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Both quantum and classical sine-Gordon fields can be built out of the fundamental free neutral
massive excitations, which quantally obey the Bose-Einstein statistics. At the roots of the “boson-
fermion reciprocity” invented by Coleman, lies the spin | approximation of the underlying Bose
system. By generalizing the coherent state methods to incorporate non-Fock quantum structures
and to give account of the so-called boson transformation theory, we construct the carrier Hilbert

space # s for quantum soliton operators. The #—0 limit of state expectation values of these
operators among pure coherent-like states in %" reproduces the classical sine-Gordon field.
The related (classical and quantum) spin | xyz Heisenberg model field is built out of the
fundamental sine~Gordon excitations, and hence can be consistently defined on the appropriate

subset of the quantum soliton Hilbert space #*

C xyz+

A correct classical limit is here shown to arise

for the Heisenberg system: phase manifolds of the classical Heisenberg and sine—Gordon systems
cannot be then viewed independently as a consequence of the quantum relation.

PACS numbers: 11.10.Lm, 03.70. + k, 11.10.Qr

1. A NONSINGULAR BOSON TRANSFORMATION

Suppose we have been given a classical scalar field,
which obeys a differential equation:
A@W=F@) A@)= —V*+3%/x; +m?

(1.1)
and let ¢(x), 7(x) be the initial (time ¢ = 0) data specifying an
arbitrary free-field solution ¥(x,2 ) = ¥,(x,t.@,m) of (1.1). By
using the Yang—Feldman relation

P(x,1) = Po(x,t) + A (@) T 'F(x,1,80), (1.2)
we find that ¥(x,t ) is uniquely specified by fixing the initial
free data
1/](xlt) = ¢(xvt1¢’7T)

= (x,t,@,m) + A () "' F (x,t.@,m). (1.3)
Whenever the data @, specify the conventional Fourier
transformable plane wave solution 1, we denote
Yo = Ui, = Yo (@in-Tin ), called the in-field associated with ¥.

Let us now consider a quantum scalar (Heisenberg)
field ¢ satisfying an equation analogous to (1.1)

A@WX) =Fxd) x=(xt)

(1.4

P(x) = Yo(x) + A (@) ~'F (x,40),
where we at once choose 1/30(x) = i, (x), with @,, (x),7,, (%)
satisfying the (equal time) commutation relations

(00 (0,70 (] = 8(x — y)ifi (1.5)
Hence
HX) = B (%) + A @) ' F (@10, (1.6)

which is understood as an equality among the matrix ele-
ments of the operators, calculated between the in-field (Fock
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space!) vectors. An expressions of z} in terms of q;m T, We
call a dynamical map."”” Armed with the plane wave quan-
tum data ¢;in 17, obeying (1.5), we are able to construct these
free (in) field states, which are generated from the vacuum by
a classical current, the familiar coherent states

lp.m) = T,,10)
- exp(i/rz)fd ' [10G () — @ (X (@110). (1.7)

Here an exponent can always be rewritten in terms of the
canonical pair (no transition to momentum space) a*(x),
a(x) as — (a,a*) + (@,a), where the complex valued func-
tion a(x) is subject to the square integrability condition

@a) = Jd 3x a(x)a(x) = ||la||* < «, (1.8)

with a(x) = [p(x) + ir(x)}/fiv'2. Then
f-'(;:n! éin (x)f(p,n' = "?in (x) + ¢ (x)’
(1.9)
T(pﬂl ﬁ.in (x) TQI‘,TT
so that
I ; T, . 10) = (prldx) lp.m)
= (0|¥x.pin + @i +mI0), (1.10)
and hence a c-number field ¢, , (x) can be associated with
¥(x) according to

(018, 0)|0) = (O|T ;19T 10) = ¥, (). (1.11)
Because of (1.5), &w',(x) can always be rearranged to a nor-
mal ordered form plus terms following from the contrac-
tions of the in-fields during the ordering procedure. These
last, by virtue of (1.5) are proportional to #, and hence, we
can consider

= i (X) + 7(X),

lim . (x) = lim [(0]:¥,,(x)/0) + O (]

= {0|:4,,, (x):|0) = b (X, L,@,7), (1.12)
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and quite analogously (notice that all 12%, (x) do commute
among themselves under the sign :-: of the normal ordering)

F,, () = lim (0%, ()0}

= lim [(0]:F (x.9,.,,):10) + O ()]

= F(x,t,¢ (p,m)) = F (x,p,7). (1.13)
So that, after taking the #—0 limit of the Fock vacuum ex-
pectation value of (1.4), we have transformed a quantum
field equation into a corresponding classical Euler one. Ev-
erything is true under the assumption that the #—0 limit
exists at all,

lim (0} ()4, (x)[0) = A (J) lim (0[¢,,.(x)(0)

= A (0 (pm) = lim (O[F,, ()]} = F (x4
=A @) () = F (x:6).

(1.14)

Let us recall that in the above, it was crucial to choose
the classical data ¢, which are consistent with the square
integrability condition (1.8). However such data do not at all
exhaust the set of those allowed by the classical Euler equa-
tion (1.14). Hence it becomes of interest to establish whether
such, say singular, data can be used (and in what sense) to
generate operators of the form 1//,,, »(x), and are consistent
with the formula (1.14). The mapping (1.9) we call a nonsin-
gular boson transformation.

2. A SINGULAR BOSON TRANSFORMATION

A nonsingular boson transformation maps a Fock
space vector into a Fock space vector again, i.e., a vacuum
|0} into a coherent state |@,7), and this last can obviously be
mapped into another coherent state, say |@’,7") by a unitary
transformation: T T L) = |@' 7).

In the above the square integrability condition (1.8) ac-
counts for these classical data which are consistent with the
unitarity requirement T = T ¥ » and thus a good behav-
ior at space infinity of the boson transformation parameters
@,7 guarantees that T is a nonsingular mapping.

To introduce a singular boson transformation, and to
understand its meaning in the quantum theory (with the
1 +1 dimensional sine—-Gordon perspective in mind) let us
restrict the space dimensionality to one, and cover R' by a
countable sequence {4, |, _, . .. of the noninteresting,
semi-open intervals each one with length (lattice spacing) I"
small enough. Let us introduce

at = (/') [0 d,
@.1)
a, = (/v [y o) dx,

where y, (x) = ;Z‘: is a characteristic function of the set
4,. For any function 4 (x) on R' we shall also introduce a
sequence {4, = (1/I")fy, (x)A (x) dx};_o , 1..approximat-
ing A (x) in the sense of 4 (x)=3,4, y,(x). Now let a sequence
{a,.a¥li. . o ... generatea Fock representation of the CCR
algebra
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l[a,a*]_ =6;, [a.g]_ =0, a]0)=0V, (22)
whose carrier (Fock) Hilbert space we designate IDPS (|0)),
according to the direct product convention.* '

For each fixed value of j =0, + 1,
transformation

-+ a unitary

T’I = exp(4,a* — 4,a;) 2.3)
realizes a boson transformation
(TH 'a,T{=a,+4,
2.4

(T)'atT)=ar + 4,

and under the condition |2,4,|* < «, a global mapping

T, = HTf = exp Z(/li

ex1sts and is unitary. Moreover the previously considered
» (formally) emerges here as a continuum limit (/"—0) of

a¥ — A,a)) 2.5

T .

Let 4 be a Hilbert space for an elementary quantum
system, and let a*,a be the associated raising and lowering
operators. Then the direct product construction leads to the
direct product space %" = 11, where h; = hV; and the
representation {a},a;,# '}, _, , ... is infinitely reducible.
Recall that the generating vector |0) for the (Fock) irreduci-
bility sector IDPS (|0)) reads I1” (e,),, where e,eh is the
ground state of an elementary system. One easily finds that
in the case 2,]4,]* < o0, we get

I-IT/1 H (eoli = Hs(fﬁe())k:

= [ "(4:)) = |2 )eIDPS(|0)), (2.6)

7,10y =

where for each & =0, + 1,-» 3|4, ) is a coherent state:
ald,) = A,|A,) specified by a parameter A, . It proves that
the choice of any ill-behaving at + « boson transformation
parameter A (x) = (1/v/2)[p{x) + irr(x)} results in the failure
of the 2,|4;|* < oo condition and hence the nonexistence of
the global mapping operator 7', . This is just the singular case
of interest for us.

Assume theseries 2, |4, |* to diverge, and let us consider
the vector |4 Je.#” given by

40 =T ~(Fied =TT “1Ao), 2.7)

which by construction is unitarily inequivalent to |0}, and
henceorthogonal toit. As a consequence, |4 ) generates a new
irreducibility sector

IDPS(|A ) =%, C.% (2.8)

for the representation {a*,a,},_, , ,.. of the CCR algebra

in %", The representation is obv1ously a non-Fock one.
Assume now a quantum operator F=F {a*,a)

= F(‘P-n 7, ) tomap |4 ) into a vector from IDPS (|4 }) (oth-

erwise F' |4 ) would be orthogonal to |4} ). Then

(A |F(a*,a)|A ) = (O|F (@* + A,a + A4 }|0)
= (OIF (@u, + @, + 7)(0) = (0|F, [0), (2.9)

and the boson transformation is realized for each <p or Ay
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factor appearing in the explicit expression for F. Notice that
the discretization can be immediately removed by taking a
continuum limit "0,

A transformation

R, . F(@in,Tin)—F (@i, + @i + ), (2.10)
with @,7 violating the condition |4 ||* < o, we call asingular
boson transformation. In this way, we have proved that a
singular boson transformation necessarily induces a transi-
tion to a (different from the Fock one) irreducibility sector
for the representation {@,,,#,, | of the CCR algebra in #°.

It is useful to know whether the two vectors |a) and
|¥), constructed according to (2.7)~(2.9) are unitarily inequi-
valent, i.e., whether a mapping: F, —»13(, is singular or not.
For this purpose let us restrict considerations to a single
quantum degree of freedom in the discretized (2.4) case.
Namely, we have

0 = la)=T,100 =TT In) =T, 1»), (@211
with
f"a = expl@a — aa*)

= exp(|a|*/2)exp(@a)exp( — aa*)

= exp{ — |a|*/2)exp( — aa*)exp|(da), (2.12)

and T ;= T , so that, by using the Baker—-Hausdorff for-
mula, we get
f'a f’y‘ ! = expl@a — (_za*)exp( — ya + ya*) B

= expll@ — 7ja — (@ — y)a*Jexp(@y — ay)}

= exp[(@ — ylalexp[(y — a)a*]

xexp{(1/72)(la|? + |y|* — 2a7)] (2.13)
i.e.,
KO|T", T, |0) > = exp( — |a — 7] (2.14)

It proves that a necessary condition for the global map-
ping I, 7%, to be nonsingular, is

;lak — 7P < o0, (2.15)
whose continuum limit is simply
[ tat = P = 3% {gatx) = g, )
+ 7. — 7 x) P <o, (2.16)

In this limit a direct product I1> becomes a continuous di-
rect product. In that case only, a transition from |y) to (@)
can be realized by a unitary transformation, within the same
irreducibility sector IDPS (|}), say. Otherwise quantum op-
erators F, (¢, i, ),F, (@i, 7, ) are associated with different
(non-Fock) irreducibility %, , &, respectively in 7%, be-
cause we have

Sl — ¥iP=o=(y|a)—0, (2.17)
k

i.e., an orthogonality property holds true for |a), |y) ifa
function (@ — ¥)(x) is not square integrable.

3. SINE-GORDON SOLITONS AND THE BOSON
TRANSFORMATION PARAMETERS

A. Let us consider a classical sine—-Gordon system in

1274 J. Math. Phys., Vol. 22, No. 6, June 1981

1 +1 dimensions'*!?

L) =(1/2)[Fy — ¢ +2m*(1 — cosp) J(x,1),
3.1)

" = m’sing, F =49, 3,
where #i = ¢ = 1. The classical particle spectrum of (3.1) is
well known to consist of the three kinds of elementary excita-
tions: a fundamental neutral particle with mass m, a charged
particle with mass 87, and a neutral particle with mass vary-
ing within an interval [0,16m]. Except for fundamental par-
ticles, which can be identified through their counterpart to
the total energy—momentum of the field only, the remaining
two arise in the large time asymptotics of the so-called soli-
ton solutions of the sine~-Gordon equation, which we intro-
duce via the formula

¥y (x,t) = arccos{ 1 — (2/m*} P — IDInfy(x,1)},
fy(at) =det(M,), i,j=12,..N
M, = [2/(a; + a¥)]cosh [(6; + 0 })/2].

(3.2)

The parameters a; are allowed to be complex valued,
provided that for each complex g, in the sequence {a,,...,ay }
there appears an associated ¢; with the property g, = a¥, g,
being real otherwise. The additional restrictions on g, are as
follows:

ai #aj) l:/éj’
33
la;,|*= (1 —v)/(1 +v), |v.| <]l
Moreover, if g, is real, a corresponding 8, is given by
0, = +my{x —vt)+8 =06,(xz1), (3.4

where sgn(q,) is chosen to coincide with the sign appearing
in the expression for 8, and 7 = (1 — v}) .

Ifa; is complex and then accompanied by @, = a} in the
parametric sequence {a;},___», then we have

6, =0*=06(a,)=04 +i6,

= (my/|a|)[ag (x + vt) + ia;(vx + 1)] + 6, 3.5)

where § = 8, =8, + i, is a complex phase, whilea =g,
=ag +ia,, 8 =6}

One can easily verify that exp8; (x,t ): = 4,(x,t ) with 6,
given by either (3.4) or (3.5), is a solution of the free-field
equation

FA()=mA(x,t), F=3 —3a. (3.6)

Real solutions (not plane waves in general!) of (3.6) we iden-
tify with the mass m fundamental neutral fields associated
with the sine-Gordon system. Notice that having A com-
plex, we have also A, and then YA + A4)is the underlying
mass m field.

Recall that to each real a; there corresponds a one-soli-
ton solution, while to each complex pair a; = a¥ there corre-
sponds a bound (bion, breather) solution, both in the large
time asymptotics of ¢, (x, ) = ¢¥n(@,,...,ay Xt ). By looking
at (3.2), and doing some algebra (with care however, as one
must interchange infinite summations) one easily finds that
after expanding ¢ (x,? ) with respect to exp( + ) factors,
for each @, a corresponding exp( — 6,) factor disappears,
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and hence the following formal power series expansion is
valid for the classical N-soliton field

Unr) = 3 - 3 0" exp(n,6,)-exp(ny Oy)

n, =0 n,=0

=TSy (X YA V1), 3.7

with 8, = 8,(x,t)fori = 1,2,...,N and /"""~ being the N-fold
tensor coefficient, in which there are absorbed all the m, a,

dependent factors arising in the course of calculations, and
Yi(x,t) = J[A, (e,t) + A, (x,2)] satisfies (3.6).

B. We are now at the point, in which consideraEions of
the previous sections can be taken into account. Let ¢, (x,2)
be the quantum in-field (i.e., plane wave) solution of the
equation

(@ — mA, (x,t) = 0. (3.8)
Let us furthermore consider the set of operator functional
power series of the form

&(x’t) = '//(xstvé;in ’ﬁin )

3.9)
F(x’t’¢in ’ﬁ.in) = F(x’t )9

where ¢;jn (x), #,, (x) are the initial quantum data for 1/Axin (xt)

[0 ) A (D] = i (x — y). (3.10)
We replace them by operators
a*x) = (1/V D)@ (x) — i, )],
(3.11)

a(x) = (1/VD) g ®) + i @],
which after the smearing operation (2.1) define a reducible in
the direct product space #” representation of the CCR
algebra

[as’a:k] - = ﬁasl’

[a,,a,] . =0= [a*a*]_.
We say that an operator Jx(x,t) = (a*,a,x,t) satisfies the
quantum sine-Gordon equation with the operator-valued
source F (x,t ) = F (a*,a,x,t )ifand onlyifanoperatoridentity

3%(x,t) = F(x,t) (3.12)
holds true in the sense
(013 %(x,1)|0) = 32(0]|P(x,1)[0) = O)F (x,£)[0),  (3.13)
lim (0} (x,1)|0) = Lim (0| (x,¢)|0)
=% (x,1) = m’sing (x,t), (3.14)

where |0) stands for the Fock vacuum for {g,,,7,, }
={a*,a]. It means that each particular solution ¢ (x,?) of
(3.1) should arise as a vacuum expection value in the tree
approximation of some corresponding quantum operator

l/’dz(x’t)
¢ (o) = lim (Ol4h, (x,1)[0). (.15)

C. Because on the quantum level we deal with a single
fundamental mass m “meson” in-field ¢,, (x,?), one easily
finds by comparison with Secs. 1 and 2 that a sufficient con-
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dition for 1214, (x,t) to generate power series expansions of the
form (3.7), (3.9) in the sense of (3.13), (3.14) is the identity
'qu(x’t) = '/’(xrt#;in + ¢7rﬁ'in + )= ![’(x’t!a* + '{—’a +4 )

(3.16)
ie.,

(0[¢h,(x,1)|0): = (A |¥(x,1)|A ) =(@,7|Yh(x,1 )| @),
(3.17)

which is a straightforward (albeit formal) generalization of
the discrete procedures of Sec. 2.

Under an additional assumption that the whole classi-
cal N-soliton sector, N fixed, can be generated [via (3.12)-
(3.17)] by using a single quantum field denoted 1 (x,t ), the
conditions (3.16), (3.17) are replaced by

'ZN'!ﬁ(x’t) = '/’N(x’t’a* + INya + A’N)’
with

(3.18)

(3.19)

An operator 12 ~(x,t) we call aguantum N-soliton opera-
tor. Its domain in 7, i.e., the N-soliton sector in the state
space, will be established below.

Recall that to have a comparison with arguments of
Sec. 2, one should replace continuous translations 4 (x), 4 (x)
by the approximating sequences {4,,4;},_o, , 1.,..- But
first, one should notice that @(x),7(x) arise as the initial clas-
sical data for the free field solution of (3 2 — m?)(x,t ) = O of
the form

Pt = S AL +4,60)].

i=1

(3.20)

The consistency of the choice (3.20) of the boson trans-
formation parameter was analytically checked in a slightly
different framework in Ref. 5, see, e.g., also Ref. 3, for 1- and
2-solitons. An explicit form of the expansion coefficients
#™™" can easily be found for these particular fields.

D. In this way we have demonstrated that both quan-
tum and classical soliton fields, can in principle be built out
of the fundamental free neutral mass m excitations. Hence
the three types of basic sine—~Gordon excitations are only
outwardly independent: All of them can be reduced to exhib-
it a more fundamental mass m neutral free field structure.
This concept lies at the foundation of our studies of the Bose
— Fermi metamorphosis in the whole series of papers!®2°
among which Ref. 20 is devoted to the study of spin } ap-
proximation of the sine-Gordon system, and explanation of
its relation to the spin } xyz Heisenberg and Thirring models.

4. COHERENTLIKE DOMAINS FOR QUANTUM SOLITON
OPERATORS

_ A. The time evolution of a quantum operator lZ’,t (x,0)
—1,(x,t ) must be consistent with the “classical limit” for-
mula (3.15). Hence for a concrete N-soliton solution of (3.1),
we can rewrite (3.15), as

lim (Of4y (x,0)[0) = lim (@t |ihy (x)lm,t )

= lim (pmidu x,0) @) = du(rt), @1
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where |p,7,t ) differs from |@,7) through replacing the initial
data @,7 by the “time dependent” ones according to

Ay =Ay(x,t) = ﬁ expd,; (x,t).
i=1
6,(x,t) is fixed by specifying the 2N parameters
fa, 8} = {ay,....ay,8,,...,0y } according to (3.2)—(3.5). Notice
that the whole time dependence giving rise to a correct clas-
sical result, can be absorbed in the state vectors.

If we look at the difference 4, (x,2) — 4 4 (x,0) = f(x,t)
we see at once that £(x,t ) is not a square integrable function
on R’ for ¢ #0, hence (see, e.g., Sec. 2) for neither instant of
time ¢ 50, is a quantum state |@,,t ) unitarily equivalent to
|@,7).2"-2* They both belong to the different (orthogonal)
irreducibility sectors IDPS (|@,7)) and IDPS (|@,.t )),
respectively.

On the other hand, one finds immediately that a time
development of 8,(x) into §,(x,t ) simply results in the time
dependent phase shift of 8,(x), which can thus be completely
absorbed in the time dependent phase parameter

(4.2)

8;—8; + 6,(1)=0,—-0,(x,t) = 6,(x) + 5,(¢). 4.3)
Consequently
exp[6,(x,6)] = exp[6,(x.t) +8,()]. @.9)

Because for a fixed choice of soliton parameters
{a,,...,ay} the phases {§,,...,0y ] are still completely arbi-
trary, we have found that the quantum N-soliton time
development

NCERNERD) (4.5)
can be described by giving a time dependent trajectory in the
set of initial data

$:(x,0,8) = x;(x)—¢,(x,1) = ¥,(x,a,6), (4.6)
8'=6 +6().

Hence for a given N-soliton solution ¢, (x,¢ ) of (3.1) we have
lpmt) = |p,madt)=pmad") 4.7

at a fixed instant of time ¢, with ¢ = {a;,...,ay} so that
(@l (et)lpm) = @ 7 [y @)le ')

at ¢ fixed, and IDPS (|p,7)), IDPS (|¢',7")) being orthogo-
nal. In the way we have replaced a time development prob-
lem for a quantum soliton operator #{x,t } by a transition
through an infinity of unitarily inequivalent and non-Fock
representations of the in-field canonical algebra. Each irre-
ducible representation exists in its own IDPS (|g,7,a,5)),
where the § parametrization amounts to a time develop-
ment, see, e.g., also Ref. 22.

Because for a fixed classical N-soliton ¢ {x,a,8) the soli-
ton data ¢ remain unchanged during the time evolution, it is
convenient to collect all possible choices of § ’s for quantum
solitons, by taking a direct integral.

f f Aut(8,,0.,8 5 )IDPS(|p,m,2,8) )

= DPS(|p,ma)), (4.9)

where (i) the measure du(§ ) equals d6,--dd if all g,/
= 1,2,...,N are real, (ii) if there is any conjugate pair a, = a}

(4.8)
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in the set {a,,...,ay ] the integral § , f . d§; d6; should be
replaced by ff , 8(5, — 67) d8; db;, where the integration is
carried out over a complex plane.

In the new Hilbert space (nonseparable) DPS(|a)), a
time evolution of the quantum operator @, (xt),¢=2¢()
can be unitarily implemented.

B. Inthe above by using the notation DPS(|a}), we have
explictly indicated that all entering boson transformation
parameters are considered at a fixed choice of the sequence
a = {a,,...,ay}. However we are allowed to vary the param-
eters {a,,....ay ] at a fixed value of N, within the variability
interval (0, 0) 2 |a;| and under the demand that a, #a; for
i#j which is a fundamental restriction used in producing
any solution (3.2) of the classical sine~-Gordon equation.
While varying a’s at N fixed, we are still within a classical V-
soliton sector, while quantally we go through mutually or-
thogonal Hilbert spaces. Notice that states |a,8), |a’,§ ) are
always orthogonal, despite how close two sets
a={a,...ay},a = {a},..,ay} of soliton parameters are. In
this connection see e.g. (3.4) and (3.5) and note that neither
function of the form

fir (x) = exp(mAx) — exp(mA 'x) (4.10)
is square integrable on the real line R', when 1 #1'. Asa
consequence, each classical N-soliton sector gives rise to a
quantum soliton sector consisting of the infinite family of
mutually inequivalent and non-Fock irreducibility domains
IDPS(|a,8)) for the in-field algebra, each one being specified
by giving the values of parameters a and §, such that for all
underlying |,8), lim,_,(a,8|¢x(x,)|a,8) = $n(x,1).

Let us now call a direct integral

f da DPS(|a)) = 7, @11

a quantum one-soliton sector for the sine-Gordon system.
Here |a|€(0, «) and both 1-solitons and 1-antisolitons are
included. The Hilbert space is by construction nonseparable,
and the time evolution of quantum one-soliton is unitarily
implemented in it. Let us consider a function

1 a,#a,,
Caay= [, o7
@1,2) 0 otherwise,
and then introduce a double direct integral

hy:= J Jda1 da, €(a,,a,)DPS(|a,,a,)),

(4.12)

(4.13)
and the accompanying complex direct integral

ho = f fda, da, 8(a, — a$)€(@,,a)DPS(la,.a,)),

(4.14)

The integral (4.13) gives acount of the asymptotically de-
composable classical 2-solutions, while (4.14) gives account
of the bound solitions (bions, breathers). The €’(a,,4,) factor
in (4.13) is necessary to exclude the real coinciding param-
eters. The direct integral

hsehs =23, 4.15)

we call a quantum 2-soliton sector of the sine-Gordon
system.

|a,|,]a,|€(0, ).
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For any N > 2, a classical soliton solution can arise for a
number r = max{r<N /2,r = 1,2,3,---] of bion constituents.

i

Therefore, a general guantum N-soliton sector of the sine—
Gordon system reads as follows

HJ;da,-..LdaN] ® [ % ‘Bdal... [ L-[da, da; 8la; — af)]...LdaN]
® I % (;, $da,---[ J@fda, da,8(a; — a;")]...[Lfda,\. da,b(a, — a;“)]...LdaN]

[ Lfda,\. da, 8(a, — a;“)]---[ Lfdam da,bla,, — a:)]...LdaN] [€2(@y,+ay )DPS(|a,,ay )] = F v,

where the maximal number of double direct integrals in the
N-fold one equals an integer max{r<N /2} and each double
integral is carried over the complex area |a; |,|a;|€(0, 0 ),
while all single ones are carried over a real open interval
la;|€(0, ).

C. Let us emphasize once more that the factor
€*(a,,...,ay) gives account of the specifics for classical soli-
tons “exclusion principle” by virture of which neither pa-
rameter in the sequence {a,,...,ay } can coincide with any
other.?*

By taking a direct sum

3/"& - F, *.17)
N=

we get a particular subspace ¥ s C# of the Bose in-field
direct product space #°, which includes all possible guan-
tum soliton sectors for the sine-Gordon system. 5¥°5; we call
a quantum soliton Hilbert space for the sine—~Gordon system
in 1 +1 dimensions. For other approaches to the sectorial
structures associated with nonlinear field equations see
Refs.?>27,

5.RELATION TO THE SPIN } xyz HE| SENBERG MODEL

A. The spin } xpz Heisenberg chain arises naturally in
the so-called®® spin } approximation of the sine-Gordon sys-
tem [in the case of the lattice quantization of (3.1), under an
assumption of the in-field structure of all the field operators].
Strictly speaking the Heisenberg chain Hamiltonian re-
places the nearest neighbor coupling (gradient) term in the
sine~Gordon chain Hamiltonian. The basic assumption was
that all lattice field operators can be expressed in terms of the
single-site generators {a¥a },_,, , .. of the CCR algebra
in the direct product space % constructed for a linear chain
of quantum pendula. We identify these generators with the
in-field ones introduced in the previous sections.

Recall that #” = I17(k ), and the spin } approximation
appears by projecting on the lowest two energy levels of each
single site (sth) Schroedinger problem in the linear chain

@.\‘+ = Psa?Px’ @s~ = Pva P

PY = :exp( - a,:‘as): + a:‘:exp( - a_‘:as):ax’ (51)
3y = 3 fillk)=Plpy = 3 filk).
k=0 k=0,]
1277 J. Math. Phys., Vol. 22, No. 6, June 1981

(4.16)

The projection operation can be equivalently described
by a simultaneously fulfilled sequence of single-site
constraints:

ﬁs(ﬁ: - 1)l¢>s = 0’ vs!

(5.2)
A, =aYa, Aglk), =kl|k),.
Then the lattice sine-Gordon Hamiltonian
H=Y{[x2+2m*(1 — cosg,)] — (¢, — 4, ,,)/€
=YH + Vi) (5.3)

if supplemented by the constraints (5.2) plus the periodic
boundary conditions,?® converts into

PZK,S+IP=P(H_sz)P=nyz = _ZJaSA?§:+l!
5 s a,s (54)

with P =11, P, and H,, denoting the spin | xyz Heisenberg
model Hamiltonian. The coupling constants {J, }, _ |, ; rely
here on the explicit a¥,a, dependence of the quantum lattice
field ¢, = ¢,(a*,a) entering the gradient term, see Ref. 20.
All the spin | generators {S,}, _, ,,  are obviously
built out of the fundamental generators {a*,a, },"*' and
constitute an irreducible representation of the SU(2) algebra.
B. We wish to define the spin operators and the spin
Hamiltonian on the domain 5%, belonging to the carrier
space ¥ s of quantum soliton operators. But for this pur-
pose an irreducible spin | realization of the H,,, is inappro-
priate (no unique choice of the irreducibility domain in
K 'sa )
Let us introduce the following functions of {a*.a,}:
S¢ =291 — ata /29 a,

- = (25)"%at(l — ata, /25)"? (5.5)

[53-* "5:'— 1. = 2.Sj?6,jﬁ, [S:?"S’\_’ii 1. =+ 2.53,36,,ﬁ (5.6)

It is the Holstein—Primakoff realization of the SU(2).'%'° In
the single site Hilbert space 4;,, let us specify a proper sub-
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space P h; by demanding that P A, (P, is a projection} is a
linear span of all eigenvectors |z} of a*a; for which a*a, |n)

= n|n), n<2s. One can easily check that the operator S,- acts
on Pk, invariantly. Thus if restricted to P, 4,, é, = PSSiP\,
generates an irreducible spin s = n/2 representation of the
SU(2) group Lie algebra.

Let us now introduce a coherent state domain in 4,, so

that a single site coherent state |a), is given. Then

lim (a[8;|a), = +,(), 5.7)
where

37 (@) = (291 — | |/29) e,

s (@) = (291 — |a,|/29)" @, (5.8)

s@)=s— e, %,
and moreover because (5.7) and (5.8) holds true for alli = 0,

+ 1,..., the direct product state expectation in terms of (a)
leads to:

lim (a|H,, |a) = — Y J,s5@)s], (@) (5.9)
#i—0 s

For the product state |a) = I1;|a), = |a,s) whose transla-
tion parameters satisfy

| |’<2s Vi=0, £ 1, (5.10)
the {s,(a)} admit the following parametrization
la;|*: = s(1 — cosB,),
Rea, = sin@,cosp,/ [(1 + c0sB,)/$)]"?, 5.1
Ima, = sin@,sing,/ [(1 + cosB,)/s]'7?,
so that
! = 55inO,cosd;,
47 = ssin@;sing;, (5.12)
s = 5c0s0,,
and28—32
. S
lim lim {a,s| = |a,s) =s,, (5.13)

s+ o0 -0 s

X

H
lim lim {a,s] === |a,s)
5

2

s oc fi—+Q
— e _
=H%, = — 3.0, 0,
. a,s
with
s' =sinOcosg, s* =sinBsing, s = cosO,
provided

la): = |a,s), s=1L1,3-

C. The above procedures allow us to select a subset
H .z In Hss which via #i—0 limit followed by the s— o
limit of state expectations allows us to reproduce a classical
level for the spin } xyz Heisenberg model. The underlying
soliton parameters (i.e., the boson transformation ones) are
given by (5.11) withs = 1.

In this way not only does the quantum sine~Gordon
system recover the spin } xyz model spectrum and the state
space, the classical levels of both systems also exhibit the
relation, as a consequence of the quantum one.

Remark 1: Because, after taking the continuum limit,
the boson transformation parameters a(x,t ) are themselves

1278 J. Math. Phys., Vol. 22, No. 6, June 1981

parametrized by the classical spins s(x,? ),the sine~-Gordon
solitons can be viewed as functions of these spins also. It
seems that classical motions on the phase manifold of the
classical xyz Heisenberg system have their image in the cor-
responding submanifold of the sine-Gordon phase space,
obviously if the respective o’s obey (5.10)-(5.12).

Remark 2: In the above we have mainly discussed a
discrete (lattice) version of the xyz model. Obviously, under
an appropriate limiting operation, a continuous model can
always be formally received. However, for the general case
(i.e., with no restrictions on the coupling constants of the
sine-Gordon system) the continuum limit may not exist on
the quantum level (compare Refs. 19 and 20).

Remark 3: Let us comment that quite analgous applica-
tion of the tree approximation for the Bose constructed Fer-
mi system (however without a subsequent s— oo limit as in
the above) allows us to obtain an appropriate (commuting
ring) c-number level for the Dirac field,'” with no recourse to
the Grassmann algebra methods. An analog of the infinite
spin limit was then constructed for the Dirac system*’ at
least on the level of relativistic quantum mechanics.

Remark 4: By taking advantage of the ‘‘psudoparti-
cle”?* structure of the Thirring model (the
N = fdxip* ¢ = 0 sector)

H= de (= i@ 3,11 — 95 3)

+ mo iy + U5 ) + 28907 s ot
(¢* DP®)] =8 — I, $|0) =0y =0,

the eigenstates of H are found to be in the form

=3 Jss x4 DI,

(5.15)
with y“(x) being the totally antisymmetric wavefunction. Be-
cause ¥,i * are the (free) pseudoparticle fields, we can at
once repeat step by step all considerations of the papers'®'”
on quantization of spinor fields. Namely, the Thirring model
can be considered as a spin } approximation of the subsidiary
two-component Bose system (field). The tree approximation,
if applied to this mediating Bose level, immediately recovers
the classical Thirring model (defined on the c-number com-
muting ring of spinor functions) by considering the associat-
ed-with-fermions Bose transformed operators and then tak-
ing the vacuum expectation values in the tree
approximation. For this (non Grassmann) classical Thirring
model complete integrability was proved and the soliton so-
lutions found in Ref. 35. It neatly disproves the physical (!)
utility of Grassmann algebra methods for the case of the
Thirring model.

Remark 5: The above-mentioned two-component Bose
field, (a four-component one in case of the Dirac system in
1 + 3 dimensions), acquires a physical meaning if considered
in the framework of the “field-reservoir” interaction'®*
where the spin | approximation procedure for the sine-Gor-
don system does automatically involve an additional to the
fundamental one {a*,a,},_, , 1., field of the reservoir
{a*a,l,_o . .., which all together give rise to
¥, ., in the continuum limit. Notice that {a*.a, |

(5.14)
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describe elementary excitations of the sine-Gordon field,
while {a*,d_} describe those induced in the reservoir. Quan-
tized 1, * are given in terms of the Bose constructed Fermi
generators b, = b, (a*,a,ad*,d), b* = b *(a*a,ad*4),_,, so
that the Lorentz invariance of the Thirring model becomes
the Lorentz invariance of the field-reservoir system in the
spin | approximation.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council of Canada and the Faculty of
Science of the University of Alberta. I would like to express
my warm thanks to Professor H. Umezawa for making my
visit in Edmonton possible. Conversations with Professor H.
Umezawa and Dr. P. Sodano were highly appreciated.

'An analogous way of thinking appears in the papers on creating extended
objects in quantum systems via the condensation of fundamental (free)
Bose fields, where the basic ingredient is the boson transformation tech-
nique. References 2-7 are of interest in connection with the sine-Gordon
system.

*H. Matsumoto, P. Sodano, and H. Umezawa, Phys. Rev. D19, 511(1979).
*H. Matsumoto, G. Oberlechner, M. Umezawa, and H. Umezawa, J.
Math. Phys. 20, 2088 (1979).

*H. Umezawa and H. Matsumoto, “Symmetry rearrangement and ex-
tended objects,” University of Alberta preprint, 1979.

G. Oberlechner, M. Umezawa, and Ch. Zenses, Lett. Nuovo Cimento 23,
641 (1978).

°H. Matsumoto, H. Umezawa, and M. Umezawa, “Extended objects in
quantum field theory,” University of Alberta preprint, 1979.

M. Wadati, H. Matsumoto, and H. Umezawa, Phys. Rev. D 18, 520

1279 J. Math. Phys,, Vol. 22, No. 6, June 1981

(1978).

"There is a rich literature on this subject, and we refer to a few chosen
references only (Refs. 9-12).

°G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum
Field Theory (Wiley-Interscience, New York, 1970).

9], von Neumann, Comp. Math. 6, 1 (1938).

"'0. 1. Zavyalov and V. N. Sushko, Teor. Mat. Fiz. 1, 153 {1969).

2P, Garbaczewski, and Z. Popowicz, Rep. Math. Phys. 11, 73 (1977).

3. R. Klauder, J. McKenna, and E. J. Woods, J. Math. Phys. 7, 822 (1966).

1P, J. Caudrey, J. C. Eilbeck, and J. D. Gibbon, Nuovo Cimento. B 25,478
(1975).

'SL. A. Takhtadjan and L. D. Faddeev, Teor. Mat. Fiz. 21, 160 (1974).

1P, Garbaczewski, Commun. Math. Phys. 43, 431 (1975).

'7P. Garbaczewski, J. Math. Phys. 19, 642 (1978).

'¥p, Garbaczewski, Phys. Rep. 36, 65 (1978).

'9P. Garbaczewski, J. Math. Phys. 21, 2670 (1980).

20p, Garbaczewski, J. Math, Phys. 22, 574 (1981).

*'An analogous conclusion was drawn some time ago when quantizing N-
soliton solutions in the model of quantum decay, Ref. 22, and in the study
of the 1-soliton quantum motion (Ref. 23).

22P, Garbaczewski, and G. Vitiello, Nuovo Cimento A 44, 108 (1978).

23p. Garbaczewski, and Z. Popowicz, Bull. Acad. Pol. Sci. 26, 360 (1978).

248, Orfanidis, Phys. Rev. D 14, 472 (1976).

 Another classification of soliton sectors was given earlier by Frélich.
However, his idea lies in shifting an interacting quantum field globally by
a suitably chosen c-number function.

2. Frolich, Commun. Math. Phys. 47, 269 (1976).

¥C. Parenti, G. Strocchi, and G. Velo, Commun. Math. Phys. 53, 65 (1977).

*Conventionally, the classical limit of quantum spin systems involves an
infinite spin (weak) limit of spin coherent state expectation values.

2°]. M. Radcliffe, J. Phys. A 4, 313 (1971).

F. T. Arecchiet al., Phys. Rev. A 6, 2210 (1972).

*E. H. Lieb, Commun. Math. Phys. 31, 327 (1973).

2P, Garbaczewski, Phys. Lett. A 71,9 (1979).

33P. Garbaczewski, Phys. Lett. A 73, 280 (1979).

*H. Bergknoff and H. B. Thacker, Phys. Rev. D 19, 3666 (1979).

*E. A. Kuznetsov and A. V. Mikhailov, Teor. Mat. Fiz. 30, 303 (1977).

Piotr Garbaczewski 1279

Downloaded 30 Mar 2010 to 217.173.192.73. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



