is a spin 1/2 approximation constraint)
PH,P=H,,. (31)

For the sine-Gordon system in the continuum limit one ar-
rives,'®'! at the property rather rarely realized for lattice
Bose systems:

Hy=H,,, +(1 - P)Hy(1 - P),
[HsP]_ =0, (32)

which is in fact another version of the equivalence statement
for the xyz and sine-Gordon models on the appropriate (a
continuum limit of P77 ) state space. The procedure of Ref.
11 with slight modifications can be repeated for the Bose
MT, to prove that the formula (32) is valid in the continuum
limit of the Bose MT. However, now the starting lattice Hil-
bert space of interest is #7,,, and

N . N
P,y = P]] *theh);:=PI[ ®(hsu_, ® hy)
i=1 i<
N

=1 °lhhi_y ® (oh)u] = [] °loh):s (33)

i=1 i=1
where p is a two level projection of Ref. 10 in the single
particle Hilbert space A.
If we start from the lattice CCR algebra generators as-
sociated with (18)
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[a,.at] =6, fa,a*)_.=6,4,2=0=a,02Vk,
(34)
[¢%.a%]_=0= [a,.0,]_ = [ata?]_,
the underlying projections are

P, =:exp(—a,a,): + a*exp( — a*a,)a,

u

(in &),
_ (35)
P, = exp( —a,a,): + a*:exp( — a*a,)a, (in h),

N -~
P= 1] (p.P.)
u=1

and one easily checks that

PatP=o,}), Pa,P=o,,

(36)

Pa*P=5},
determine the spin 1/2 SU(2) group generators for the linear
chain of spins 1/2. Upon the change of labelling

P, P=5&

u

,,,,,

= 03 }i— ..~ being newly introduced, an application of
the Jordan-Wigner transformation allows us to convert a 2N
site spin 1/2 system into the 2N component Fermi system.
This step was carefully investigated in Ref. 14.
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