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We analyze two completely integrable quantized systems: the nonlinear Schrédinger and sine—
Gordon ones, with the aim explicitly to recover the (spin-} approximation) mechanisms
responsible for their being allowed in the continuum limit equivalence with Fermi systems.
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I. MOTIVATION

Since Refs. 1-3, a relationship between the (lattice) spin
xyz Heisenberg and the (continuum) massive Thirring mod-
els has become well known. On the other hand, there is a
correspondence* between the massive Thirring model and
the sine~Gordon model, in which, upon adjustments of suit-
able parameters, the Schwinger functions of both models are
identical, and hence the spectra are the same. In fact, the
latter coincide with the semiclassical spectrum of the sine—
Gordon system. In an indirect way we thus have a relation-
ship between the spin-} xyz and the sine-Gordon model.

There is an isolated attempt’ to establish the correspon-
dence directly, via the so-called spin-} approximation of the
sine~Gordon system on a lattice. One finds that in a Hilbert
space (state space) of the sine~Gordon model there exists a
proper subspace for which the reduction of the sine~-Gordon
Hamiltonian to this subspace makes it identical to the appro-
priate spin-} xyz type Hamiltonian. The spin-} approxima-
tion idea is then to recover these properties of the original
Bose system which allow it to approximate, at least weakly,
the related spin-} or Fermi system (see also Ref. 6). One
knows that if the spectra of both are identical, we can expect
that then H ; commutes with the underlying projection P:
[Hs,P ] = 0and then either H; = PHPor H

= PHy P+ (1 — P)H (1 — P). However this simple prop-
erty does not hold true while on a lattice, in general, but it can
be recovered in the continuum limit.

In the present paper we exploit the results of the quan-
tum inverse scattering analysis for the nonlinear Schré-
dinger and sine-Gordon models, to demonstrate explicitly
the mechanisms of the “fermion-boson reciprocity’” known
to occur for both in the continuum limit, with the emphasis
on the involved spin-{ approximation formalism.

In case of the nonlinear Schrodinger model, it is impor-
tant to have available explicit formulas for Bethe-type eigen-
functions of the Hamiltonian. In the case of the sine—-Gordon
system such functions are not explicitly known, but never-
theless we are able to recover the spin-} approximation
scheme by analyzing the algebraized form of the Bethe an-
satz and relating it to this of the spin-} xyz Heisenberg model.

Il. NONLINEAR SCHRODINGER MODEL IN THE
REPULSIVE CASE

(A} Let us consider the famous Hamiltonian Bose sys-
tem in 1 4+ 1 dimensions:
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N B PN
H= 2Jv¢ Vé dx

+1 f [ 2082 tx — i 018 () iy,
(60 * ] =8 —y), [Shd(M_=0, (1)
ig=1[¢H]_

— - Vet j Vix—y X0 () dydix). (22)

The latter equation of motion, in case of
V(x — y) = ¢b(x — y) is known as the nonlinear Schrédinger
equation.

Let us choose a countable set of square integrable func-
tions in .Z%(R ') subject to the restrictions:

{g.}, suppp, =4,, 4,n4,, ,#D, A4,n4, =D otherwise,

A, beingaclosed intervalin R '. Now let us approximate ¢ (x)
by

¢(X)§§S}as¢s(x). [a.a*]_ =6, [a.a]_=0. (2.3
Then (2.1) reads

H=YT,.a%a, + > G, .xanara;a, (2.4)
where

T =+ f V&, Vo, dx,

G = %H&m (000 ()Y (x — ek ) ddy

(2.5)
and because of (2.2) only the nearest neighbor exchange inte-
grals remain (provided they exist):

S R

Gmmmm = -;_f|¢m |4dx =Bma
Tmn=6nm—1am—l+5"m+1am+1’ (2'6)

Gmnjk =6nm—15jm5km—lﬁm~—l +§nm+18jm5km+lﬁm+l
with

Cpy1 = %J.Vamv¢m:tldx’
(o
S 7f|¢m|2|¢mil|2dx. (2.7)
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Hence, using (2.6), the formula (2.4) becomes
Hg_:Z[a,‘,‘, (am+ lam+l +am—-lam—l +amam)

+ @3B 1Gm i1 +Bm18y +Bnan)]. (2.8)

(B) Let |0) be a Fock vacuum for the representation of
the CCR algebra generated by (2.3): @, |0) = 0 Vk. We de-
note

Pi =:exp( —afa,): + a¥exp( — a¥a, ):a, (2.9)

and observe that

PE=Diw> Pi=Prs [PoPi] =0 k#L (2.10)
and, moreover,
Pkatp=0y", prapi=0y , (2.11)
ie.,
(o) =
= (ox)’
= [or.0 ] -
=[o,07 ]-
=[odo ], k#l
[0 .0 1+ =Pes 212)

thus giving rise to spin-} Pauli operators for the linear chain.
An operator

P=Tler
k

is a well-defined projection operator in the Fock space of our

Bose system,’ and allows us to consider a projected Hamil-

tonian Hg = PHP of the (spin-} approximation) type of Ref.

6:

H=Hg +(1—P)HP+PH(1 —P)+(1—P)H(1 — P).

(2.14)

(2.13)

Obviously (2.8) reads
H. = PHP

=3[0 @ni10mi1 +Cn_10m_ 1 +a,07)].
m

(2.15)
If, for any vector |4 ), we have P |1 ) = |1}, then
H|A)=He|A)+ (1= P)H|A),
ie.,
(1—P)H|A)=0=H|A)=Hg|d). (2.16)

Suppose that H is diagonalized, and |4 ) is an eigenvector of
H:H|A)=E|A). Then,

PlA)=|A)=>H |A)=Hp|A)=E|A), (2.17)
and because of [P, H] = 0 we can equivalently write
H=H, +(1—P)H(l1 - P)]. (2.18)

(C) Notice that (2.15) is a familiar form of Schultz’s Ha-
miltonian® for the impenetrable Bose lattice gas in one space
dimension, provided one adopts

By =Qp_y = — 12M8, a,, =1/M8 (2.19)
with & being the lattice spacing, M the single-particle mass,
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and the finite volume restriction (to /N sites) being conven-
tionally imposed. One knows that after making the Jordan
Wigner transformation from spins-4 to anticommuting
(CAR) variables, followed by the appropriate canonical
transformation, a resulting Hamiltonian describes the free
Fermi gas. In the continuum limit the Girardeau eigenvalues
and wavefunctions arise.’ The free Bose gas Hamiltonian
should then be used instead of H:

T U RPPTRN:
H=H,= 2ML¢ o) pix)dx

provided one imposes the domain restriction:

(2.20)

[ [axs oot *wi0tx — 510 0 w]ir=0 @21

which eliminates the coupling term
ke ax [ g *16 *0x6tx — 16 (16 o

of the original nonlinear Schrédinger problem.

In Girardeau’s model it is obvious that [H, P]_ = Oand
hence all eigenvectors of H satisfying P |4 ) = |4 ) are just
those obseying (2.21). Here P projects on a subspace of the
(Hilbert) eigenspace of H, on which (2.21) holds true. Let us,
however, mention that the role of the coupling constant ¢, by
virtue of (2.21) is missing, while from Refs. 10 and 11 one
knows that at ¢ = 0 the Bose (free) gas appears while at
¢ = o H converts into Hx = PHP, i.e., the equivalent free
Fermi gas appears.

(D) Let H be a nonlinear Schrodinger model Hamilton-
ian. For any value of ¢ > 0, the normalized in-eigenstates of
H read as follows'*!'3:

| (Kiseeokn )i = R (Ky)R (K,) | O)

= f[ ﬁ dx,.exp(ikix.-)]

i=1

k;, —k, —ic
X 6x-—x,-+9x,.—x<;——’———”
[lql:[iol[ (j ) ( j) k,~ —kj +ic

X @ *x))0 *(x,)I0), ki<ky<-<k,. (2.22)
Herethe Zamolodchikovoperators R (k }, R *(k )canbeintro-
duced to algebraize the Bethe ansatz for the eigenvectors of

H, and one has

k, —k; —ic
R (k)R (k;) = mlz (k)R (k;) (2.23)
and
R (k)R *{k;) = Z—:ZTZR *(k, )R (k) + 2m5(k, — k;)
(2.24)
together with
[H, R *(k)]_ = k?R *(k), (2.25)

which implies that |é (k,,-,k,)) is an eigenvector of H. By
making use of (2.22), one finds easily that atc =0
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|¢ (klr""kn )B

= f{ﬁ dx; [exp(izi:k,»x,-)] ]¢ *(xy |- *(x, |0)

= a*(k,)-a*(k,)|0), (2.26)

which corresponds to the free Bose gas problem, while the
free Fermi gas problem appears at ¢ = «, when

16 (e g = jdx,--- f d, [exp(izi:k,.x,.)]
X O(X1,+,%, | *x )¢ ¥(x,)|0) (2.27)
and
o) = [[ [0 —x)— O —x)] 229
satisfies o

Ui=0',,, Ui(l—oﬁ):O,

g-(...x‘....xj...) —_ - 0-(...xj...x‘....). (229)

Obviously R = R (¢ *, ¢ ) follows from (2.22); see Refs 12, 13.
Girardeau’s version of the free Bose gas wavefunctions arriv-
ing at the free Fermi gas is realized here by means of o, . This
is a special case of the general isomorphisms between linear
spaces of symmetric functions and antisymmetric func-
tions'* see also Ref. 7.

Let us emphasize that the general theory of Ref. 14 al-
lows us to recover Fermi states of Bose systems in more than
one space dimension. Obviously the simple multiplicative
alternation o, is insufficient for such a purpose. Because of
(2.29) for an n-point function £, , one has

fo =0nfy +(1 =2, =fn +f2,,

so that if £, = f(x,,...,x, ) is a symmetric function, its anti-
symmetric image 4 la Girardeau’® is

a, fl,, = o(xq,..., x,,)jl‘(xl,..., Xx,).

In our case, the vector

olkye.k, )@ (kpseenkp)) g

- f dx o fdx,, [exp(i > ijj)]

X O (X 13ene X ) *(31)b *(x,,|O)

(2.30)

(2.31)

is a typical element of the range of a projection operator

1 1
P=1g of Ref. 7,ie, P|p )y = |¢ ). If adopted to our no-

tation, 1 reads
1

Ig = Z _I_I‘dxl'"J‘dx,,Uz(xl,---rng *xy) *(x,)
= n!

X :CXP[ - fdy ¢ *())d (V)] @ (x1) (x,).  (2.32)

It is an operator unit of the CAR algebra (a Fock
representation):
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[b(x)b*(y)], =8(x -y, [bx)b(y)]. =0

bix)=3 (1+n)"? J dy,- J.dy,,
KO )o51re8)
X%, 7, exp| — [ dz 8 e
X (316 ()6 3, ).

By inspection one easily verifies that

(2.33)

1605 = 0kpyrkn )l Uik e

= alky,..k,) J dx,-- J-dxm [exp(i Z ijj)]
Xb *x,[b *(x, )|0) j

= olky,....k, )b *(k )b *(k,,)]0). (2.34)

Obviously at ¢ = 0, the {R,R * ] algebra generates the CCR
algebra, while at ¢ = « the CAR’s arise; see (2.22)—(2.24).

By using the Jordan Wigner transformation, (2.34) can
be replaced by

1
1B} = o™ k)0 (k, [0), (2.35)
1

where |¢ )p vanishes if any two & ’s coincide, and is permuta-
tion invariant. In this connection compare also Ref. 15,
where the quantum Gel’fand-Levitan transform problem
has been solved for the nonlinear Schrodinger field:
& (x) = ¢ [R *,R ](x) in the limit of the infinite repulsion re-
duces to the Jordan Wigner mapping from the CAR genera-
tors {R,R *}] to Pauli operators {¢,é *}.

(E) From Ref. 6 one knows that a family
{16 (k1eesky )} n — 0,12, Of vectors forms a complete eigen-
function system for the nonlinear Schrédinger model Hamil-
tonian if ¢ >0. However, one should realize that a continuous
transition from ¢ = 0 to ¢ = « results in the contraction of
the dynamically accessible state space for our Bose system
from the whole of the Fock space & (c = 0) to its proper
subspace P¥ = .7 L.

This peculiar property is precisely a (very special) real-
ization of the Bose—Fermi metamorphosis phenomenon via
the spin-} approximation procedure, as described in Refs. 16,

Recall that P = 1, (2.32), is a continuous version of the
lattice projection P, which replaces each single Bose degree
of freedom by the two-level (spin-4) degree in the system. The
formulas (2.14)(2.18) apply both to the continuous and lat-
tice cases.

Generally upon the parametric dependence H = H {4 )
we expect to arrive at [H (w0 ),P]_ = 0 so that
H(w)=PH(0)}P+ (1 — P)H (w)(l — P)may hold true ei-
ther on the lattice level or, if impossible, on the continuum
level. If all eigenstates of H ( 0 ) belong to the range of P, then
H(w)= Hy = PH(w)P, which is the case for the nonlinear
Schrédinger model at ¢ = «. Then a “fermion-boson reci-
procity” idea apparently applies. Otherwise, the diagonali-
zation of H ¢ does not resolve the spectral problem for H, and
one is forced to diagonalize H itself to recover a complete set
of eigenvectors. Obviously, it is frequently much more favor-
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able to diagonalize the Bose Hamiltonian than the related
Fermi one. If one succeeds with H, then a solution for H ¢ is
immediate, provided [H,P] = 0. This idea lies at the founda-
tions of the boson expansion methods as applied in the
many-body (Fermi or finite spin) systems in the diagonaliza-
tion-before-the-projection procedure of Refs. 17,18.

lil. THE QUANTUM SINE-GORDON SYSTEM VS SPIN-}
xyz HEISENBERG MODEL: PRELIMINARIES

(A) As far as the nonlinear Schrédinger model is con-
cerned, we are fortunate to have available an exact spectrum
of the problem with an explicit form of the eigenvectors. This
fact enables one to control how the Bose system is becoming
equivalent to Fermi one as ¢ varies from 0 to «, and to notice
that [H,P]#0 exceptforc =0and ¢ = oo.

For the sine-Gordon system, despite the spectacular
equivalence with the massive Thirring model* and the de-
monstration of complete integrability via the quantum in-
verse scattering transform method,'® even the knowledge of
the Bethe ansatz states for the massive Thirring model did
not enable one to construct explicitly Bethe wavefunctions.
On the other hand, we know from Ref. 5 that the sine-Gor-
don Hamiltonian, while put on a lattice with the nearest-
neighbor coupling gradient term, in the spin-} approxima-
tion (at 7>0) reduces to the spin-} xyz problem. The latter
under the weak anisotropy assumption in the continuum
limit is known to reproduce the WK B spectrum of the sine—
Gordon system.'

In addition, our lattice analysis of Ref. 5 suggests thatin
the continuum limit the (“fermion-boson reciprocity”)
statement:

HsG =PHSGPEnyz (31)
is not realized if at all, but rather
Ho=H,, +(1-P)Hs(1 —P) (3.2)

Consequently, a selection of the appropriate subspace of the
sine-Gordon state space is necessary to arrive at the Cole-
man’s equivalence on the level of irreducible fields. To sup-
port this conjecture, we shall make an analysis of the avail-
able inverse scattering results for the sine~-Gordon'® and the
spin-} xyz?° models with the emphasis on some limiting pro-
perties of both. Both systems are considered on the finite
lattice of length L and spacing 8. This restriction is essential
because the continuum limit of the sine-Gordon model does
not exist for all coupling constant values.

Within the inverse scattering formalism, the basic ob-
ject is the one-parameter family of the local transition matri-
cesL,(A), n=1,.., N= L /8 which give rise to the matrix:

A1) B)
T@)=Lyld)~Lid) = (C( W b )) SN X
where the following commutation relations hold true:
MA),A(p)-=[BA)B(u)]-=0,
BAM(p)=bA, pu)B(p)d(A)+cd, uld (@)BA),
B(pDA)=b{A,p)BA)D(pu)+cld, w)D(A)B(p), (3.4)

A, uCA), B(p))- =b(A,ul4(uD(A) —4(A)D(p)}
¢, u)ID (x), 4 (p)]- = b, u)[B(p)C(A) — B(A)C(u)]
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As a consequence of (3.4), one has, for example,
[T)T (W] =0T A)=A4A)+D@A).  (3.5)

We wish to have represented relations (3.4) in terms of the
operator algebra in the N-particle Hilbert space

N @
H=1] h» h=h Vi

i=1
including a reference state {2 such that
CAM2=0, A(A)2=-explald)N]2,
D (A )2 = expld (A )N ]2. (3.6)
The particular choice of functions b (4,u),c{A.u),a(d ),d (4)
determines the model of interest.

The eigenstates of .7 (1 ) are constructed from £2 as fol-
lows:
[Aenda) =[] BA:)2 (3.7)
i=1
provided the following (periodicity) condition holds true:
moold A
exp{[ald.)—d A )N} = — gk
pi [aldc) KV} il;Il Aed)

J#k

= 1,2,...,n.

(3.8)

Then (3.7) is an eigenvector of the operator .7 (A ) with the
eigenvalue
- 1 1
AR, Ay A,) =N T ——— + &4V .
( ! ) jI=11 C(/ij, A ) jIJl C(A, /1])
3.9)

(B) The sine-Gordon model in the above framework is
defined'® as follows,

sinh (v — v’ isin
PA= ok (v(—v' +)m » clhw) = m
v=1Ind, v’ =Iny, (3.10)
ad) =d(A) = }m*6*cosh(2v — i5)
provided one starts from the field equation
Pu — Prx = (M*/B)sinBp, v =2 (3.11)

and then discretizes the problem: L = N§, § being the lattice
spacing. The local transition operator L, (4 ) appears then in
the form

4)[Av* — (1/4
=, o A 1))

(m/4)[(1/2 wx — Av, ], wr
(3.12)

where the Weyl commutation relations

u,v* =e"v*u, (3.13)

VpUpy = V0,5 URU,, = U, UL,

wru, =u,u¥, wu,v,=e ",u,,

are satisfied by operators

(x,, + 8)
v, =5exp[(iﬁ/25)f ¢>(x)dx],

x,,+t§_
Pa =148 @ (x)dx, u, = exp(—ip,),
@ x)h@(»]_=0=[px.e(»]_, (3.14)
(@ (x)@ (¥)]_ = id(x — y).
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Let us emphasize that the defining commutation relations
(3.9) can be rewritten in the compact tensor product form:

RAuTix)eT)] =[Tk)eTA)RAu) (3.15)
where R = R (4,1} isa4 X 4 matrix with c-valued elements:

1 0 0 0
0 &6 ¢ O
- , b=blAu), c=cllu). (3.16
R 0 ¢ b 0 (Ap), e=cldpu).  (3.16)
0 0 0 1

To specify a concrete model in the inverse scattering formal-
ism, one must thus know R and solutions of the eigenvalue
equations (3.6). This amount of knowledge suffices to recon-
struct the whole model.

(C) Now we shall recall the basic results for the spin-}
xyz Heisenberg model, with a final goal of identifying these
eigenvectors for the sine-Gordon system, which belong to
the range of the projection P of Sec. I, in

> e
=11 hs h=ZL*R"Y Vi
i=1
after making a transition to the continuum. Without enter-

ing into the detailed (Baxter’s) parametrization, let us notice
that the form of the local transition matrix?®

w0, — Ww,o?
L,A) =( ), (3.17)

w0t — w,ot
where [0%,,0/, ] _ =0, n#m, and operators {o, ¥ = "*** are
equivalent to 2 X 2 Pauli matrices assigned to the nth site,
allows a representation of L,,(4 ) in

P =[] ® k) =1] ¢ C?

i=1 i=1

provided we introduce

4
W40 + Wso,,

l .
w0l + iw,0?,

P = 5_”2f @ X)yilx)dx =2"""2(a¥ + a,),
R|

@ = (1/2'?)(a* — a,), (3.18)

Yix)=1 for xelx;,x;, +8)
=0 otherwise.
Then define {0%, }.2%®. and 0% = p, via formulas (1.10)-

(1.13). However, we are still far from any relationship with
the sine~Gordon system, especially because the R matrix
reads

, a#1, d#0,

S O f
6 o> O

d
0
0

S a O

d 0 0 a
a=6(2O A —plH QA —p + 27),
b=H(29)0 A —p)@ A —p + 27),
c=OQ2nHA —p)B A —pu + 27),
d=HQ2mMHA —u)H{A —p + 29) (3.19)
with H, © being Jacobi’s eta and theta elliptic functions.
(D) One knows that, for each family {L,(1)},_ .. of
local transition matrices for the xyz model, there exists a

sequence {M (A1) =M (A,s5)} of matrices with complex-
valued matrix elements, being functions of two integers
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land #, n,1=0, 4+ 1 & 2,-, and two arbitrary complex
parameterss and ¢ (to be omitted below for simplicity) such
that the operators

L,(A)=L,Ast)

__‘Mn_%»lan(A' )Mn+1~—-l
a,A) B ))

= 3.20
(7’2(/1) 5.(4) 20

withM | : =M,  ,_, serveasthenew local transition oper-
ators for the xyz model, with a resulting one-parameter fam-
ily of transition operators:

N A'4) B'(A
T!d) = HLL(M:( ,( ) ,( )). (3.21)
o C'A) D)

Let us consider a single-site Hilbert space & = .¥*R ') and

let {¢;},_,... be a complete orthonormal system in it with

a*e,=e,ae,=0,e, =(1/v/na*"e, We denotee, = e,

e, = e Inthis notation, we introduce a one-parameter fam-

ily of vectors?®

o' =H(s+2n+1m—nle* +Ols+2n+1)m—nqle,
(3.22)

given as linear combinations of e*, e~ in terms of Jacobi
elliptic functions of the modulus k, 77 being one more (real)
parameter. Each vector ', (3.22) is annihilated by a respec-
tive ¥ of (3.20), and, moreover, we have

Yo' =0,

Ao =h(A+ 90, (3.23)
A" =hiA - g,

with
h{u) = O (0)H (u)O (u). (3.24)

The above local formula allows a construction of the one-
parameter family of N-particle vectors in

P¥ = f[ " pLHRY),:

i=1

N'=v ev,e-ewy, o =0 Vi (3.25)

such that operators 4 ‘(1 ),B'(1),C‘(A),D‘(A) of (3.21) sa-
tisfy

A[(/{)ﬂl=hN(/l+77)ﬂl_],
D'A =h A -t
C'AR’=0

for each /. The formula (3.21) can be rewritten as follows:

(3.26)

T'A) =Mz M TAMA): =Ty, ,(A), (327)
where the notation
T ) =M A )TAMA) (3.28)

is introduced, and the corresponding (operator-valued) ma-
trix elements read 4,(2 ), B;,{1 ), Cy(d ), Dyy{A ). By using
these operators, one constructs a 1 + n operator family of
vectors:

Vildiyeesdn)

=B, 1 1(/11)"‘Bz+n,1_n(/1,.)ﬂl_ns n=N/2.
(3.29)
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The transfer operator of the model,?
Tr[T(A)] =T(1)
=ARA)+DA)=T44) =A4,A)+ Dy(A)
satisfies the following eigenvalue equation:
T A VWellpsdy) = A(OAA A, )Wolh iy h,),

where
+ .
Yolhida)= 3 €709 (Ay,.00,),
I= —w
A (9,/1,11,---,1") j— ez‘”ieAl + e—21ri6A2’

A = kA7) TT aldidy),

(3.30)

(3.31)

(3.32)

AbdsA,) = hNA =) [] alded),

k=1

aldu)=h(A —p—2u)/h(A —p),

and by construction Y5 (A,,...,4, JePF.
The periodicity condition reads
h N(/{j + 77) — e44m'9 “ a(/ik/l_,)
R4, =) i aldy Ay

k#j
j=12,..n=N/2.
By exploiting a property H (u) = — H(— u), B (u)
=0 (—u)ie, h(u)= — h(— u), we can write this condi-
tion as follows:
[ h(/lj +77) Ne4‘rri6= id h(/lj —/1}( +277)
h(d; —m) E1h(A; — A — 27)

k)

n=~N/2,

(3.33)

(3.34)

IV. FROM THE xyz MODEL TO THE SINE-GORDON
MODEL: SPIN-} APPROXIMATION IDEA REVIVED

(A) In the above the elliptic Jacobi functions H (u) and
O (u) are of the modulus k with k= (1 —17")/(1 +1")
0<!” < 1. We are interested in the properties of the xyz Hei-
senberg system while approaching the limit
(1 —k')/(1 + k') = I'—0, which implies k = (1 — k '3)"/>—0.
The transition from the modulus k to /', under an assump-
tion /'—0, can be equivalently rewritten as

h(u) = H (u,k )0 (u,k)O(0,k) = (const)H (u,/") (4.1)

(see Ref. 3). It allows us to evaluate the limiting properties of
(3.34) upon the following change of variables (formerly intro-
duced in Ref. 3)

A —ij)"’ - %i‘ﬂi "Bj)’

4.2)
N—4(m — p)
caused by
Ai— — %iﬂi +iK;, n—ilmr—py),
/2 (4.3
K = L H_Jrz—;i;i%w L

The following limits were investigated in Ref. 3:
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ln[ :&{i_z: ljo _i(ﬂ_’u)_i%ﬂlz sing sinh B,

(4.4)

1n{ A -4+ ]| ln[ sinh(}(8; — B;) — 2iu)
hA, —A; —2u) Jr—~o | sinh(8, — B, + 2i) |’

Consequently, we arrive at the following form of the period-
icity condition,

exp{i[4mO — (m — u)N 1}-exp{ — ik, L)
 sinh[3(8, — B, — 2iu)]

~ M Sinn[yB, = B, + 2iu)]
k #i

(4.5)
k, =mgysinh B;, mo=4&1'*/8sinu, N=L/8§,

and, upon the additional demands
O =(r—u)N/4m, B, =2,
we get finally

u— — i, (4.6)

sinh(v; —v; + iy)

explik,L) = [] i=12,.,n=N/2

i~ sinh(v; —v; — iy) ’
k#1
(4.7)

On the other hand, by recalling (3.9) and (3.10), we realize
that the original sine-Gordon periodicity condition reads

exp| [a(l,() — aldy) ]N} = exp[{m?6 sin y sinh 2v, -L ]

n sinh(v, —v; + iy)

Yot

- j=1 sinh(v, —v; —iy) ’ (4.8)
JEk
i.e., upon an identification
2 2
[ _mé (4.9)
165 4

we can identify (3.34) with the sine—~Gordon periodicity
condition.

(B) We are interested in the /'—0 limit, upon the re-
placements (4.2), {4.6), and (4.9) of all the basic formulas for
the xyz Heisenberg model. For this purpose let us make use
of Ref. 21 and make transparent the /' dependence of the
Jacobi functions. Namely we have

Huk)=6,u/2K,.q), O(uk)= O4(u/2K, ,q),

(4.10)
k24 k?=1,

where

/2
g=-ecxp(—7K,/K;.), K;= J dp /(1 + 1% sin® @)'/?,
(]

k'=@1=0I'"'/(1+1"),

K, > nl4/l'V50, K, — 7/2, (4.11)
150 1'—0
g — exp( — 2K,}—~1"*/16,
1'—0
and the following ¢ expansions hold true?*:
6,(v,q) = 2¢"/%(sin v — ¢* sin 37v + ¢° sin S7v — )
+ oo 2 i
— l 2 ( . l)nq(n — 172) e(2n — l)1ru1, (412)
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B,(v,9) = 1 — 2(g cos 27rv — ¢* cos 4mv + ¢° cos 67V — )
(4.13)

+

- 3 (-

n= — oo

1 )n qn 2mrm

One should also realize that the elliptic modulus £ is a func-
tion of ¢ and for small /' reads

k2gl6q——l-j_—L2. (4.14)
1+ 8g+24q
(C) Let us analyze the /'—0 behavior of the xyz model R
matrix (3.19) upon replacements (4.2), (4.6), (4.9) and pro-
vided we demand that # = 0 is mapped into 7. Then

O, B —-AV>1, BA—-A" +29)—1, (4.15)
but
H(A—A')>2¢"*sin [JiB' — B) + 7]

= 2¢"*i sinh [§(B8 —B")],
H (25)—2q"%i sin (m — ) = 2¢"*sin g, (4.16)
H(A —A'+29)>2g" % sinh[}(B — B") — iu].
Consequently,
aA i) =626 A —1H

XA — A"+ 299)—2q"“i sinh [JB — B') — iu],
bAA)=H(2nOA —4")

XOA — A"+ 2n)—>2¢"*sinpy, (4.17)

A )=62mHA - 1)
XO A — A" + 2m)—2¢"% sinh (B — B)],
dAA)=HQnHA —AMHA — 4"+ 27)
— — 8¢*/% sin y sinh [4(8 — B)] sinh (B — B") — iu}.
Now let us make a reflection z— — u in the above formulas

[compare, e.g., also (4.6)] and divide all of them by
aA A pu— — ). We get

aA A1,

BAA ) ——— 2,
sinh [§(8 —B") + iu]
S UB=B

sinh ({8 —B') + iu]

d (4,4 '}—4q"/? sin p sinh [§(8 — B)].
Now, it suffices to recall (4.6} with 8 = 2v to noticing that,
with an accuracy up to ¢'/? corrections, the following ap-
proximate relationship holds true for the R matrices of the
xyz and sine~Gordon models:

R,,.(AA")

(4.18)

=R (AA") (4.19)

(/M )
where the right-hand side is /' independent. Though the ap-
proximation improves with /'—0, we cannot here make the
limit /' = 0, like
1 .

lﬂnyz a(/l,/l ,) - RsG (’l’/1 )
Namely, because of (4.3)-(4.7), the mass factor
my = ik (/'*/8) sin u appearing there as well as the identifi-
cation /'>/168 = m25/4 of (4.9) depends on /’. A nontrivial
limit arises only if we simultaneously let 5—0, so that

(4.20)
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1'2/6—sconst, i.e., if with /'—0, we recover the continuum
limit of the lattice theory. But at the same time m?8 should be
kept constant, which means that we are forced to let m go to
o with —0. The need for such an effect was explicitly re-
covered in Ref. 5; then only the spin-} approximation of the
sine-Gordon model in terms of the xyz model becomes reli-
able.

(D) The limiting properties of the transfer matrix eigen-
value are not straightforward if we use the form (3.32) of A.
However,

e2m‘6h N(x - ”)Axyz(e/{j'lr“"i ) = A ,(e’ﬂ"il"""{ﬂ)
&40 hA+q) Y n hid — A —29)
hiA—mn) k—l hd—A)
n R — Ay + 27)
+ kl;Il hiA—A,)

exhibits quite reasonable limiting behavior: By virtue of
(4.3)-{4.7) we arrive at

n o sinh (A — A, + iu)
A’ ——> kL
xp (l )kl_-.Il sinh (/l — /1,()

n ginh (A — A, + i)

(4.21)

4.22
kl;ll sinh (4 — A,) ( )
so that
eZ#ieh N(A - n)Axyz(e"l"{li""/ln)
— exp[ —dAIN1AGgAAL..A,) (4.23)
I'>0

In the above we can again approach /' = 0 while letting & go
to 0, (4.23) recovers a resolution of the eigenvalue problem
A (A2 =e""2, D(A)2 = '*(2 inthe {I'—0,6—0} limit.
Because tha data { R, a(4 ), d (4 }} are defining objects for the
model, we find that indeed the simultaneous {/'—0, 5—0}
limit of the xyz Heisenberg model defined in P77 C 77 gives
rise to the (continuous) sine-Gordon model, in full agree-
ment with Ref. 1. However, let us recall that the xyz model
eigenvectors were explicitly constructed in terms of o,

= Pa}P, 0, = Pa,P. The limiting procedure does not des-
troy the Pauli exclusion principle which is coded in the prop-
erty (0,7 )>=0= (o, )* Vn,andbecause of the finite vol-
ume (L is kept fixed) we have not destroyed the Fock-ness
property

N
o 2=a,2=0 Vk, 2y= ][ ®ex
k=1

[compare, e.g., (3.22)]. Consequently, in the continuum limit
we still remain in the proper subspace P5% of the Fock space,
where Pis a continuum generalization of the former discrete
projection, in complete analogy with the case of the nonlin-
ear Schrédinger model.

On the other hand, the representation (3.10) of the fun-
damental sine~Gordon algebra satisfies its continuum limit
as well, being however defined in the whole of 7 through
bounded in 7 Weyl operators. It means that in the contin-
uum we can represent the fundamental sine-Gordon struc-
ture { R, a(4 ),d (A )} in at least two equivalent ways: firstinall
of 57 and second in the proper subspace P%” of 5. In the
language of representation theory, it means that the contin-
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uum limit of the fundamental representation (3.10) is reduc-
ible and has at least one nontrivial component, namely this
on P57 . Hence though the spectral problem resolved in Ref.
1 gives an exact spectrum of the sine-Gordon model, it does
not suffice to recover all of its eigenfunctions. We conjecture
that the WK B/massive Thirring spectrum of the sine-Gor-
don system is exact and infinitely degenerate.

{E) The existence of a representation of the sine-Gor-
don algebra in P27 implies the existence of a representation
in the continuum limit of any among the proper subspaces of
# received by composing projections on two arbitrary
(neighboring) excitation levels at each single site. In this con-
nection, let us notice that single-site operators,”*

gt cos’(ra*a/2) _ _ cos}ma*a/2)

(a*a +1)'2° (a*a + 1)'/2
generate in & = .£*(R ') a reducible representation of the
CAR algebra:

o (4.24)

[0'_,0'+]+ =1= Zen ®€,, (en!ek) =5nk’

0 e,=0 ote,=e,,, Vn=01,,
e P=0=(c") (4.25)
provided {e, }, is a complete basis system in .Z*R '). For the
sine-Gordon model .¥%(R ') is the Hilbert space of the quan-
tum pendulum.® The representation (4.24) becomes reduced
on each two-dimensional subspace of A = & ,_,.. 7 (1),
h(n) = L, -€2n . 1 ). Our construction allows to identify a
representation of (4.24) related to the single-site projection
p(0) = :exp( — a*a): + a*:exp( — a*a)a, i.e.,
P=P(0)=1I_, p;(0). We can as well use a projection
P =P(k)withp(k )k (k)= h(k)and the spin—} algebra
{P(k)ojt P(k)= o/ (k)},—'s5-". In case of the nonlinear
Schrédinger model we were able to give a detailed descrip-
tion of how fermions arise in the Bose system. In the present
case, things are less straightforward, but once any operator
quantity is given in terms of {aft } then the Jordan Wigner
transformation allows us to rewrite it in terms of pure fer-
mionic variables. Let us exploit a reducible representation of
the CAR given in Ref. 22:
i—1
b; = exp (i7r 3 Nk)-(Nk + 1)7 "2 cos*(wN,/2)-a;,
k=1
i—1

b*=a*N, + l)‘”zcosz(#N,./Z)exp[ —iry Nk], (4.26)
k=1
N, =ata,,

where
[6,6*], =6, [bib;]1,=0. (4.27)
The representation follows from the previously introduced
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(4.24), 0t —0/*, via

j—1 Jj—1

b=(Me)or+ ot =(Met)or

k=1 k=1
(4.28)
Here [ N,,P(j)] - = OVk, j; hence we can immediately re-
duce the representation of the CAR (4.26) according to b,—
b;(k) = P(k)b;P (k). Inparticular, dueto P (0) = II}”= 1P;(0),
we arrive at the well-known Jordan Wigner formulas:

¢, =explirN, )= [cr,0 ] =0, =1

i=1
P(0)b,;P(0) = b,(0) = exp(iﬂ' Y ol ox )-a,-‘ ,
k=1
PObXP(0)=b*0), {4.29)
which are easily invertible. For the derivation of (4.29) one
should notice that (N, + 1)~ '/?cos*(7N,/2) = 1 on the al-
lowed domain. If we supply (4.26) with

- i—1 - i—1
b¥ = ( II cz)a,-‘, b; =(Hck>a,.+

k=1 k=1

(4.30)

we arrive at the two-component Fermi system (the massive
Thirring model demands it):

[bj(k hb ¥l )] + = 5ji6k1s
b(l)=1b;, b(2)= 5,--

[6;(k)b:(1)]+ =0,
(4.31)
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