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We demonstrate that the correspondence principle allowing us to relate the classical (¢ number)
and quantum levels of spinor fieldsin 1 + 1and 1 + 3 dimensions, involves free Bose systems with
unbounded from below Hamiltonians. The necessary condition for the quantum spinor fields to
be “bosonized” on the “‘physical” space is that for the related free Bose systems, only the non-
negative part of the spectrum persists, due to constraints. Compared with the bosonization
formulas, the number of independent Bose degrees of freedom necessary for a consistent
formulation of the correspondence principle is doubled.

PACS numbers: 11.10.Ef

1. MOTIVATION

The “classical versus quantum” problem is far from
clear for the Dirac system, both on the level of quantum field
theory and relativistic quantum mechanics. In quantum me-
chanics the Dirac equation is believed not to admit a satisfac-
tory classical analog, allowing at the same time an interpre-
tation as a classical field equation for the spinor system.

It seems that here, not the relativistic form of the prob-
lem, but the spin, involves the most serious difficulties. First,
spin itself is derivable from the pure Galilean background.'
Second, it is known that the spin gives nonzero modifications
to particle trajectories in the macroscopic {#—0) limit, in the
large-distance scale.” Notice also that in Q.E.D. # enters all
quantities through e?/#ic so that a simple #—0 rule s inappli-
cable and should be combined rather with the nonrelativistic
limit c— o0 .’

Basic investigations of classical analogs of the Dirac
equation resulted in constructing suitable relativistic theor-
ies of spinning particles followed by their quantization.*™"*
All these attempts are based on the hope that the Dirac sys-
tem can be completely understood (and described ) in terms of
the conventional canonical variables.

The less conventional way, though relatively simple
and elegant, is to use not the usual phase space but rather a
“superspace” which, in addition to the canonical variables,
involves the supplementary anticommuting (Grassmann)
variables, these last giving rise to spin after quantization.
The appearance of pseudomechanics '>'® provides one with
asimple way to handle the relativistic quantum mechanics of
the Dirac particle. Nevertheless, as pointed out in Ref. 16,
the Grassmann variant of the classical mechanics cannot be
applied to the real world and acquires a physical meaning
after quantization only.

Despite its (physically) phantom nature, the generaliza-
tion of the superspace concept to the continuous (field the-
ory) level became very popular in high-energy physics, due
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to its calculational simplicity. If became even more popular
with the advent of graded Lie algebras and supersymmetries,
though these last do not need the introduction of anticom-
muting ¢ numbers into the basic formalism'”'® Likewise, in
quantum mechanics, the two basic trends are met in the
quantum field theory of the Dirac particle: the canonical one
preferring to look for any (more or less “classical”’) c number
level, and the Grassmann one, for which the anticommuting
function ring is used to construct a pre-quantum level for the
quantum field.

Though the Grassmannian way is dominant in the
physical literature, there are nevertheless quite serious inves-
tigations of the ¢ number origin of the quantum Dirac field,
which date back to Klauder’s paper.'® Its idea was developed
in Ref. 20, which is referred to as Paper I of the present
series. Another investigation of the non-Grassmann pre-
quantum level for spin 1/2 and Fermi lattices, together with
the path integration formulas for propagators, was given in
Refs. 21-23. Recall that path integrals for spinning particles
were considered in Ref. 12 and quite recently in Refs. 24-27,
and 28. In Ref. 25, in connection with the semiclassical
quantization procedure for the continuous ferromagnetic
system, the notion of a true (non-Grassmann) physical path
was necessary. Then a Bose quantization of the system, un-
der suitable constraints, was shown to conform with the
well-known Bethe’s solutions.

The present paper follows essentially the non-Grass-
mann approach, extending the earlier results of Ref. 20. Our
opinion is (see, e.g., Refs. 20, 27, 29-31) that any pseudoclas-
sical theory described in terms of the Grassmann variables
hides (or even stronger: lacks) its true physical content, and
can in principle be reformulated as a conventional (not pseu-
do) theory of some singular canonical system. Let us now
recapitulate the basic result of Ref. 20 (i.e., I of the present
series) concerning the quantization of the “classical” Dirac

field. Suppose we are given free Dirac spinor fields Hx),Pix),

xeM* and let F be the set of all functionals G342 (,¥)

© 1982 American Institute of Physics 442

Downloaded 30 Mar 2010 to 217.173.192.73. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



= 2n.m (wnm 9¢”J}m)' ¢
There exists in % a subset ¥ (a prequantum level) of

functionals 2 which is closed under the left multiplication
operation () of Ref. 20,

F DN, (M, =0 T, (1.1)
and for which the quantization prescription

c ¢ ¢ ¢ 8 8B ¢ BB

2 ¥.y) = (a|:2 () |a)>L2 ($,P): (1.2)

allows us to identify all elements of the Fermi field algebra
according tc

c B B 4

1,22 ()15 = 2 (B ().

Equation (1.3} s an identity in the quantum domain generat-
ed by the free quantum Dirac field #(x),#(x). The system of

(1.3)

units is # = ¢ = 1 and % stands for a prequantum rather

than classical level.
In the above |@) denotes a coherent state for the subsid-

BB
iary CCR algebra involved in ¢,¢, these last being obtained
from 1, through replacing the classical Fourier amplitudes

*
at (phad (p), K = 1,2 by the Bose generators aF (ph,a (p)

{the number of internal degrees of freedom is preserved while

going from bosons to fermions in this construction!).
Because the fields ¥, are by definition relativistic

Dirac operators, the emergence of the relativistic looking

88
objects ¥,3 needs some explanation in light of the spin-statis-

tics theorem: they cannot be the Wightman fields. On the
other hand, the Fermi quantization (1.3), at first sight, seems
to have nothing in common with any canonical quantization
procedure, despite its involving bosons (for these last a ca-
nonical procedure in principle can be expected to exist).

The basic purpose of the present paper is to clarify the
formal arguments of Ref. 20, by taking into account the re-
sults of Refs. 27, 29-31 and then going into the physics in-
volved to explain the canonical quantization aspects which
are inherent in (1.3}, though not explicit in the formalism of
Ref. 20. The concept of the Bose background for the quan-
tum Dirac field (“bosonization™, see, e.g., Ref. 29) becomes
crucial at this point.The basic idea in the course of the paper
is the naive version of the correspondence principle,?® for
quantum Bose systems. Take an operator expression in
terms of the generators of the CCR algebra, make the so-
called Bose transformation of them (translations by c-num-
ber functions), and then calculate a Fock vacuum expecta-
tion value of the result in the tree approximation [i.e., make a
normal ordering before calculating (0]-]0)]. The system of
unitsisi=c = 1.

Let us emphasize that the classical spinor fields

$,4,(1.1)-{1.3) due to the 1 .(-)1, sandwiching depend linear-
ly on the classical amplitudes a2 (p),@ (p), kK = 1,2. In what
follows we shall admit a nonlinear dependence, which will
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simplify the arguments.

In Sec. 2 we demonstrate that the bosonization of the
(massless) Thirring model necessitates a positivity of energy
condition for the (1 + 1 dimensional) Maxwell field in-
volved. In Sec. 3, we show that if the massive Thirring model
in the charge 0 sector of the physical space is to be bosonized,
then a positivity of energy condition necessarily occurs for
the involved free massive neutral vector fieldin 1 + 1 dimen-
sions. In Sec. 4 we prove the existence of the Maxwell-field
(single potential in the Coulomb gauge) reformulation of the
free quantum Dirac field, and the related algebra of observa-
bles. It appears as a consequence of the positivity of energy
condition imposed on the two-potential Maxwell field
Hamiltonian.

A common feature of all these cases is that a correspon-
dence principle needs the number of Bose degrees of freedom
to be doubled compared with the bosonization formulas.
The underlying free field Hamiltonians have the form

H=H($)—-H($’), (1.4)

where ¢,¢ ' are two independent free scalar {massless or mas-
sive, respectively) fields for the Thirring model, while the
two independent Coulomb-gauge Maxwell fields are for the
Dirac field.

In Sec. 5, we recover the two-potential Maxwell field
content of the relativistic quantum mechanics of the Dirac
electron. In contrast to q.f.t., a single potential formulation,
seems not to be adequate here, which is inconsistent with the
the Lorentz covariance properties of Dirac spinors.

2. THE MASSLESS THIRRING MODEL

A. The massless self-interacting spinor field theory in
1 + 1 dimensional space—time

L = igdp + (8/2):j, J* J* =7,
2.1

() (1)

1s known not to possess the spinor asymptotic fields. On the
other hand, if one is to follow the general principles of quan-
tum field theory, one expects that all Heisenberg operators
should be expressed in terms of some (free) asymptotic fields.
A discussion of this problem was given in Refs. 32-35, a
non-Wightman neutral massless scalar field ¢ (x):

O¢(x)=0, ¢ *(x){0)=0,

gOO: —En = 1’

(2.2)
[Oo¢ (X% @ (X% Y] = —islx' — ')
was shown to represent the Thirring spinors in the form
Y(x) = :expliad (x) — by’ (x)]:u. (2.3)
a,beR,ab = 7, u being a two-component constant, the nor-
mal ordering involving an order {¢ ~,¢ ~,4 *,6 *| of the
positive and negative frequency parts of ¢ (x) and of the relat-
ed (conjugate) field ¢ (x)
04 (x)=0, d.d(x)+€,3"x)=0,
(2.4)

€, = —€

uy v ? e()l = 1’
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The generator P, of space-time translations reads™

&=HW=H@P%fMHﬁﬁﬁH&M%

{2.5)
P, =fdx':(80¢ N3.¢):
and induces
[¢ *x)LP.] . =id, ¢ *(x)
[¢ = )P, ). =id.é *x), (2.6)

[¥x).P, ]~ = id, P(x).
The canonical anticommutation relations for ¢{x),{x) hold
weakly on the vacuum and one-particle sectors of the (Bose
field ¢ ) state space, belonging to an indefinite metric carrier
space.

B. Suppose we are to deal with a classical “photon”
field 4 in 1 + 1 dimensions:

04, =0, 4,4*=0.
A corresponding Hamiltonian,

H=4d,64,)d, 4%

= %{ [(avo)z + (ale)z] - [(aoAl)z + (alAl)z] J,(2.8)

is obviously gauge invariant, hence allowing us to apply the
Faddeev-Popov’s path-integration arguments to this abe-
lian gauge system.*® Within the Hamiltonian formalism, the
Lorentz condition d, 4" = dy4, — d,A, appears as a con-
straint, which should still be accompanied by the supple-
mentary “‘gauge fixing” condition, so that a canonical pair
corresponding to one of the two allowed degrees
{7,» Ay} <o, canbe completely eliminated from the
formalism.

If we choose the supplementary condition in the form

(2.7)

elqu“V = 03(?0141 = 81A0) (2.9)
then, together with the Lorentz one, it leads to
apA()(x) + €y,vavAl(x) = O, (2.10)

which is a classical version of the definition (2.4) of the conju-
gate field, provided we identify 4, = ¢, 4, = . Notice that
(2.10) implies

H=H($)—-H(¢)=0=H(p)=HIp). (2.11)
With no recourse to the explicit Hamiltonian formalism, if
we adopt the field {2.7) as a classical relative of the asymptot-
ic one for the Thirring model, we can make the canonical
quantization step by using a generating functional for the
Thirring model Green's functions (the antisymmetry ques-
tion is here left aside, see however Refs. 20 and 29)

Wini) = [ duld)

Xexpi[ f d*x[—\F, F* ]+ 7Y+ 771/7]5(3,‘ A*),

(2.12)
where 7,7 are the (commuting ring!) spinor sources, and the
classical (c-number) expression for ¢ reads

444 J. Math. Phys., Vol. 23, No. 3, March 1982

Uld,x) = Y{x) = expliad,(x) — iby°A,(x)Ju, ab=r.
(2.13)

Notice at this point that a formal integration with respect to
A4, provided we denote

Am=f_@%mm, 2.14)
replaces 4,(x) in (2.12) by
AMPJ‘%%MQ 2.15)

thus giving (put A, = ¢ )

wm=wmm=a4mmm—m§[ @é@@

‘ (2.16)
which agrees with Mandelstam’s formula, see Refs. 24, 29,

and 35, if one replaces (2.16) by the normal ordered-operator
expression.

3. MASSIVE THIRRING MODEL

A. Suppose we deal with a quantum massive Thirring
model in the charge 0 sector®”:

H=Japww&w—waw+mMWﬁwwn

+ 2g0¢f¢§¢2¢'\]’ (3.1)
where
[t//i(x),¢}*(y)]+ =8,;;6(x — y),
(3.2)

[‘/ji(x)rlpj(y”-k =0.
As the analysis of the diagonalization problem for H*’
shows, the irreducibility domains for the CAR algebra (3.2)
can be looked for within the general (continuous direct prod-
uct) Hilbert space # = I1, ® (4 ), containing the Fock state
|0} together with a corresponding Fock irreducibility sector
x\o)cx

¥:(x)|0) =0, VxeR, i=12 (3.3)
The most general form of the eigenstate of H with a finite
number of quasiparticles reads

@ntty) = [ x| dxgptz) T 0@l

i=1
X XX, = exp(im(, > X sinha,.})

X '1:_[1 [1+ A (a;a)ex; —x;)],(3.4)

lei<jon
A (ai!aj) = —1g tanh%(ai - a; ),
Yix,a) = ¥,(x) expla/2) + ¥,(x) exp( — a/2),
where a can take either the value @ = B or a = im —  with

tanhf3 = k /E( being the rapidity of a particle with momen-
tum k and energy E). Here

Hia,,..,a,)= (3 m,cosha;jla,,...a,) (3.5)
and m, cosh(im — B) = — m, coshf. As a consequence, the
Piotr Garbaczewski 444
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spectrum of H on this set of eigenstates is unbounded from
below, and thus interpreted as ‘“‘unphysical.”

The physical part of the spectrum can however be re-
covered within 7, provided that we abandon the Fock sec-
tor for {#*,1,},_ , , and use a procedure of ““filling the Dirac
sea” under the periodic boundary conditions for eigenstates.
The energy of a state must then be measured relative to the
ground state within the appropriate physical sector
I onys C . Irrespective of the change of the sector from
F(|0)) to 16 » all observables of the system can be viewed
as bounded (in #7|0)) or 7., respectively) functions of
the fundamental fields ¥*(x), ;(x), i = 1,2, where creation
and annihilation operators occur due to

bik) = | 52 exol = i) i) (3.6)

Notice that in the absence of the self-coupling ( g, = 0), after
a canonical transformation

B\lk)= cos@ (k)b (k) + sinb (k)b,(k),
B,lk}= —sinf(k)b,(k) + cosb (k )b,k ), (3.7)
tan26 (k ) = my/k,

(3.1) converts into

Hy= fdk (k2 + m2) (B ¥k )B,(k ) — Bk Bk ),
(3.8)

where under B, (k }|0) = 0 Vi,k the spectrum of H, is obvious-
ly nonpositive in #7(|0)).

B. Let us introduce a neutral massive vector field U,x)
in 1 + 1 dimensions (which is not a Proca one, unless one
imposes the subsidiary condition):

(O + mj)U,(x)=0. (3.9)
Its Hamiltonian is

H=4{3,U,3,U"+miU,U*}

= 1[0, Ul + mgUs] — 1[0, U\f* + mg U, ]

- fdk(k2+mé)'“[a:<k k) — a¥ Y (k )],
(3.10)

where
[ai(k },a,’-"(p)]A = 5ij6(k -p)
[ai(k }!aj(p)]‘ =0,
“a,(k)|0)=0, Vik, i=01,

thus constituting a Fock representation of the CCR algebra.
By virtue of Ref. 38, we can identify the Fock vacuum |0)
with that of the free Thirring model, as in Refs. 20 and 38,
the Fermi generators B ¥(k ), B,(k ) can be completely given
in terms of the Bose generators a?*(k ), a;(k ) (3.11). The coin-
cidence of the number (two) of internal degrees of freedom is
crucial in this construction of the CAR within the CCR alge-
bra. Then 1,.H1, = H,, where 1, is the Fermi operator
unit, A is (3.10), while H, is (3.8), see Refs. 20 and 29.

(3.11)
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This means that all functions £2 (¥*,¢) can be rewritten
asfunctionsf2 (¥*,¢) = F{B *,B) = G (a*,a). Henceall Fermi
field observables can be given as observables of the system of
two independent neutral scalar fields with the same mass m.

Let us emphasize that the spectrum of H, (3.10) analo-
gously to that of H, (3.8), is unbounded from below within
the Fock space. However, for the Proca field a subsidiary
condition

3,U*=0 (3.12)

would remove this unboundedness difficulty, as in Refs. 32
and 33; then

U, = —mie, dU,
U:=e¢"3,U,, (3.13)
O+ mg)U=0,

which proves that a system {(0 + m3)U, =0=4,U,} is
equivalent to a neutral massive scalar field. The restriction
d, U* = 0 makes the spectrum of H positive definite, at the
same time reducing a two-component system to a single-
component one.

C. Let us here comment that the very same positivity
requirement for H, (3.1) makes the massive Thirring model
equivalent to the quantum sine-Gordon system (within suit-
able limitations on the coupling constants values).

Asfound in Refs. 31 and 39, both classical and quantum
sine-Gordon fields (including solitons) do exhibit a neutral
massive free-field structure, hence the field U can be quite
naturally embedded in the sine-Gordon framework. We con-
jecture that a positivity condition for U, induces a positivity
condition for (3.1).

D. On the other hand, by using a boson transformation
concept*® (generalized coherent states come into account
here), Thirring model observables

2 (Y* ) = G (a*,a), (3.14)
if Bose transformed,
G(a*,a)—G (@* + da + a), (3.15)

give rise in the tree approximation to the following (Fock)
vacuum expectation values:

(0|G (a* + @,a + @)|0)—(0|:G (a* + @,a + a):|0) = G (@),

(3.16)

c

0l¢(a* + Ta + a):|0) = Y(Ta).

By exploiting this procedure, the quantum Thirring model
Hamiltonian goes over to the classical Thirring model Ha-
miltonian of exactly the same form, with 1;/ = :ﬁ(c?,a)‘ In the

above, :.: denotes a normal ordering with respect to Bose
variables,

The classical Thirring model is known*® to be a com-
pletely integrable system, whose classical spectrum reads

Piotr Garbaczewski 445

Downloaded 30 Mar 2010 to 217.173.192.73. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



H= J:" [ pils) — pals)1 [ PP5) + m3 ]2 ds?

N
+ X i +ML)

n=1

(3.17)

where momenta of mass m,, particles with densities p,, p, are
given by p(s) = (my/2)(s 2 + 5°). The remaining (discrete)
part of the spectrum is due to solitons.

Hence the two neutral scalar fields are necessarily pre-
sent on the classical Thirring level: the procedure (3.14)-
(3.16) does require the two scalar fields to define G (@, ) while
for the sine-Gordon system, the same procedure*® would re-
cover a single neutral field structure (which is consistent
with the classical spectral solution of Ref. 41).

E. Our conclusion is that the two, entirely different clas-
sical, completely integrable models, i.e., the massive Thir-
ring and sine-Gordon systems, both exhibit the neutral free
field structure, whose respective quantum images can coin-
cide (Coleman’s equivalence) provided a positivity condition
for U, induces a positivity condition on (3.1).

This removes the redundant degree of freedom from the
theory, thus replacing a two-component Bose-field formula-
tion, which is characteristic for the Thirring model, by a
single scalar-field formulation, corresponding to the sine-
Gordon system. Warning: In contrast to the massless Thir-
ring model, the underlying massive free scalars are not as-
ymptotic fields at all. Nevertheless, all quantum and classi-
cal observables of the Thirring and sine-Gordon systems can
be completely expressed in terms of them. For a review of
analogous (quasiparticle) structures, see, e.g., Ref. 29.

4. ELECTROMAGNETIC (FREE FIELD) STRUCTURE OF
THE QUANTIZED DIRAC FIELD

A. Previous 1 + 1 dimensional considerations can be
summarized in the shorthand notions of the “free massless
neutral field structure of the Thirring model” and the “free
massive neutral field structure of the massive (and the relat-
ed sine-Gordon) model.”

Needless to say, in both massive and massless
Schwinger models (quantum electrodynamics in 1 4 1 di-
mensions) no free fermions might occur in the asymptotic
particle spectrum.

For the massless model, if it is provided with a subsid-
iary condition (to guarantee positivity of the spectrum on the
physical subspace of the general indefinite metric Hilbert
space) the only field of importance remains the free Proca
field U, (x) (and hence a massive scalar U).>**? In the case of
the massive model the spectrum consists of the neutral mas-
sive bosons identified with those of the massive sine-Gordon
systemn (no definite free field structure of it is known to me,
but it would surely be a scalar Bose one).

4486 J. Math. Phys., Vol. 23, No. 3, March 1982

B. Our wisdom about quantum electrodynamics in-

1 + 3 dimensions and hence the quantized Dirac and elec-
tromagnetic fields, follows from Refs. 43 and 44.

We shall work with the so-called scattering representa-
tions of the electromagnetic {free, asymptotic, in—out) field
algebra; they have an energy momentum operator satisfying
the relativistic spectrum conditions and can be defined in the
charged sectors of the physical Q.E.D. Hilbert space. With
an appropriate definition of the charge operator Q in 77,
following from [l4,, (x) = j, (x) with j, (x) interpreted as an
electric current, one can prove that a Hilbert space
Hin CH pys 18 in the domain of @ and Q77 = 0. Then
one** proves that no asymptotic (free) charged field ¢, can
existin %, ., which is local with respect to F ;j‘, A scatter-
ing representation algebra we denote 7( &/).

An energy operator P, of 7{ .«/) can be decomposed
intoP, =P, + P, where P, isassociated with 7( .2)"
and hence describes the energy momentum of the asymptot-
ic electromagnetic field configuration. P, ,, is associated
with 7{ /)" and thus describes charges and fields without
electromagnetic interactions.** Here an important relation
holds true:

SpPuch gSpP;tas= I7+7 (4'1)

so that the spectrum of charges, in principle, can be com-
pletely recovered within the spectrum of the asymptotic
electromagnetic field configuration. Compare here, e.g., also
Refs. 29-31, where quite analogous conclusions were drawn
in our studies of the Bose—Fermi ‘“‘metamorphosis.”

Moreover, the charged (infra) states do necessarily gen-
erate non-Fock irreducibility sectors of the asymptotic field
algebra; this conforms well with the traditional infinite di-
rect product constructions, where the Hilbert space
7 =11_ ® (h), carriesareducible representation of the field
algebra ./, and one must specify the generating vector to
select a definite irreducibility sector for .« and thus to speci-
fy 7{.«/). One should also know that only the radiation field
associated with the charge 0 sector of 77, is Lorentz
covariant.

For the physics, the following is essential.** The prob-
ability distributions of the momenta of the asymptotic
charged infraparticles in a scattering state can, in principle,
be determined by measurements of the asymptotic electro-
magnetic field alone. This suggests that even though the
charges in Q.E.D. are not confined (in contrast to 1 + 1 di-
mensional theories) the whole Dirac theory should admit a
reconstruction in terms of the asymptotic free electromag-
netic fields.

C. In Ref. 20, we constructed elements of the Dirac field
algebra in terms of free Fermi fields. The correspondence
principle leading to a non-Grassmann (commuting ring of
spinors) Dirac level, involved there a CCR algebra, with the
same number of internal degrees of freedom, as here of the
CAR, namely,
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{a¥.a;,10)}; _ 1,2,3,4“’“’ F.bi101, - 1,2,3,4 5

[a:(p)ark)] - = 6;6(k — p),

[a:pha;(k)] - =0, [b,(phd(k)], =0,

a(k)|0) = b ¥(k)[0),

a,(k}|0) = b,(k)|0) = O,V k, (4.2)
see Ref. 38. It was the main cause of problems with a physical
interpretation of the underlying bosonization in 1 + 3
dimensions. ‘

D. However, the lesson of 1 4 1 dimensional models
suggests that this seemingly unphysical Bose background of
the quantum Dirac system should be converted-into a phys-
ical one if suitable domain constraints would enter. We claim
that this role is played again by the positivity-of-energy
condition.

A classical Maxwell field can be described in terms of
the two independent four potentials,*>*° M, N, so that

wu?
3,F..=j,, 9,F.=0,

v e

F,=M, —N, =3,M, ~9,M, —€,,,0°N°  (43)
F,=N, ,4+M, =3 N, —~3dN, + €vapd MP,

and the gauge freedom is significantly enlarged

M, —M, +3d,Ax), N,—N,+3,xix)

M, —-M; +M, N,—N+N,, (4.4)

3, MO —3,M% —€,,,8°NP =0.

Consequently, by a proper choice of gauge (N, = — N,
plus the Lorentz or Coulomb one), we can remove the redun-
dant degrees of freedom, thus reducing the problem to a
single potential one. This is the case for sourceless and elec-
tric examples. In the presence of magnetic sources the sec-
ond potential cannot be eliminated.

Obviously, due to the gauge freedom, the Lorentz con-
dition can be imposed on both potentials: d, M*
= 0 = d,N* and the second kind of gauge freedom still al-
lows us to make an appropriate (like, e.g., the Coulomb one)
gauge choice for the system.

The Lagrangian for the two-potential system {4.3) can
be introduced according to convention

L = —\F,F*
= — M, M" + N, N* + #€,,,0°"M °N ")

=Ly—Ln+ &‘(epvpaa”M"N”). (4.5)
The constraints
ANy =M =0=3 ,M" =3I N" (4.6)

reduce both potentials to the radiation gauge. In the'pres-
ence of one more constraint

3, (€,ps "M °N™) =0, 4.7)

the Lagrangian .¥ can be replaced by .¥ = ., — Ly,
which is quite analogous to the Lagrangians {2.8) and (3.7) of
the previous sections. Then the constraint

M,N*=0 (4.8)

allows a complete elimination of one of the two potentials,
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leaving us in (4.5) with a single potential in the radiation
gauge; notice that both (4.7) and (4.8) are consistent with the
demand N, =0 Vg, and because the gauge freedom is re-
moved from the system, we conclude that ¥ = &, — Ly
if supplied with six constraints (4.6)-(4.8) becomes a single
potential system in the radiation gauge. In the path integral
framework this observation can be compactly written as
follows>®:

Jexp{z’S (4 1{] 80, 4*)6(d, 4[] d4,.(x)

=ffexp{is (MN 1) ]] 86, M"

X 8(3,M °)8(3,N *)8(3,N°)
X 8 (M, N*8(3€,,,,FMN")

x [ @M, (x) [] N, (x), (4.9)

with

SIMN] = jd“xifw} — ZN),

S{A]:Jd“xf(A).

E. Let us emphasize that the constraints (4.7) and (4.8)
play the same role as the constraints (2.10) and (3.12) in cases
of the massless and massive Thirring models, respectively;
they transform an involved quantum Bose system with a
nonpositive spectrum into a manifestly positive one, but at
the price of diminishing the number of (Bose) degrees of free-
dom. Without the “‘mixing” conditions (4.7) and (4.8) we deal
with a doubled Maxwell field in the radiation gauge, whose
quantized Hamiltonian can be equivalently written as

H=H(M)—HN)
= [k S (et liod)

A=1

kA aykA)],
(4.10)
where
H(N)=1} dex:Nz + (VX N)*
= [k 3 artetionied) @1y
A=1

[ay(kA)aK AN =846 (k—-K),
[ay(kA )ay(k'A)]_ =0,
[af(kA)af K A)]_ =0,
ay(kA )|0) = ay (kA )[0) =0,
aykA)=i J d *x explikx)Fpe(k,A )

X Alx)/[2]k|(2m)*]"?,

with {e(k,4 ),k/|k|}, -, forming a basis system in E>.
Quantally, the constraints (4.7) and (4.8) become the domin-
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ant ones within an infinite (continuous) direct product space
carrying a reducible representation of the CCR algebra
(4.11). The metric in 57 is indefinite.**

We identify the quartet of Bose generators

ap(k,1) =a,(k), ay(k2)=a,k),
ay(k 1) =ayk), ay(k2)=a,k),
[ax(p)at(@)] - = 6,.:6(p — q),
[ax(p)a;(@)]- =0,

a.p)0)=0 Vp, k=1,2,34,

with the one, (4.2), used in the Bose construction of Fermi
generators for the quantum Dirac field***°in 1 + 3
dimensions.

The previous analysis shows that the Dirac operators
¥ = yY(a*,a), ¥ = Y(a*,a) which are thus completely given in
the two-potential Maxwell framework, after imposing the
quantum images of constraints (4.7) and (4.8) become equiv-
alent to the corresponding single-potential operators (4 ),
¥(4 ) with 4, in the radiation gauge. It conforms well with
Luther’s observation,*’ that a two-component Bose system
(field) should suffice to generate a free Dirac fieild in 1 + 3
dimensions (both in the massive and massless cases).

(4.12)

F. To construct a classical (c-number) analog of the
quantum Dirac field, see, e.g., Ref. 20, one has to work in the
two-potential Maxwell framework, so that the convention-
al,** Hamiltonian density,

H=y*+aV+Bmpy, ¢=1ia*a)
after making the boson transformation*’: a*—a* + 7,
a—a + v and then taking the Fock vacuum expectation val-

ue in the tree approximation (with respect to the Bose de-
grees), leads to

(4.13)

(O1:H (a* + 7,a + 7):510) = H (7,y) = ¥*(aV + B}y,
(4.14)

where :p is a classical (c-number) Dirac field, :.:; designating

a normal ordering of Bose creation and annihilation opera-
tors {a?(k),a,(k)}, 1234 Here

W) = (O]:4{a* + 722 + 7):510), (4.15)

which significantly differs from the definition of ¢ given in

Ref. 20, by being nonlinear in 7,y.

Remark 1: Apart of the manifest Bose background,
both classically and quantally, Dirac fields preserve their
canonical identity as separate (from the involved Maxwell
fields) objects. Quite an analogous property was observed in
Ref. 39 for the sine-Gordon system: quantum and classical
solitons exhibit a free (massive neutral) field structure, but
within the canonical formalism they can be viewed indepen-
dently of the underlying free fields.

Remark 2: The Hamiltonian (4.13) is not positive defi-
nite and the normal ordering :.: with respect to the four
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convert {4.13) into a conventional positive definite operator
:H:, = H,y,,,.- This Hamiltonian should be identified with
P, ., in Ref 44

In the path-integral framework, the generating func-
tional for spinor Green’s functions of the Dirac field reads

then (compare, e.g., also Ref. 20)

Wiz = [ [ exolr [[ax|dd +mii-+ 7+ i
X [] 86, M *)5(3,M *)5(3, N "18(3,N 9)
X S, N6(e

“W&"M °N™)
X H dM,, (x) H dN (x), (4.16)
where
:.5”=z£p-(i3+m):ﬁ=7cnz-—;1, 7Cr=iz;f* (4.17)

and ¢,H are given by (4.14) and (4.15).

By taking into account the constraints it is possible to
perform the four integrations with respect to I, dN, (x) so
that we are left with a single potential radiation gauge for
L 3.

G. Notice that because of the Coulomb gauge adopted,
there is no manifest Lorentz invariance in either (4.16) or
(4.9). However, Lorentz covariance properties are correct, as

can be most easily seen in the single potential-radiation
gauge framework for Dirac operators.

Let A", , then the Maxwell field transforms as
follows:

FL(x)=1,(F,, (Ax)) = A {A JF 4(x), (4.18)
while the Dirac field transforms according to
Yalx) =0, (Ax)) =5 ~A jYAx)
X =UAWx)UA)™", (4.19)

with §(A ) a finite-dimensional representative of A acting on
spinor indices. Here,

SIS =ALyY
and y*# is the Dirac matrix.
If, according to Sec. 4F, we adopt a single potential
Coulomb gauge structure ¥ = (4 ) of the quantized field ¢,
then a Lorentz transformation U (A ) must be accompanied

by the Lorentz transformation V (A ) of the Maxwell poten-
tial, induced by (4.18):

Ax) = VA UHx)VI(A)™ = A4 "(Ax). (4.21)

However, the Coulomb gauge does not persist in the
transformation unless an accompanying gauge transforma-
tion W (a,A ) is performed on A /}* to restore the gauge:

ALx)=WiaA 4 X)W (@A) =4} — Fa,(dx).

a, is an operator-valued gauge “parameter.” (4.22)

This means that the Lorentz mapping U (A ) of free
Dirac operators induces (and inversely is induced by) the
following mapping in the asymptotic electromagnetic field
algebra:

(4.20)
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Ay, YA | ->PA,),
(4.23)

A% (x)=W(a AW (AU x)VA) 'Wad)"

Let us mention that (charged) generating vectors for irredu-
cible representations of the scattering algebra #{.<Z) trans-
form covariantly under the Lorentz group in consistency
with (4.23).4

5. ASYMPTOTIC MAXWELL FIELD CONTENT OF THE
FREE DIRAC SYSTEM, CONTINUED: RELATIVISTIC
QUANTUM MECHANICS OF THE DIRAC ELECTRON

A. Assume that we work within a two-potential frame-
work (4.10) so that, due to the Coulomb gauge, a quartet of
canonical Bose operators {a¥(k),a;(k)}; _ 4 (4.12)
emerges, with'the N, , M, dependence fixed by (4.11).

Let f(p) be a normalized momentum space function

d3k =
k) F(k)= 1. 5.1
Al 5.1)
We introduce
f]k]”z“( )fk):=af, i=1234
(5.2)

[alaf*]_ =84, [a/a/]_ =0,
where the manifest fdependence a;, = a/ occurs. We shall fix
the choice of f = f(p) and the findex will be omitted for
simplicity.

With the CCR algebra generators (5.2), provided we
take a Fock representation: g, |0) = 0 Vi = 1,2,3,4, we can
construct the new operators {s,5}:

Sk — bk =l€;atay, s, + &, =ilata, —ata,). (5.3)
They satisfy the following commutation relations®”:
[SnN] =0=[{,.N]_=[Ns"]_, (5.4)
N= 2 ara;, §*=0G%
i=1
and in addition, the SU(2) X SU(2) ones:
[s.6:]1-=0,
(5.5)
[si5;]1- = t€ipsis  [§ibu]- = € b

All operator identities are valid in the Hilbert space & = h,
constructed from the Maxwell field Fock vacuum |0) by ap-
plying {a¥*,a;}; _ 1234

As shown in Ref. 27, by using s,§ and the quantum
mechanical momentum operator

p=1{p. = —id/0x,},_,,;, the Hamiltonian

H =2m¢, + 45, (s'p), (5-6)
if provided with a domain restriction

(N—1)¢)=0 (5.7)
in the Hilbert space h ® % (% carrying a Schridinger re-
presentation of the CCR algebra {x,, p, }, _ 1.2.3) becomes
equivalent to Dahl’s Hamiltonian'#:

Hp=2mgry + 451 (55D) (5.8)

Here, operators
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Cr = Pl/2§Pl/2’
(5.9)

4
Pyp= ]I {wexp(—ata): + at:exp( — ata,)a; ]

Hp =P\ ,HP, 5, sp =P 8P,

4
— I :exp( —atay):

k=1
act invariantly in h,,, %, hy;, = P, ;,h.
The matrix realization of H in 4, ,, ® # coincides
with the well-known Dirac expression

Hep = (mB + aplp =i du/dt, (5.10)

provided ¢ is a bispinor composed of the expansion coeffi-
cients of the generalized vector

|#) = |dx,2) =2} _, ¢, (x,2)|k ) in the basis of

hiilk ) = at|0).

B. If we smear |@,x,¢ ) with a space-time dependent test
function g = g(x,?)

lg6) = j dx gx)|d,x) =

then the only effect of the Lorentz transformation on |g-¢ )
following from the Lorentz invariance of (5.10), is due to the
unitary mapping U (A ) inducing a base change in his,

Ud)igd) = gd), = g lgllA),

Z ¥:(8)l8),

i=1

(5.11)

(5.12)
with

kA ) = Z T(A)ull)

i=1

(5.13)

such that [compare, e.g., (4.20)]
#9),= 3 wiialo = 5 3 isU)g w514

S (A ) is a finite dimensional representative of A in E *. Equa-
tion (5.13) allows a nontrivial mixing of the Maxwell degrees
of freedom, which preserves the Coulomb gauge of both
Maxwell potentials after a Lorentz mapping. Notice, howev-
er, that the correct spinor transformation law under A can
here be generated by supplementing the conventional Lo-
rentz transformations of M,,, N, with the appropriate “mix-
ing” gauge transformations plus the ones necessary to re-
store the Coulomb gauge [like (4.22)]. Notice that the
constraint (5.7) still does not remove the gauge freedom.

Remark 1: In a fixed Lorentz frame, the above quanti-
zation procedure for the Dirac system can be realized in the
formal path integration framework*: fi=c =1

771\- = (I/V2) px — imy),
Y = (/V2(py +imy),

3
H Dp; D x, H5(P2+77'2—2)
fy i

k=1234

z= | [ 9p. 2,

k=1

xallpmiir® gy exp|i [ de | S mip,
+ i DX —

4
(p,m) = Z PiTy,

k=1

H, (pﬂr,p)”,
(5.15)
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where the “classical”’ Hamiltonian follows from the quan-
tizedone: Hy = P, ,HP, 5, [P, 5,H]_ = Obymaking thebo-
son transformation of all Bose creation—annihilation opera-
tors and then calculating the Fock vacuum expectation
value of the obtained quantities in the tree approximation:
H (p,mp)=(O|:H (a* + 7.0+ y,A* +BA+B);|0).
Originally, we used in Ref. 27 an incorrect form of the action
which in addition to H., included more terms linear in
momentum.)

Remark 2: Recall that if we consider the quantum field
theory version of the Dirac system, the single particle Hamil-
tonian (4.10) is put in between the quantized Dirac fields, in
its matrix form. Hence the whole Maxwell content of a single
particle theory is lost.

Remark 3: In contrast to quantum field theory, it seems
that the internal space of the Dirac particle needs a two-
potential Maxwell framework rather than a single-potential
one, at least to preseve the Lorentz covariance properties of
the whole procedure. Notice that the impossibility of remov-
ing one potential among the two is usually connected with
the presence of magnetic charges in the system.

Remark 4: The J. Math. Phys. referee has acquainted
me with some papers which are relevant to this paper. I
would like to point out the DeFacio, Hammer, and Tucker
approach*®*° to the quantization of relativistic fields: The
equation of motion for the field and the resulting conserved
current are the only data needed to derive all the necessary
commutators or anticommutators. No a priori need for the
canonical formalism appears in this construction of arbi-
trary spin electrodynamics. Application to the Dirac system
which is minimally coupled to the vector meson field is of
major importance for us.

The existence of a classical c-number set of solutions to
the field equations is absolutely required for the existence of
a quantized theory. In this connection, and in connection
with Secs. 4 and 5 of this paper I must recall the paper by
Gross®! on the classical Dirac-photon system, together with
the quantum investigations of Refs. 52--55.
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