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We give a mode] independent description of criteria under which expectation values of
observables associated with a finite part of the lattice Bose system can be made to converge to

those of the associated Fermi or finite spin system.

1. MOTIVATION

In the series of papers Refs. 1-3 we have investigated
the question of a possible “metamorphosis” of bosons into
fermions from a mathematical point of view, by looking for
fermion field algebras inside bicommutants of given Bose
field algebras. In Refs. 4-8 we have considered a few phys-
ical cases in which the bosonlike properties of finite spin or
Fermt systems arise in local observations, see also Ref. 9. It
suggested that we state the problem of (almost) Fermi or
spin states of the given Bose systems and further that we look
for constraints which must be imposed on Bose systems to
make them exhibit the Fermi-like properties.

Our idea is based on looking for the “metamorphosis”
prescriptions which allow the expectation values of observa-
bles associated with a finite part of the Bose system to con-
verge to those of the associated Fermi or finite spin system.
Then locally bosons can be used as approximations of fer-
mions or conversely. In this connection the basic observa-
tion of Refs. 7 and 8 was that the spin-} approximation of the
initially given Bose system should arise as a result of the
“metamorphosis”: Each Bose degree of freedom must be
then replaced by the spin-} degree.

From a physical point of view, the spin-} approximation
becomes of interest for these Bose systems, whose low-lying
(the vicinity of the ground state energy) excitations play the
dominating role: It is, for example, known that the system ¢ *
in one, and two space—time dimensions can be made to ex-
hibit the Fermi-like properties, and that its Fermi (i.e., spin-
1) limit can be introduced; it is a respective one or two space—
time dimensional Ising model.”'” Our aim is to give the
model independent criteria under which the spin-4 approxi-
mation works for an arbitrary Bose system on the lattice.

In Sec. 2 we construct a one-parameter family of (in
general non-Fock) lattice Bose systems, whose irreducibility
sectors (IDPS(] ;4 )) are labelled by a respective family of
generating vectors {| £,4 )} ,c0...,- Theorem 1 and 2 prove
that each IDPS(| £;4 )) can be embedded into a larger space
so that a one-parameter family of coupled pairs (Bose sys-
tem-thermal reservoir) arises for each separately chosen and
fixed (for all A ) equilibrium temperature value 8 = 1/&£T.
Then (f,A |a*a,| f,A ) equals the statistical Bose distribu-
tion, which in the limit A— o0 goes over to the statistical
Fermi distribution. It allows us to interpret each
{14 )} ac10..) System to give an account of the one-param-
eter family of couplings of the lattice boson to the gas of its

quanta, subject to the z(fid |a¥a, | i),
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= 1/{exp[Bw}(A,8)] —1} constraint for all A€[0, o) and a
singly chosen fixed value of 8> 0.

With each B we have associated its own S th family
{@P(4,B)] of frequencies of the quantum gas. In Sec. 3, we
investigate the limiting properties of the expectation values
[in between the elements of IDPS(] £,4))] of the normal or-
dered bounded operator functions :F,(a*,a) : associated
with the J th finite part {a*,a } ., of the Bose system, as
A

Theorems 6 and 7 establish here the Fermi limits for all
possible :F,(a*,a): including in this number operators of lo-
cal time translations exp(itH 3).

An essential feature of this quantum picture is that the
quantum system needs to be in contact with the temperature
nonzero thermostat. Then the temperature dependent do-
main for quantum operators is introduced, so that if the en-
ergy separation between the energy levels is large enough, or
if the gap between the lowest two and the others is large
enough, we find that the two-level (spin-{) approximation of
the quantum system allows a satisfactory reproduction of its
basic properties, like, e.g., the structure of the set of transi-
tion probabilities, or expectation values of bounded
operators.

2. FIELD-RESERVOIR INTERACTION ON THE LINEAR
BOSE LATTICE: ALMOST FERMI, BOSE
DISTRIBUTIONS IN QUANTUM THEORY

Let us consider a countable sequence of the identical
elementary quantum systems, each one described in terms of
a separable Hilbert space s, = h,5s =0, + 1, + 2,... enu-
merating single systems (sites of a linear lattice). Let f, €A,
we introduce a notion of a product vector f=11" = &f,
ell; ®h,, || f]l =IL|| f;|| < « and of the incomplete direct
product space IDPS( f) = I1/® h, generated by the product
vector f.'® The reducible representation of the CCR algebra
in 1, ® A, is assumed to be generated by a sequence {a*, a_;
[a,,a*].C8, 14, [a,.a,]-=0= [a* a*].} such that a
unique (up- to unitarity) state |0), a,|0) = 0 Vs exists in Il
® h,. Itsirreducible component recieved by the restriction to
a particular IDPS( ), we denote {a¥,a,,/},_o ;... Let
{a*a,,f}; -0 . 1. beassociated with some self-interacting
lattice Bose system, whose dynamics is governed by the Ha-
miltonian of the form H =3 {H? + 3, . W'}, provided
the finite volume restriction and suitable boundary condi-
tions are imposed. Both H® and W™ can be completely ex-
pressed in terms of a*, a,; for an example of the ¢ 5:
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We make now a simplifying assumption and consider Hin its
single-site approximation by H® = 3 _H 2. For a while let us
restrict considerations to a single site of the lattice. Let A be
an observable associated with a single elementary quantum
system whose total Hamiltonian is denoted by 7#". We look
(possibly in 4 ) for the state vector |0( 8)) with the property:

(4)5 =(0(8)|40(B))
=Z(B) Y (n|A |mexp(—BE,),

%In)=En|n), (n|m)=6,,m,

> Im)n| =15, Z(B) = Tr exp( — BF),

so that |0( 3)) becomes a temperature dependent state if
B = 1/kT. However we have in this connection the follow-
ing no—go observation.

Lemma 1: There is no state |[0( 8)) in 4.

Proof: Indeed, if we expand |0( 8)) in the energy basis (a
nondegenerate discrete spectrum for 5% is assumed),
|0(B)) = =, |n) £.(B), then the following identity immedi-
ately follows, '8!

Jo(BY(BY=Z7(B) exp( — BE,)8,,., 23)

which cannot be reconciled with the c-number properties of
the functions £,,, £,

2.2)

To circumvent this difficulty, we shall use a trick of
Refs. 19-21 and introduce a subsidiary tilde system, playing
the role of the reservoir:

F\R)=E,|A), (A|M)=08,, 3 |DG =1,

|nieheoh, (@n'|d|mm')=n'|Ad|m)s,.,
(2.4)
£,(B): = |exp(— BE, /2)-Z"*(B),

(B =Z"(B) Y |n,7i)exp(—BE,/2).

For an elementary spin } it implies
K =wb*b, [bb*].=1,,
10(8))r = {1711 + exp( — Bw)] *} {{0)
+ exp( — Bw/2)-b *b *|0)}

= exp( — iG)|0),
0)=e, ® 8 =100), G= —iO(B){bb—b*b*},
cos@ (B) =[1 + exp( — Bw)]"?
(h becomes a two-dimensional space), so that:

F(0(B)]6*b |0(8))r = exp(— Pw)/[1 + exp( — fw)]
(2.6)
follows. For a boson system (elementary Schrédinger one)
F =wa*a, [a,a*].Cly,,
[0(8))s = [1 — exp( — Bw)]"?
X expa*@* exp( — fw/2)1(0)
— exp( — iG)|0),

(2.5)

Q.7
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G = —iB(B)Ga — a*a*),
cosh©@ (B) = [1 — exp( — Bw)]2,
we get

5(0(B)]a*a|0(B))y = exp( — fw)/[1 — exp( — fw)].
2.8)

Assume now that the experimental limitations impose a low-
er (say positive) bound w,<w, on the observable frequency
spectrum and let >0 (low temperature limit). Then

2(0(B)|a*a|0(B)) s ~exp( — Bw)=£(0( B)|b*b |0(B)),
2.9

and thus the temperatures increase restores, up to a signifi-
cant level, a difference between the Bose and Fermi distribu-
tions in the above. Our aim in this place is to construct the
mechanism, which is capable of compensating the difference
between the Fermi and Bose distributions so that both cases
become indistinguishable within experimental accuracy lim-
its, at nonzero finite temperatures. Define now a mapping
U, in & according to:

U, f=f€h,

(ewse) =061 Y & ® €, =1y,
:

’k):ek’

(2.10)

.ek’

o=t = ()7

1+4

=3 fier, k=01, Ae[0,x),
k

so that |l || = [1/(1 + A))¥ V7" forall k> 1, ||e]
= |leoll, llet || = |le, |- Assume further to have fixed a count-
able sequence {f;},_, , ;.. of state vectors in A, and define

N=]]e (fed,

K

[ e 7)351)=][ (/" & &),

s 5

(2.11)
ff = UA fs/HUAszs

U £II? = 2 |ff|2[1/(1 +/1)]2f,|(171).

Then the following holds true:

Theorem 1: Assume the product vector | A )in I1,
® (h® k), to be constructed so that: f%< R, f°> 0, Vs,
(L) =1, 8(f 8¢&),

i o k f 2 \12
su[ U1y 5 HELY
: f3 = AR
Then for each fixed value of A€ [0, ) there exists in
IDPS(| f,A)) an associated vector |©,4 ) satisfying

(64 |a¥a,|6,1) =sinh’6,(1) = (fid |a*a, [f,A). (2.13)
Proof: In the basis {e, }, _, .. of h we have

(2.12)

h=h3fi= 3 fre/IULID, 2.14)
so that for all s the formula
(fA |a*a, | fi4)
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& kAP (;)Z, G
S EUAP L+
can be used to define a sequence {O, = O,(4)},_, . .. by
demanding
(fi4 |a*a,| fiA): = sinh®O, (A ). (2.16)

Any choice of the set {©,(4)},_,, , ;.. subject to the above
identity determines a state |8,4 } in H ®(heh), and, be-
cause | f,/4 ) is a state in the same space fi.e., [, ® (A ® )]
the sufficient condition to allow |G,4 ) and | £,4 ) to belong to
the same IDPS = IDPS(| £,1)) is (/,A |©,4)#0."

This last condition holds true, if for all fixed A€[0, )
there is

1 f
Ucosh@ WYL

[ 21( A shes(/l))];éo, (2.17)

t

(2.15)

which needs

UL
1
Z%f?

' k 1 35 (-1 |12
SISy g S P
[*2”Umm2uw <

(2.18)

Notice that each argument under the sign of In exceeds the
value 1 for all A, and so by taking A > 0 we have improved a
convergence of the series. Hence if the inequality of Theorem
1 holds true, we have guaranteed the fulfillment of the last

inequality for all 4.

Theorem 2: Under notations of Theorem 1, let us intro-
duce 2 3(1) = In[coth’6,(4 ) and 2 =2 In(| f2/f 1]
provided /| #0. Then for all s the quantlty

ni(A) =
converges to
=1/(1 +exp2[)

asA—o0.
Proof: Because of

| + sinh?@,(4)
sinh*0,(4 )

we have sinh’@,(1) = 1/[exps2,(4) —1 ]. But by virtue of
(2.15) the limit

(2.19)

(2.20)

2.(1)=In

2 112
lim 2,(4) =In 1/ (2.21)
o TAG
immediately follows, so that indeed
lim 1/[exp2,(A) —1 ] =1/(1+ [F |71 )
A v
=1/(1 +exp2?), (2.22)

which proves the theorem.

Now, notice that £2 (1), 2 F arise as dimensionless
quantities, thus providing us with a continuous spectrum of
dimensional frequencies for each fixed value of Bw,(4,8)

= 2.(A )e R*. Here, we may demand 8 = 1/kTto be a com-
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mon fixed factor, characterizing a thermal equilibrium of
any (possibly finite) fraction J of lattice sites. Then by fixing
3 we have associated with each sth site, se J, a frequency
curve w, (A,8) for which an immediate identity,

1+ n2A) )‘//3

nf@) /)’
follows from the definition of 42 Z. In the dimensional de-
scription, the “‘enforcing” of the spin } approximation of the
given Bose system, can be understood as the transition
through a A family of frequencies {w,(4,53)},., at a fixed
thermal equilibrium. Since for A> 1, #*(1 ) can be made not
to differ significantly from »?, the notion of an almost-Fer-
mi, Bose distribution seems to be suitable for n%(4 ) in that
case.

w,(A,B)=In ( (2.23)

3. SPIN-1 APPROXIMATION ON THE BOSE LATTICE

We consider a fixed finite subset /3s of elementary
quantum systems (sites) in our infinite assembly, subject to a
particular field-reservoir interaction of Theorems 1 and 2.

We are interested now in investigating effects of the A
constraint of the previous section on the finite part of the
system only. Let us extract from | £,4 ) a finite tensor product
part | f,1), = I, ® f7 and define a vector |4 ), associated
with | £,1), by putting

ara, |A) = sinh’6,(1)-T[ I1U. £.II* 3.1
ve J

Notice that such a step is impossible in the infinite J limit.
Here

=] ® US, = [HU~]H®f ~U,0),

s s€ J

(32)
0= lim j2),

and the redundant &, ® -+ ® &, terms in the tensor product
were for simplicity omitted. Analogously, with |©,4), in
hand, we get

(& |a¥a, |8) = 11 (UL (OA |ata [64),.  (33)

Let us add in this place the following:

Lemma 2: Denote Py, a spectral projection on the sub-
space /. of A consisting of states whose energy is bounded by
E. For all finite values of £ the map U, is invertible in 4.
Moreover there exists the map

Uy i fi=fi U =U 0 #U%, . 34

Proof: By restricting to 4, we guarantee that for fe 21,
the vectors U/ ;' f will also belong to #,,. Here

U,le,=e =(1+A)" " e, (3.5)
ObviouslyinhE,f,lz S=UU, U f=U,f, and
U 'f,=U, U;'Uf =f, . Consequently (4 |a¥a,|1)

= (0|U *a*a, U, |0), where [0) = lim; 4|4 ).
The existence of U ; ' allows us to generate 4 ““mo
tions” by the use of operations U, .. Therefore, we should in
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where

ld)= }im ldA), F,(0'0): = F,(a*—0'a—0):.

Proof: Immediate by arguments of Theorem 5, if we
notice that lim, _ _ |d,A)=1%|d) = |d), :F,(0",07): we call
a Fermi limit of :F,(a*,q):.

Suppose, we have given an IDPS-generating vector
[i4). Let H3(A ) be a normal ordered with respect to {a¥,
a,} . ;polynomial (or a bounded function) generator of the
time translations for the lattice Bose system {a*.a_,| f,A)},
lim, . H3()=H%, lim, (H%(A1)=H?y. By denoting

7 (A,a*a) = H 3 (1) we indicate a (possible) A-depen-
dence of the expansion coefficients of the generator H % asso-
ciated with IDPS(} £,1)).

Theorem 7: Suppose 17, to be a projection on some spec-
tral subspace of lim, . H3(A) = H . Then

lim (dA) exp[iH 5(A)1 ]ld4)

= (d |exp(iH 71)|d)
for all |d,A )ed ] and H }. = H }, (a*—0",a—0").
Proof: We have

lim (@A |exp[i 5 (1)t ]]d.A)
= (d |1} expGH §1)1%(d)

(3.15)

it)"
- > S @pzaytia, (3.16)
where (d |1/.H ; 17 |d ) identifies the only part H ;.
= Hj(a*—0", a—0o) of

HY+ (U — VOHA Y + 1H(1G — 1)
+ (1 — IDH (% — 19,
which while acting in d § will never produce any vector from

beyond this domain. We easily find that (¢ [13H ;17|d)
= (d |H #|d), and analogously for all n, because

Hy =Hj + (1 — 1)H (15 — 17). (3.17)

COMMENTS

1. For a particular example of ¢ | the A dependence can
be understood as the combined mass-coupling constant par-
ametrization of the model. Just in the large mass -strong
coupling regime, the Schwinger functions of ¢ { were shown
to tend to suitably normalized Schwinger functions of the
one-dimensional Ising model.'>"" In this case the Ising limit
of ¢ % arises via letting all higher energy levels of the (in-
volved) anharmonic oscillator to become arbitrarily large if
compared with the lowest two: The gap between these last
can be kept insensitive to the limiting procedure. Obviously
an assumption that ¢ ¢ lives in the thermal bath is crucial in
this point.

For ¢ 3 the A dependence must give account of the (rela-
tive) weakening of the inbetween -sites couplings if com-
pared with the single site contribution to the total energy.
For weakly coupled chains the spin approximation (and spin
1 in this number) arguments become reliable at nonzero fin-
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ite temperatures; see, e.g., Ref. 15. For higher dimensions
the “critical point” (A = o for ¢ }) presumably corresponds
to a true transition point for the system.

2. Quite similar (to ¢ 1) arguments were applied in Ref.
8 to get a deformation of the quantum pendulum into an
elementary spin . The basic goal was there a construction of
the quantum analog of the classically arising angular mo-
mentum of plane pendulum (its average is nonzero for rotat-
ing motions). It concerns the still not finally resolved ques-
tion of the relation classical-quantum for spin and Fermi
systems; see, e.g., Ref. 1-8, but especially Ref. 22.

3. Though going a bit beyond the scope of the present
paper, let us discuss shortly a fundamental question of the
roots of the famous sine-Gordon —Thirring model equiv-
alence”"’: spin-} particles are here believed to arise in the
original Bose theory. In fact, as shown in Ref. 26, the two-
dimensional Coulomb gas of the charge + g particles, at the
inverse temperature /3 is equivalent to the sine-Gordon sys-
tem with the Coleman’s coupling constant given by 3.

= (47B)'"*q. Then for $g°>2 the dipole phase of the Cou-
lomb system arises, while in the interval 0</3¢* < 2 the sys-
tem lives in the charged plasma phase. The value B> = 2
corresponds to 2 = 87 which is the instability point in the
Coleman’s study of the sine-Gordon vacuum.>-*’

Just below the critical threshold fg° = 2 the plasma
phase of the Coulomb system (and of the equivalent to it,
sine-Gordon system) can be rigorously described in terms of
the Thirring model, while above Bg*> = 2 the dipole gas oc-
curs (the ultraviolet divergences cause some people to refer
to the “nonexistence” of the sine-Gordon model).

Notice that formally, we can investigate this phase tran-
sition at a fixed temperature 1/53, by varying the charge value
g only. Then a one-parameter family of the sine-Gordon sys-
tems arises and an analogy with consideration of the pre-
vious sections appears to be striking: Recall that Coleman
conjectured in Ref. 25 that spectra of the sine-Gordon and
Thirring model Hamiltonians do coincide in the interval in-
dicated above. For further investigations on this subject and
the spin { xyz linear chain approximation of the sine-Gordon
system, see, e.g., Ref. 28.

4. In connection with Lemma 2, it seems reasonable to
give an explanation for when the finite energy bound E is of
no matter (at least approximately). Namely let E be a fixed
single site energy bound, 4, = P.h. WithH=3 E,e, ®e,
(nondegenerate discrete spectrum) in mind, we denote
25 =n, = {maxn, (n|H |n)<E, |n) =e,}. The triple S,
= PSP, with S given by the Holstein-Primakoff
formula,®

S+ =V 2sa*(1 — a*a/25)"?,
S =V 2s(1 —a*a/29)"a, S*=s5—a*a

defines an irreducible in /. representation of the SU(2) Lie
algebra corresponding to spin s = n. /2. Here the following
relations are immediate:

[S,S].=28° [S$°S*]L=+S1,

and 4 naturally splits into the two orthogonal subspaces 4.,
(1 — P,.)h respectively, which are invariant under the action
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principle restrict all £; in the above to belong to 4.
Theorem 3: Let 1 be a projection on the linear span of
fege, ) inh. U, converges to 1, as A—oc.
Proof: Observe that 1, = :exp( — a*a): + a*:ex-
p( — a*a)wa so that 1, projectson lim,___ fi =3, _, fre,
= f . Consequently

lim [2) = 1,]0) = 1,|4) ¥ e [Oo0). (3.6)

Corollary: U, =11, ® U’ convergesto [T, ® 1}
=14inHl,_,®A as i—w.

Proof: Through an immediate calculation one can
check that

(H ® l;)g®ﬂ=ﬂ fr=1:[] & f!

seJ seJ seJ
=1:[] e/
s J
Now take into account the (» + m)-fold totally anti-
symmetric tensor f, _, . . and denotece,,.., , the n-fold
Levi-Civita tensor. We define

fi‘~~~r,,.v,--~.s'," :f;‘|~--r,,x‘~--sm'6r|---r".€.\'|--».\',,, ‘ (38)
Assume now to have defined in I1,. ; ® 4, the bounded func-
tions of Bose generators {a*,a, },.; which are of the form

(Fda*a) =Y (f,..a*a"

nm

3.7

=353 3 fises

nm {ried {sjeJ

Xay-—ata, a 3.9)

Sin

Theorem 4: Let us denote by %} a representation of the
CCR algebra generated in I1_, ® &, by {a*,a,}, ,. In the
bicommutant (% 3)" of %7 there arises a representation of
the CAR algebra associated with the cyclic vector of the
former, so that the following identity holds true:

lim (1 |:F “(@*@)|4)
= (0]:F (b*,b):|0)
— (L Fb*b)|A) YAie0,x). (3.10)

Here :F(b*b):=3,, (f,.,b*b")yand on 1111 _, @A, it

holds that [6 (/)6 (@)*]. = (f,g)1}-
Progf: Notice that in I1_; ® &, we have satisfied

J s
II;F = H ® ]1[:
seJ
= — ar ...a¥*:
n f’l! fried ' "
Xexp( - ai."ai\.):a,l d, €, ., . (3.11)
se J

It is the operator unit of the CAR algebra arising in (% 3)"
by virtue of Refs. 1-3. By Theorem 3 we have
lim (A |:F(a*a):|A) = (0| 1:F “(a*,a):1%|0), (3.12)
A e

but by virtue of projection theorems of Ref. 3, we find that
14 : F(a*,a) : 1%isjustequivalentto:F (b *,b ):onallvectors
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taken from 1711, ® A, (it is a Fock space for the
representation).
In the above construction a concept of the spin-} ap-
proximation explicitly appears due to the following theorem.
Theorem 5: Suppose, we have constructed in
IDPS(| £,4)) adomain & received by applying all possible
polynomials W, (a*,a) of variables {a*.a, },. , on the gener-
ating vector | £,A ). Furthermore let : F,(a*,a): be a bounded
function of {a¥*.a, |, ,. For each vector % 4 )&} there
holds

lim (Z,A |:F(a*,a):|Z A)
=(f|17 WJ(a*,a)*:Fj(a*,a):W,(a*,a)]lJF)f)
= (f|13:G,(a*,a):1%| f)
=(f:G,(" o /)

where

(3.13)

/)= lim | fA), [0, ,0,"]. =0, s#t,
[0'\._ ’0'_3" ]» - l\[ VSE J,

and

G,(a*a). = W*F, W,

G

am fst ot

{

arises as a normal ordered expression for W*F, W, while
:G,(0",07): = :G,(a*—0",a—0).

Proof: By Theorem 3 and Corollary, Theorem 5 imme-
diately follows if neither of indices in the sequence {s} or {¢ }
in the sum appears more than once. Then it is enough to
notice that 15.a¢*1}. = o.', 134,15 = 0, and 1}(a*a,)*1;

=(o o ), k>1.

If any index is repeated more than once (or at least
once) in either {s} or {# }, then the 17.(--)17 “sandwiching”
makes the corresponding term vanish. Consequently, due to
(67)* = 0= (0, )* we can replace each (a*)", (a,)' by
(0. (o, ), respectively.

Obviously Theorem 5 does not in any sense contradict
Theorem 4. One knows that with a finite number (/3s) of
spin-}'s in hand, an application of the Jordan-Wigner for-
mulas,” allows us to rewrite :G,(o",07): in terms of pure Fer-
mi variables :G,{(c*,0"): = :G ‘(b *,b):, where by Theorem
4,:G (b *,b): has its corresponding :G ;(a*,a):.

Assume now a single site energy bound of Lemma 2 to
be infinite, so that all finite energy levels at each site are
allowed. We apply to | ;4 ) the set of all polynomials
{W,(@¥.a,)} with respect to {a¥ = U{aX(U)", a,

= UZa (U’)"'},, and denote { W,(a*a;)| A} =d;

C IDPS(] £;4)). Notice that in d ] we have [a,,, a¥% ]

C 8., 1,. By making use of 4} we are able to assign to each
bounded function :F,(a*,a): its “Fermi limit.”

Theorem 6: For each bounded normal ordered operator
function :F,(a*,a): and all vectors |d,4 )e d ; it holds that

)limi (dA |:F,(a*.a): |dA) =(d |:F,(0",0): |d), 3.14)
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of 8. Consequently the P, ()P, sandwiching selects an irre-
ducible component of the SU(2) based on 4.

Let us now choose one more energy bound A €E and 4,
= P,h with n, €2s. In %, the following holds:

VasT; =P, StP,~P,V 2sa*P,,
VoasT; =p,S;P,~P,V 2sa*P,,

where the triple T =, J, with J, = S} generates the E(2)
group Lie algebra in 4. It so happens that due to 7, <s the
factors (1 — n, /s)"*~1 can be neglected when applying S
on A. Furthermore: [J,, 7 *].= + T *,[T"T]. =1, so
that under the additional (to P) P, sandwiching, thereis no
essential difference between SU(2), i.e., iz and E(2), i.e., A,
provided n, €2s.
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