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Influenced by Klauder's investigations on the same subject, we study the question of correspondence 
principle for Dirac fields, looking for its formulation without use of Grassman algebras. We prove that 
with each Fermi operator (the series with respect to asymptotic free fields): n(lji, \~): one can associate the 
functional ne (ljic, ij1') with respect to classical spinor fields. Here the projector IF and the Hilbert (Fock) 
spaceJF=ipJ'B are given such that the identity IF: nC(IjIB, ~): IF]FF = :n(ljI, \ji):J defines the 
mediating boson level, where coherent state expectation values of operator expressions are in order: 
<:nC(IjiB, iVB

):) = nC(ljic, ~). For proofs we employ functional differentiation (resp. integration) 
methods, especially in connection with the use of functional representations of the CCR and CAR 
algebras. 

1. THE CORRESPONDENCE PRINCIPLE FOR 
SCALAR FIELDS 

In the present paper we shall not go beyond the frame­
work of the conventional quantum field theory, and aU 
considerations are essentially based on its LSZ formu­
lation. 1 The basic assumption here is that any operator 
quantity characterizing a given quantum system (scalar 
field) admits a decomposition into power series expan­
sions with respect to normal ordered products of free 
asymptotic fields. With a given scalar quantum field 

0(X) - rpin (x) = rp(x), 
, t ± "" out 

we associate an algebra of all operators, 

: F(rp) • = 6 Un, : rp":) 
n 

(1. 1) 

where (. , .) is a bilinear form, and the Schwartz nuclear 
theorem allows us to consider (fn, : cp":) in the form 

Un,: cp":) = J dX1'" .r dxnfn(x,,): rp(Xl)" ~ <p(Xn): 
(1. 2) 

Xn =(X1,""Xn), xk~~:H4' 

In general there appears the highly nontrivial task of 
recovering conditions, necessary to impose on coef­
ficient functions (distributions) tfnL to get proper alge­
braic properties on a suitably chosen domain. We do 
not bother with this question in the course of the papeL 
With the Fock representation of the CCR algebra 
(asymptotic condition) in minc!, [a*, a, SGB tK, K = [2 (IR3) , 
we introduce a coherent state domain for our operator 
algebra according to 

[2(IR3):, C\', (0, a) = j~3 dll CI (1/) aU,) = Ii (Y 11 2, 

ICI)=exp(-lloI12/2) exp(CI, 11*) S1 B , (1.3) 

(a i a (11) I a) =, (aU'» = (~(iI), 11 c: IR3. 

If CI, a appear as classical (complex) Fourier amplitudes 
of&(x):CI,a-a,a*""'· &(x)--'P(x), we get 

(n I (p(x) I CI) = <'P(x» = !P(x), 

«(yl :FCp): ICI)=F(Q)=L.«(n,&n). n . 

(1. 4) 

The formula (1. 4) establishes a correspondence between 
the quantum and classical lerel of 11 l{il'en (scalar) field 
and Ihe associated algebra. All the algebraic manipula­
tions appearing on the quantum level induce correspond­
ing relations on the classical level, and therefore many 

essential questions as, e. g., estimates (concerning the 
convergence of operator series, criterions for joint 
multiplication) are transferred onto the classical level, 
where powerful analytic methods allowing to solve them 
are known (compare Ref. 2). In connection with those 
problems, it is extremely useful to employ so-called 
functional representations of the CCR algebra, arising 
in the theory of the functional power series. 2 Namely, 
let us assume that we have given the Hilbert space 
[Bargmann space B([2(IR3

))] of all functional power 
series V(a): 

Veal =L: (1/..fn! )(Vn, an) 
n 

= I: (1/ >In!) r 11k,. Vn (k,.) a (k1 ) < .. a (kn), 
" . 

dk,. = d1z1 ••• dkn, 

II vI12 = (V, V) = v (d~) V(a) 1<>.0 =~ ('Vn, 11n) 

=~ II Vn 112 = f v(y) V(y) exp[- (y, y)l d 
y 

f1r 
(1. 5) 

where d/ da symbolizes the Gateaux derivative with 
respect to a E [2 (IR3) , while dey fliT) the functional 
(Gaussian path) integration measure, compare Ref. 2 
and J. Rzewuski's monograph. 3 

InB{[2(IR3» we assume (Ref. 2) to have defined an 
algebra of double power series: 

x anm(k,., Pm) a(l?1)" 0 a(l?n) a(P1)' •• a(pm), 

(AB)(a, 0') = I: ~ (6 (ank , bkm ), annm \ 
"m vn!ml k ) 

=A (G, d~) B(y, 0;)17=0 

= JA(a,Y)B(y,a)exp[-(y,Y)ldC~)' 

(A V) (a) = V' (a) =6 ;, (2: (a nk , v k), a n)\ 
n vn! k ) 

=A(a, d~) V(Y)17'O= fA(a,y) V(y) 

xexp[-(y,y)]d (~) . (1.6) 
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The underlying Hilbert space and the algebra can be 
derived from much worse defined objects by applying 
suitable analytic restrictions (their study in the frame­
work of double functional power series is given in 
Ref. 2). 

In the course of the paper, we do not pretend to give 
highly correct meaning to the notion of functional (path) 
integrals (see, e. g., Ref. 4); all the definitions estab­
lishing a sufficient axiomatization of the formalism can 
be found in Rzewuski's monograph. 3 

Theorem 1 (junctional representation of the CCR): 
Double power series (a,f) exp(a, a) = aV)*(a, a), 
<l,a) exp(a, a) = a (f)(a, a), f~ [2(:1R3), play inJB 
=B(L2(JR3» the role of generators a{j)*, a(f) respec­
tively of the Fock representation of the CCR algebra 
with the vacuum vector nB = 1 (the whole set of complex 
numbers ([ spans in fact the vacuum sector). 

Proof: Given in Refs. 2, 5; for further convenience 
we shall only quote 

[a{f), a(g)*L(a, a) = <l ,g) exp(a, a) = (j, g) [B(a, a), 

[a(f),a(g)J.(a,O')=O, (a{f)nB)(a) =0. 

(1.7) 

As a coronary to Theorem 1, one can easily prove: 

Lemma 1: For any F(f/J) =A(a, a) (after suitable re­
ordering of summations and integrations), the double 
power series F(fP) exp(a, a) play in JB ==B(L2(JR3» the 
role of the operator :F(rp): 

:F(rp): (a, 0) =F(fP) exp(a, 0). (1. 8) 

Proof": Immediate, by applying (1. 6); see also Ref. 2. 
In consequence, in addition to the correspondence rule 
(1. 4) we can formulate the quantization principle (1. 8) 
allowing to reconstruct immediately the quantum obj ect 
from a given classical object. Here (see Rzewuski's 
monograph) the algebraic structure on the quantum level 
induces a corresponding structure on the classical 
level: 

:F1(rp): :F2(rp): => (:F1(r): :F2
(cp):)(a, a) 

=exp(a, a)' {F1(fP)(*) F 2(fP)}= exp(a, a)F12 (fP) 

= :F12 (rp):(a, a) =:;> :F12 (rp):, 

where 

(1. 9) 

(1. 10) 

Arrows indicate the direction in which operators act, 
and t.(x - y) is the Pauli-Jordan distribution. 

The identity (1. 9) recovers what is the relation be­
tween the quantum and (implied) classical multiplication 
rules. The situation appearing can be summarized in 
the following: 

Correspondence principle: (i) Correspondence rule: 
{: F(rp):} - {F(fP)}: 
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(0'1 :F(rp):la)=F(rp), 

(a I: Fl (rp): : F2(rp): 1 a) =F1 (fP) exp ~{ t. ~) F 2(fP) 

=F12 (rp). 

(1. 11) 

(ii) Quantization rule: {F(fP)}~{:F(rp):}: 

F(f/J) exp(a, a) == : F(rp): (a, a) => : F(rp):, 

F 12 (f/J) exp(a, a) = (: Fl (rp): : F2(rp):)(a, a) ='> : F12 (rp): • 

(1. 12) 

Commonly, the quantization is believed to be per­
formed, if the Green's functions are given. For this 
purpose, one needs, however, the knowledge of the 
generating functional: 

Z( ) = J exp{i[S + J dX1](x) fP(x}]}Pd(MfP/YiiT) 
1] Jexp(iS)d(Mrp!/i7f 

(1. 13) 

where S is the classical action, M is an arbitrary linear 
operator, and fP a quite arbitrary scalar field. The 
integration measure d(Mf/J/.fiii) is defined according to 
Rzewuski's monograph2 (Fresnel integral). 

The two-point Green's function is then given by 

(1. 14) 

In the above, 1] is a suitable classical source function. 
It is useful to know that, in the free field case, Z(1]) 
reduces to 

Z(1]) = exp[ - (i/2) J 1] (x) G(x, y) 1]( y) dx dy], (1. 15) 

where t. is one of the Green's functions of the KG 

operator (the arbitrariness exists), usually chosen to 
be the causal function. 

2. INTRODUCTION TO THE PROBLEM: FERMIONS 

Pragmatists working in the domain of quantum field 
theory are strongly convinced (see, e. g., Coleman's 
opinion expressed in Ref. 6) that quite satisfactory 
(though even not fully correct) classical level for the 
algebra associated with any Fermi (Dirac, say) field 
is given in the framework of Grassman algebras, which 
are built of c-number-like, but anticommuting objects. 
This last property manifestly exhibits the Pauli exclu­
sion principle, influencing the starting Fermion level. 
Investigations3,7 have been going in this direction 
(especially because of the similarity of the formal 
scheme, allowing us to reproduce all the results in the 
manner analogous to this of Bose case). There was even 
founded a complete mathematical theory (Berezin's3 
monograph) of anticommuting numbers in functional-like 
differentiation and integration procedures. 

Let us add that if in Theorem 1 we formally put ele­
ments of the antic om muting ring in place of square in­
tegrable functions, a Fock representation of the CAR 
would be obtained (see, e. g., Garbaczewski,8 where a 
complete construction is given). 

If we follow the Grassmanian way, the generating 
functional (the notion used here in rather ambiguous 
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meaning) for the Green's functions of the Dirac field 
reads 

Z( i]) = J exp(i{S + J [i)(x) IjJ(X) + 17 (x) ~(xD-dx}' d(J\N/li1i) 
1), ) fexp(iS)d(Mdlvi1f) 

(2.1) 
CH is an arbitrary linear operator). If electromagnetic 
interactions are taken into account (with the Faddeev­
Popov measure 0J1A; see Popov's monograph2), then 

Z (T), i), 1] "') = 

f exp{i[S + f (i)d' + J;T) + 1]", A"') dx]} oil A d(M/li1T) 
f exp(iS) Oil A d(:lIJ'/ Viii ' (2.2) 

whe! e 17, i), T)", are "sources" of fields w, ~,A", respec­
tively. Notice that T), 1j, qJ, J. belong to the Grassman 
algebra, and 0J1 A integrates over classes (orbits with 
respect to the gauge group), 

On the other hand it is perfectly well known that one 
can always construct the set of (c-valued!) functional 
power series with respect to free Dirac fields and equip 
this set with a suitable topology and algebraic structure, 
So, it is rather surprising that no reasonable corre­
spondence with the (prospective) quantum level was 
found. Really, the Pauli exclusion principle docs no! 
govern the considered classical level, in contrast 10 the 
Grass III an ajJjJYoach. 

At this point we do not wish to tilt at windmills and 
advocate this pure c-number point of view, against the 
just-described Grassman tools (especially because these 
last are widely spread and quite convenient in explicit 
calculations). We wish, however, to prove that the rea­
sonable correspondence jJrinciple can be established 
lJclU'cenfunctionalj)ower series of Dirac sjJinors and 
operator series with respect to normal products of 
Dirac fermiolls. This correspondence will be estab­
lished in a correct and unambiguous way with no refer­
ence to Grassman methods. 

Let us mention the two isolated attempts in this direc­
tion which are known to the author; see, e. g., Ref. 8. 
It was proved that c-number images of Fermion func­
tionals do exist. Another possibility8 was to construct 
a pure operator theory where functional-like differen­
tiations and integrations would be carried out with 
respect to operators. In the free field case, the gen­
erating functional (2.2) reads 

Z(1], i), 1]",) = exp[- i I i)(x) G(x - Y)1J( Y) dx dy 

(2.3) 

where 

I P+11I 
G(x - v) = (21T)-4 dp explip(x - v)]· pi 2 + '0 ' . • -111 1 

(2.4) 

The choice of the causal function is justified by the 
need for uniqueness of the expressions in exponents; 
the arbitrariness mentioned in connection with scalar 
case is thus removed. The integral received gives 
the photon part in the Lorentz gauge. For more details, 
see Ref. 3. 
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Let us add that the functional (Grassman level) 
definition of the two-point Green's function corre­
sponding to the spinor field, by the use of (anticommut­
ing) derivatives with respect to sources, reads 

(2.5) 

3. INTERLUDE: BOSON EXPANSION METHOD IN 
THE QUANTUM THEORY OF FERMIONS 

Realizing the program sketched in Sec. 2, we intend 
to close, by the present paper, the series,5 developing 
the method of Boson expansions in application to Fermi 
systems, The first two papers of Hef. 8, of these 
series, include in fact an attempt to apply a c-number 
language in the functional formulation of the quantum 
theory of Fermi systems: So-called lunctional repre­
sentations of the CAR algebra were invented there. 
The third paper of Ref. 5, of these series, generalizing 
results of the previous two onto the algebraic level, 
began a systematic study of the "bosonization" question 
(the term used by us as the shorthand version of the 
title of this section) from both mathematical and physi­
cal points of view. 

Theorem 2 (representation of the CAR): Let us de­
note an(k,,) = a(k1, ••• ,hn), l~ r=. IR3

, the Friedrichs­
Klauder sign function8,9 being a continuous generaliza­
tion of the n-point Levi-Civitta tensor. Let 
{a*, a, nB}L2(m3) generate a Fock representation of 
the CCR algebra over the Hilbert space L 2(IR3). The 
underlying Fock space we denote JB' Then, the triple 
{b*, b, nBL2(m3) with 

(a*, a) = J dk a*(!?) aOz), 

b{f) ==: exp[ - (a*, a)]' 6 (l/Yn! m 1) . nm 

x I dk" I dpm fnm(k", Pm) 

Xa*(1?l)" 'a*(hn ) a(Pl) 0 •• a(Pm):, 

fnm(kn, Pm) =';n + 1 Om,l+n an(k,,)1(Pl)a1+n(Pi+n) 

X O{/Zl- h) 0(1<2 - P3) 000 O{/<n- Pt.n) (3.1) 

generates a Fock representation of the CAR algebra 
over L 2 (IR3) , whose (Fock) representation space J F is 
selected from J B due to proj ection properties of the 
operator unit lI.F : 

[b(f), b(g)*J.= (j ,g) lI. F , 

X a(T?l) • 0 • a(T;;n) : , 

JF= lI. PJB' 

which implies the coincidence of the 1,aCUUfII and onc­
particle sectors for the representations (CCR and CAR 
respectively). 

Proof: Details are given in Ref. 8 and in the first 
paper ~f ReL 5, The only difference lies in that we use 
an explicit form En(km Pn) =a .. (kn) 0(k1 - P1) 0', o(kn - Pn) 
of the integral kernel of the square root of the abstract 
projector E~ appearing in the original derivation. 

Comments: (i) The extension of Theorem 2 to an 
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arbitrary number of internal degrees of freedom is 
nearly immediate, and, by the substitutions 

j -js> a,a* -as,a~, 

o(kl - Pl+l) - Os t • O(fll - Pl+l) 
l' 1+1 

f dkn - :0 f dk" an(Kn) - un(Snl Kn), 
Is) 

(a*, a) - (a*, a) =:0 r dll a:(ll) as (T?), (3.3) 
s . 

we get the pair of Fock representations (CCR and CAR) 
spanned over Ai1v L 2 (IR3) :3 Is> and hence with the number 
N of internal degrees of freedom. 

(ii) By virtue of this result and the Haag-LSZ con­
jecture (compare Sec. 1), we can associate with each 
quantum field theory (QFT) of the boson system 
(asymptotic free bosons) the corresponding QFT of the 
fermion system (asymptotic free fermions). In the rela­
tivistic theory when the number of space-time dimen­
sions is equal to two, the above conclusion can be 
proved in many ways; compare, e. g., Ref. 10. If 
Minkowski space is taken into account, then because 
both fermions and bosons have same number of inter­
nal degrees of freedom, one of those systems should 
violate assumptions of the spin-statistics theorem. 
Hence if the former field is the physical one, the latter 
can appear as a subsidiary (ghost) entity, or conversely. 

(iii) On the other hand, if relativistic restrictions 
can be abandoned, the whole variety of interesting cor­
respondences can be studied. For example, if we con­
sider the low temperature limit of the Heisenberg 
ferromagnet, it is well known that the free magnon 
gas (bosons) behaves like the Heisenberg crystal itself. 
And really we have proved5 that if the ferromagnet 
Hamiltonian is H, then there exists the boson (magnons) 
lattice Hamiltonian HB and a projection Po in the boson 
Fock space JB such that H=PoHBPO and POJB =Jo is 
the Hilbert space of spin states of the Heisenberg 
ferromagnet. 

An analogous effect was observed in the macroscopic 
model of the atomic nuclei (four-fermion interaction) 
where atomic spectra in weak excitation limit look like 
those of quadrupole bosons. Here the underlying boson 
Hamiltonian HB includes a two-boson interaction term, 
where each Boson corresponds to the Cooper pair of 
(starting) fermions. 

Suitable modification of Theorem 2 was also used by 
us to make a transition from boson to fermion variables 
in the ultralocal quantization attempt for sine-Gordon 
1-solitons. (This was the model study of the quantiza­
tion procedure, where by starting fro 111 the classical 
level, through the subsidiary boson level, the final 
physical Fermion level is achieved). 

Theorem 3 (functional representation of the CAR): 
Double power series 

b{f)(a,OI)=:0 ~ f dk, !dPm{v'n+10m.l+nUn(k,,) 
nm vn!m! 

645 

xj(Pl) ul +n (P1+") O(fll - P2) 

x {j (k2 - P3) ••• ° (fln - Pl.n)} 

X a (leI) ••• a (ll") 01 ( Pl) ••• a ( Pl + n) 
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play in 11. F J B = J F the role of generator s b (f) * , b (r) 
respectively of the Fock representation of the CAR 
algebra: 

[b(t), b(g)*l.(ev, 0') = (j ,g) ilF(a, 0'), 

rlB = 1, 

(3.4) 

(3.5) 

Proof: The above theorem is a corollary to Theorem 
2, and can be proved by making use of Theorem 1 and 
calculating the functional representation of obj ects 
appearing in (3.1), (3.2). It is useful to recall the 
formula (1. 8): F(a, 01) exp(a, a) = : F(a*, a): (a, a), 

The fermion subspace of the Bargmann space is here 
given by 

V E B (L 2 (lR3», 

II.F (a, d~) V(Y)IY=O 

= !II. F (a, y) V{y) d (lrr ) 

(3.6) 

and includes vectors received by the Fock construction 
from symmetric functions (vnu~)(k,,), which vanish if 
any two of variables coincide. 

In the Fock construction there is no difference be­
tween such functions and the anti symmetric functions: 

un(vnu~)(k,,) = (vnun)(k,,), 
(3.7) 

Both kinds of them appear in the theory on an equal 
footing. In this connection compare also Refs. 5, 8, 
where the study of Hilbert spaces of symmetric and 
antisymmetric functions is given (together with suitable 
isometries between them). 

4. PROJECTION THEOREMS 

Let us consider an arbitrary operator: 

(4.1) 

whose generating triple {b*, b, rlB} is associated with 
the starting Bose triple {a*, a, QB L lnm is a totally anti­
symmetric (n + m)- point function (distribution in 
general). We have: 

Lemma 2(boson expansions): 

1 1 
:F(b*,b):=:exp[- (a*,a)J'6 v , :0 1>.,' 

nm n . 177 ! k {, 

x (f * k+n k+m). an+k n!!lUm+k,a (l _, (4.2) 

where 111 denotes the reversed order of variables: 
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fn!!;'(k", Pm) =fnm(k1,···, kn,Pm,Pm_1>'" ,Pi). 

Proof: Immediate by applying the functional tools. 
Here, the fermion analog of (1. 8) can be easily derived 
(see Ref. 8): 

. (* . (- _ '" 1 '" 1 .F b ,b). ('/,a)-LJ -- LJ-
nm Vn!m! k I?! 

x «(J f (J -ak+n('/k+m) 
n+k ~ n!,!' m+k' • (4.3) 

The only difference if compared with the originalS 
formula lies in the use of the explicit form (In+k of the 
operators En+k ((In+k is the alternating function). 

One can also easily check the following identity: 
c 

:F(b*, b): =: exp[-(a*, all' F(a*, a): 

(_ l)n c 
= 6 --!- (a*n,: F(a*, a): an), 

n n 

1 
:F(b*,b):S1B =6 ".---, «(Jnfnm P(Jm,a*nam)S1B : 

nm vn!m! ~ 

=:F(a*,a):S1B , 

(4.4) 

suggesting the equivalence relation between :F(b*, b): 
c c 

and: F(a*, a):, where fnm = (J,rfnm(Jm is a symmetric func-
tion in groups of variables (m fand (n) respectively, but 
antisymmetric with respect to permutations from (m) 
into (n), and converselv. 

In connection with (4.4) we have the following: 

Theorem 4 (projection theorem): Let IF be given by 
(3. 2), f F = 1 F] B' The following identity 

IF:F(a*,a): ilF]F =:r(b*,b):JF' (4.5) 

holds for all operators: F(b* , b): and: F(a* , a): related 
by (4.4). 

Proof: The study of isometries between Hilbert 
spaces of symmetric and antisymmetric functions, 
performed in Ref. 8, results in the basic projection 
formula: 

i J J V '" 1 ( s 2 *n) n F B = F:3 = LJ r-o Vn(Jn, a HB 
n vn! 

= 6 ;, (iJn(Jn, b*n) S1B (4.6) 
n vn! 

so that !I.F V = V ~ (IF V)(a) = v(a). We denote vn = l~n(Jn' 
where 1~" is the n-point, symmetric function and thus v" 
is antisymmetric. Here, for all V E] F, (4.5) reduces 
to iF: F(a*, a): V =: F(b*, b): V. (Note that (4.5) is an 
identity on the whole of fBl. By (1. 8) 

- ",1(- 2) IF(a,a)==LJ, 0''', (J"a n , 
n n. 

c _ _ c _ 
:F(a*, a): (0', 0') == exp(O', a)· F(a, 0') 

=exp«(i, a) 6 ~ (fnm, anam) (4.7) 
nm vnlml 

with 

(ak+n, fnmCi k+m) = f deL, f dpm f drm fnm(Pn,r m)a(Pi)' •• (i(Pn) 

x a (ri) ••• O'(rm) a(qi) a(Qi)'" (i(qk) Ci(qk) 

(4.8) 
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Applying (1. 6), we get at once 

(4.9) 

while (4.3) can be written in complete analogy with 
(4.7): 

• F(b* b)' (- ) - '" 1 '" 1 (-k+n k+m) . ,. 0', a - LJ r-;--;- LJ -kl 0' (Jk+nfnm(Jk+m' 0' • 
nm Vn! m! k ~ 

(4.10) 

In consequence (with the use of the identity vn(J~ = vn) 
we get 

(:F(lJ*, b): V) (a) = 6 _1_6 ';(k+m)! 
nm v'nlm! k kl 

x (ak
+
n, (Jk+n fn?!, vk+m) (4.11) 

and 

(4.12) 

To make the comparison between (4.11) and (4.12) there 
is enough to restrict considerations to respective bi­
linear forms. The integrations symbolized by the sign 
(. , .) induce a nonzero counterpart only from these 
functions which are totally symmetric both in the group 
of (n + k) and (m + k) variables and vanish if any two of 
variables coincide. 

(i) «(ik+n, (J~n(J n fnm(J m(J k+m Vk + m)' The coefficient function 
integrated with ak+n, due to the (n) ~ (m) symmetry [the 
change of sign if the variable from the group (n) is per­
muted with any from (m)], can be decomposed into a 
sum of irreducible parts with respect to the symmetry 
group. Denoting 5 (n, 111) as the symmetrization opera­
tor, we indicate the term of interest in explicit fashion: 

5 (n, m)[un(Jm fn!!,l = fn!!;,[A (n, m) (Jnam], 

(Jnfn!!'(Jm==5(n, m)[(Jn(Jm 'fn?!,l 

+ other decomposition terms. (4.13) 

Here we have clearly emphasized [A(n, m)1 the fact 
that symmetrization of the expression is achieved by 
the antisymmetrization of the product (Jnum' 

In this way we have explicitly disclosed the totally 
symmetric in (k +n) and (k + m) variables function, 
whose decomposition terms possessing another sym­
metry are annihilated by the bilinear form: 

fn!!, Vk+m == {(J~nA (n, m)[ (In(Jml' U k+m} 'fn!!' V k+m 

+ other decomposition terms. (4.14) 

(ii) (ak+",(Jk+nfnmvk+m)' Repeating arguments of (i) we 
must select a totally symmetric in variables (k + n) and 
(k + 11'1) decomposition term of the function (Jk+nfnmVk+m' 
This can be obviously done by making use of (4. i4): 

uk+nfnmvk+m =={uk+nA(n, m)[(Jn(Jml' (Jk+m}uk+nfnmVk+m 
~ ~ 

+ other decomposition terms. (4.15) 
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The above symmetry analysis clearly shows that though 
visually the forms 0) and (ii) are different, they clearly 
coincide by virtue of performed integrations. Hence 
(4.11), (4.12) coincide also. The theorem is proved. 

To complete the above analysis, let us prove one 
more theorem, concerning the relations 

D.Fa{j)lF]F=b{j) ]F, 

II.F a(f)* D. F] F= b{f)*] F, 
(4. 16) 

which is the special example satisfying Theorem 4. 

Theorem 5 (projected representation): Given the 
Bose triple {a*, a, nB r and the associated Fermi triple 
{b*,b,nB }. The CAR hold on]Ffor operators Il Fa(j)ilF 
and ilF a{f)* il p The corresponding representation of 
the CAR is called the projected representation lnotice 
that formal operator expressions received after normal 
ordering of 1F a{j) IF' tJ.Fa(j)* tJ. F, respectively, are 
quite different from these for b{f), b(j)*]. 

Proof: We make use of (4.11), (4.12). 

(i) n = 0, m = 1 implies 

(4.17) 

Let us notice that u~uk+l = uk+b so that the second of our 
bilinear forms reads (ak

/, U k+1V k+l)' 

In the case of (ak
/, UklJk+l) we discover the antisym­

metry (change of sign) for permutations (1,) IL (1) so that 
the only part of the symmetry group decomposition of 
the product aR

{ which does not vanish while integrated 
with the former function reads uk+1ukak

/: 

akf=uk+luk akf+ other decomposition terms. 

But it means that 

(a"/, ukvk+j) = (uk+IUka
k
{, Ukl'k+l) 

= (ak
{, ak+lu~l'R+1) = (aR{, a k+1Vk+I), 

which proves the coincidence of both expressions (4. 17). 

(ii) n = 1, 171 = 0 implies 

(4.18) 

Here the function a~+lfu"l'k is (ll + l)-symmetric and 
appears as a suitable symmetry group decomposition 
term of the function 

(4.19) 

which is the only term not annihilated by the bilinear 
form. The coincidence of both expressions (4.18) is 
thus immediate. Because identities (4. 17), (4. 18) hold 
for all vectors V:=:] F there is obvious that denoting 
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V'(a) = [b(g)V](a) = (il F a(g) V)(a), 

we get at once 

[b{f)* V'J(a) = [b(j)*b(g) V)(a) 

= [l Fa(t)* Il Fa(g) V](a) (4.20) 

and, in an analogous way, with V" (a) = [b{f)*V)(a) 
= (ILFa{f)*V](a), we get 

[beg) V"](a) = [beg) b(j)*V)(a) 

=[Il Fa(g)II. Fa{f)*V](a), (4.21) 

which by virtue of 

[b(f)*,b(g)]+=(f,g)D.F (4.22) 

trivially implies 

[b{f)*, b(g)].] F=[ l Fa(j)* IF' ilFa(g) Il Fl+]F 

= (j,lf)JF , (4.23) 

proving Theorem 5. 

5. DIRAC FIELD: THE CORRESPONDENCE RULE 

To get Fock representation of the CAR, suitable 
for the description of a free Dirac field, we must start 
from the triples {a*, a, nB hBt 2(m3) and {b*, b, nBrED4 2(m 3) 
exhibiting the number four of the internal degrees L 

(two charge and two spin degrees) of freedom in the 
theory. All previous results hold without any change 
for these representations (see, e. g., Theorem 2 and 
comments following it). 

In the fourth paper of Ref. 8 we have analyzed the 
standard construction 

b-=_l_ 
v'2 

b*+=l-.- [br-ibtJ b*-=.l-.- [b1-ib3] 
f2 bi - ibt' ,f2 b2 - ib4 

(5.1) 

(the analogous formulas for boson operators), allowing 
us to get the quintets: {b±, b*±, nB r Ef;2 L 2( iR 3) , 

{a",a*±,nB rED2 2(m3) with 1 
1 L 

[b+(f), b*-(g) l+ = (f,g) ilF = [b-(t), b*+C~-) 1 ; (5.2) 

the other anticommutators vanish. 

On the level of functional representations in the place 
of a, liE EBi L 2 (IR3) , we introduce the new Fourier 
amplitudes a, a*, [3, [3*EBi L2(IR3), so that 

(a, a) = (0', a*) + ([3, (3*) and f::::' El'i L2(IR3), 

a+{f)(Ci, a) = (0',]) exp[(a, 0'*) + ({3, (3*)l, 

a*+{f)(a, 0') = (0'* ,f) exp[(a, a*) + ({3, (3*)], (5.3) 

a-{f)eC;, 0') = ([3,1) exp[(a, a*) + ({3, (3*)], 

a*-{f)(a, 0') = ((3*,j) exp( il!, 0'*) + (p, (3*)]. 

Functional differentiations with respect to 0', Ii can be 
apparently translated to the language of 0', 0' * , [3, (3* 
according to : k = 1,2, (alb 0'12, 0'21> 0'22): = 0', 
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d d did d 
d ex k - df3: , da2k = J2 df3k - (j(;* • (5.4) 

Again, in close analogy to (1. 8), any normal ordered 
in the a+, a*+, a", a*" operator expression, 

. F( + * + - *")." 1 . a,a ,a,a .= L1 .1 
nmkl vn!m!k!lt 

x Unmkl' a+na*+ma"ka*-I), (5.5) 

admits a straightforward functional representation: 

:F(a+, a*+, a-, a*-): (a, ex) =F(ex, ex*, f3, f3*) exp(ex, ex), 

(5.6) 
where classical Fourier amplitudes ex, ex*, f3, f3* appear 
in the place of boson operators. 

Let us extend the Haag-LSZ expansion conjecture 
to the case of the Dirac field algebra (I/!, iji are asymptot­
ic free Dirac fields): 

1 =L; - L; 
nm n! In! aT 

dXn 

(5.7) 

(], Tare bispinor indices and the overbar denotes Dirac 
conjugation of bispinors. 

It was proved in Ref. 8 that by the use of functional 
representations of the CCR and CAR the operator 
: n(ljJ, J;): admits a straightforward c-number image: 

:n(IjJ,~):(a,ex)=~ rf- , (snm,onanomexm)=S(a,ex), 
nm vn!m. 

(5.8) 
with a suitable (rather involved function of W k/ ) coef­
ficient function s~~ (k", Pm), 11, II = 1, 2, 3, 4, denoting 
vector indices in EI7~ [2 (IB?). 

Unfortunately, this c-number image of : n(1/!, ~): 
cannot be related so simply as in scalar case, with 
functional power series of classical fermion fields. 

This seems to be a disadvantage of (5.8) if we com­
pare it to a canonical classical-like image being based 
on the use of Grassman algebras (see also the fourth 
paper of Ref. 8). In this last case, one can satisfac­
torily reproduce operator identities on the functional­
like level (though not in the language of ordinary c­
number functionals). We wish now to remove this dif­
ficulty, and to find the functional power series of classi­
cal spin or (Dirac) fields, being in the correspondence 
relation with the starting operator series: n(1/!, iji):. 

Theorem 6 (the cor~spondence rule): For each 
operator serie;; ~ n(ljJ, 1jJ) one can find the functional 
power ~eries n(ljJ, tJ with respect to classical free Dirac 
fields <fJ, i[i, such that: 

cB B _ ccC _ 

(i) : n(ljJ, 1Ji): (ex, 0') =Q(iJ;,iji) exp(ex, 0'), (5.9) 

B B 
where 1jJ, iJi are the subsidiary Dirac fields obeying (the 
thus improper) bose statistics, and 
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(5. 10) 

c c c 
The set of all functionals n(</!, i[i) may stand for an exact 
classical image of the former set of operators :n(l», iJi): 
realized via the mediation of the subsidiary boson level. 

Proof: : n(l», 'iJj): can be written in the following form, 
manifestly exhibiting the normal ordering of operators 
(below, the total antisymmetry of wnm in n + m varia­
bles is essential): 

1 -
: Q(IjJ, i[j): = ~ -'-I (wnm ,: W + 1/!-)n(iV + l»-)m:) 

nm n.m. 

= ~ -f--, (Wnrt": ~ (nk) 1/!+k(1/J-)n-k~ 
nm n.m. k L1 

I 

X (~n) i[i+I(ij!-)m-Z:) 

=ltl n!m~k!l! IL~P jdXn jdY", !dZk fdU I 

x;(;+ (y ) " .;(;+ (y ) ,f,- (z ) "d- (z ) 
'l'Vt t 'l'vm m 'l'Pt 1 'l'P k k 

X iji~1 (Ut) , •• J;;I (U I) 

= ~ '~k'll (Wn+k."'+I,1/!+n("iinm(I/I")k(~-)I), nmkl n.m .. 

(5.11) 

where the operators l»±' iji> depend linearly (through 
Fourier transformations) on the Fermi operators b', b*> 
defined by (5. 1): 

[bj(k), bj"(p)]+ = ()i/)(k - p) I. F = [bj(k), bj'(p)]+. 

(5.12) 

The other anticommutators vanish. Indices i, j denote 
here helicity states i, j = 1,2 in contrast to bispinor 
indices 11, v. In (5.11) we have clearly distinguished 
two groups of operators: l»+n(iji+)m and l»-k (i[i")I , which in­
volve, by (5.1) the (n + m)-point product of b*'s and 
(k + l)-point product of b's respectively. 

The validity of Theorem 5 is here immediate (com­
pare also Comments to Theorem 2) so that 

b;1 (kt ) ••• bin (kn) bj; (Pt) ••• bj; (Pm) b;1 (qt) ••• b;k (qk) 

x bii(rt) ••• bi';(r /) J F 

~(]n+m(k", Pm) I1k+ / (q", r /) I1. F af
1
(k1) ., • at (kn) 

~ n 

x a*·(p ) ••• a*+ (p ) a- (q ) ... a- (q ) 
it 1 J m m s1 1 sk k 

x a*-(r ) ... a*-(r)1l. J tt 1 tl IFF, (5.13) 

where!: means that the identity holds true only if in­
tegrated from both sides over all variables, with the 
suitable (antisymmetric) (n + m + k + 0-point function, 
(]k+/(q", r 1) =vk+l(rl , ••• , r1,qk"" ,q1), i. e., the tilde 
reverses the order of variables. 

The operators aj(k), aj±(k) stand here for operators 
of the ideal, fictitious, subsidiary bosons, constituting 
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the mediating level in the transition from (5.9) to 
(5.10). 

Here obviously the fermion Fock space] F appears as 
a subspace IF]B of the boson Fock space ]B' They are 
representation spaces for triples {b*, b, nB L:!14 2( m3) , 

{a*, a, nB } EEJ4 2(m3) respectively. 1 
1 

Let us now restrict consideration to the two-point 
product zP:(x) zP:( y), where we immediately get 

zP~(x) zP:(Y)]F 

:!c(1/27T)3 J dk(~)-l J dP(~)-lLv:l{k)v:j(P) 
II 

x exp(i(kx + py)]. 0'2 (k, P)1lF aj(k) aj(p) IF ]F' (5.14) 

Here again ~ means the validity of (5.14) only after 
smearing with an antisymmetric two-point test function. 
Here, by the use of four-dimensional Fourier trans­
formations we can introduce the sign operator C2' with 
the integral kernel: 

Cz(x'-x,y'-y)= (2!)4 f dq !drO'2(q,r)exp(-iqx-iry ) 

x exp[i(qx' + ry')], 

(5.15) 
where 

x,YEM, q=(q,qo), O'2(q,r)I Qoow,,=O'2(q,r), q,rElR3
• 

Po-wp 

Now, (5.14) reads 

1/J:(x') zP~( Y')] F 

~ (2~)4 fax jdY C2(x' - x,Y' - y) (2!)3 !dM'/2W,,)ot 

x !dP("2Wp )-t r: v~ (k) v;J (p) 

x exp[i(kx + Py)] IF a;(k) aj(p) IF] F 

~ (2!)4 f dx fdY C2(X' - X, Y' - y) 

B B 

(5.16) 

where the superscript B means that zP*, 'i/i* appear as 
positive and negative frequency parts of fictitious (as 
violating the spin-statistics theorem) spinor fields in 
which Fermi operators b±, b** are replaced by boson 
operators a*, a** of the associated boson representation. 

The generalization of (5.16) is obvious, leading thus 
to the identity: 

<P;t(xt)" 'ljJ:m(xm)'i/i~t (Yl)'" 'i/i:m(Ym) 

B 

X "ijj;1 C~)(x", Ym, Zk' U/) IF ]F' (5.17) 
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where the undertilde means that the order of the k + l 
variables is reversed, (zt> ••• , z", ul' ••• ,ul) 
- (u l , ••• ,ub Zk, ••• ,Zl)' By virtue of (5.17) we get 
at once the required equivalence formula (5.9): 

c B B 

:n(I/J,'iJi):]F=lF :n(I/J,'iJi): D.F]F 

1 B B 
=L -,-, (wnmCnCm , D. F:zPn'i[i1n:D. F) ]F' 

nm n.rn. -

(5. 1~) 

Here the notation &nm=wnmCnCm is used. We have 
proved that, with each Fermi field algebra, one can 
associate a projection of the subsidiary (mediating) 
Bose field algebra, so that on ]F both algebras coin­
cide. On the (not projected) boson level, we have 
trivially realized (5.10) as a consequence of (5.3)­
(5.6), so that with each operator: n(zP, 'iJi): we have 
finally associated the functional 

cce eBB _ 
n(zP, 'iJi) =: n(l/J, 'iJi): ra, 0') • exp[ - (0', O')J, (5. H» 

e c 
depending on classical spinor fields I/J, lP differing from 
zP, iii by the replacement of operators b*, b*± by classical 
amplitudes [see (5.3)] 0', f3, 0'*, f3* respectively. The 
theorem is proved. 

Comment: (i) As a consequence of Theorem ~,,,there 
is enough to start from the set of functiopals {n(l/J, iP)} 
to get a functional representat,J-on {:na,'i/i): (a, O')} of t¥ 
set of bosgn operators {: s)(~, lJi):}, whose proj ection 
(IF: s)<¢, if): IF} on the Fock space J F is equivalent to 
the pure Fermi set {: n(zP, if):}. This sequence of steps 
allows to state the question of quantization of classical 
spinor fields. 

(ii) Note that operators :n(zP,'i/i): and D.F:na,~:IF 
have the same matrix elements if calculated between 
arbitrary states from]B: 

.x B B 
(m I :n(zP, lJi):ln) == (m 11F:!t(I/J,"if!): (Fin), 

where 1m), In)E]B' 

6. THE QUESTION OF ALGEBRAIC STRUCTURE 

As was emphasized in the discussion of scalar fiel<4;, 
the operator multiplication on the quantum level, via 
the correspondence rule, results in the multiplication 
(*) on the classical level; see, e. g., (1.9). 

In the case of Dirac fields, the situation is not so 
obvious, because classical spinors by no reason can 
account Jor the Pauli exclusion principle. The appear­
ance of it on the quantum level should involve serious 
restrictions on the classical level. 

(i) Let us recall that the set of operators {: n(I/J,"if!):} 
is in ~h~ 1fl.uivalence relati01J on )F with the reduction 
(IF :n(~, lJj): lA of the set {:n($,;p):} of operators be­
longing to the (subsidiary) boson field algebra. By the 
use of functional representation of the CCR, one can 
easily reproduce a corresponding (*) operation [see, 
e. g., (3.7)]: 

cB B c BB _ 

[:n1(1/J,"if!): :n2(zP, "if!):](0', 0') 

=={nt(J, $)(*) n2(l/Je, iPJ}expra, CI), (6.1) 
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(*) = exp (d ~) 
drY ' drY 

=exp [(d~*' d~) +(~, d~*)] 
= exp [- i ( 1 c+ ~) - i ( ~ c- -4)] . 

dl]! dlf! dt/! dip 

We have exploited here the fact that 

e e 
t/!o(x) =wo(x, CY, (3) 

= J dk~ {V;o(k,x) rYj(x) + vjo(k,x) !3j(k)} 
J 

and integrals over products of v's allow us to get 
Green's functions of the Dirac equation, C', 
respectively: 

(6.2) 

(6.3) 

( d C+ d) -6 fdx 
d«J ;a - aT 

fd 
d c+( ) d V -- X - --r:--' 

. d~"(x) crT Y diJiT(y) ' 

(6.4) 

arrows indicate the direction in which differential 
c c 

operators act. In formulas above t/!, iii are classical 
functions (the commuting ring). 

(ii) If we follow the Grassman methods13 (anticom­
muting ring of spinors), formulas, nearly identical 
with (6.1)-(6.4) appear: 

[: Q1 (~I, iIi): : Q2(~J, $):](0:, CY) = exp(a, rY) {Q1 (t/!, iIi)(*) Qz(l/J, iii)}, 

(6.5) 

with (*) given by (6.2). However, here a, 0' belong to 
the Grassman algebra, so that we deal with the func­
tional-like representation (see, e. g., Ref. 8) of the 
CAR, formally coinciding (inform) with the functional 
representation of the CCR. On the lhs of (6.5) if!, iJi are 
Fermi fields, while on the rhs there are functions 
from the anticommuting ring. Obviously functional ex­
pansion coefficients wnm in (6.5) are totally antisym­
metric, while in (6.1) we have dealt with Cn C mWnm. 

Obviously, (6.5) can be rewritten with the use-of func­
tional-like (measures on Grassman algebras) integrals. 
We prefer however the differential way, as significantly 
simpler and easier to work with (notice an analogy of 
functional power series with power series of complex 
variables). 

(iii) The relations between expansion coefficients of 
operators : Ql(~J, iT): and: rl2(1/J, iP): following from their 
multiplications are well reproduced by (6.5). One may, 
however, proceed along less formal, though unfortunate­
ly not so elegant here, c-number way of previous 
sections. Here 

: Q1 (1', J): : Qz (cf" iJi): } F 

eBB eBB 

= IF: Ql(W,iJi): IF:rlZ(t/!,iJi): I F }F (6.6) 

SO that, by Theorem 6, 

CcC eBB cBB __ 

Qlz(d:, iT) = [: Q1 (I/J, iii): I1 F : QZ(I/J, iJi) :](0', (Y) • exp[- (0:, rY)] 

(6.7) 
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would establish the required translation of quantum 
mutliplication rule (fermions) into the classical lan­
guage. Because the representations of the CCR were 
defined with respect to primary Fourier amplitudes 
0:, Ci E: Ef4 L 2 (IR3) , we indicate the possibility of suitable 
reordering of summations and integrations, writing 

(6.8) 

Now 

c c c _ 
rl12 (l/J, ifj) = F 12 (O', rY) 

= (:F1(a*, a): ilF :F2(a*, a):](a, 0') exp(-(a, 0:)] 

=F1(a, 0')(*) F 2(a, 0'), 

(6.9) 

where 

(6.10) 

(after performing all differentiations one puts 
CY =Y, a =Y) and 

IF(Y, y) = exp(-(y, y)]. iF(Y, y) 

= 6 1.- 6 (_l)k (y-k+n (J2 k+n) 
n n! k k! ,nY. (6.11) 

We have been not able to find any sensible representa­
tion of (6.9) in terms of pure c-number functions ~, ~, 
and thus not in terms of amplitudes (1,!3E: ffi1 L2(m,3). 
However, the formal rules (6.5) can be used as a com­
plementary tool, satisfactorily reflecting relations 
between expansion coefficients, which follow from 
(6.9), and then allow us to define a c-number functional 
s112(&,;t) while starting from the Grassman functional 
Q12(l/J, ifj): w~~ - Cn C!!J w~~. 

7. QUANTIZATION OF DIRAC FIELD 

In the case of the scalar field, having given an 
asymptotic free field $, we could define sets of opera­
tors (functionals respectively) :Q(rp):, s1(fp). 

In the case of the Dirac fields <p, if we map: rl(l/J, iJi): 
onto a classical level through the mediation of the 
subsidiary boson levE'l. However, this boson level it­
self allows us to consider its own classical map con­
sis~ilJg from the set 5 of all functionals with respect 
to ~', if) whose expansion coefficients wnm are totally 
(n +m)-symmetric: 

(7.1) 

In the quantization attempts of any classical spinor 
field theory one starts from functionals d rather than 

e 
from Q. At first we must have a reduction tool ~llowing 
us to transform 5 into the set 50 of functionals Q, which 
are the only ones of interest if it is required that the 
Fermi level be achieved. 

Lemma 3: There exists the reduction operator Po 
on S, such that 

PoS =50• 
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Proof: We shall introduce into our considerations 
the following functional: 

(7.2) 

If we consider Po as an operator in S, acting according 
to the following (functional) rule, 

(7.3) 

where ~nm={m{n{n+mwnm={m{nwnm' and as possessing 
the expected symmetry properties, then :..!nm is totally 
(n + m)-antisymmetric. The lemma is proved. With 
this selection tool, we can formulate: 

Theorem 7 Wuanfization rule): Given the set S of 
functionals t2(~, $), then PoS =S 0, if equipped with the 
algebraic structure (6.9), allows us the quantization 
map 

CC-'. eBB eBB 
n(<J;, <J;) - :n(<J;, 'ifj): =0> iF :n(<J;, 'ifj): iF JF= :n(<J;, ifJ):JF' 

(7.4) 
c 

connecting with each element 0, of So the correspond-
ing element: 0,(4', ifJ): of the Fermi field algebra. The 
converse map is realized by the correspondence rule of 
Theorem 6. 

Proof: Repeats in fact arguments of Theorem 6. 

Theorems 6 and 7, combined together, form a cor­
respondence principle for Dirac fields. 

8. ON GENERATING FUNCTIONALS FOR THE 
GREEN'S FUNCTIONS 

The commonly used functionals (2. 1) are based on 
Grassman concepts. Let us consider the functional of 
the same form: 

Z( c ~ _ J exp{i[ S + J (h~ + ij&)dx]}' d(iVlJ/YTifJ 
T/ ,T/ - J exp(iS) d(M$lf[iT) (8.1) 

with the only difference lying in the replacement of 
Grassman objects by corresponding c-numbers (com­
muting rin~) ~,#, &,"$, d(MJNiii). Functionals of the 
forrp Z(~, Tf) play the role played in the previous section 
by n. 

Let us introduce the following reduction of Z(~, ij): 
c c c c 

Z 0(T/, f)) = (p oZ)(T/, f)) 

an am) 
dfpn afpm 

(8.2) 

For the general case, the reduction formula (8.2) does 
not look too attractive. Let us see, however, what 
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happens in the free field case, when 

c c [c c 
Z(T/,f)) =exp - i(1J, CT/)], (8.3) 

where CaT(x - y) is the Green's function of the Dirac 
equation. We have defined at once the two-point Green's 
function by 

(8.4) 

which allows us to consider the reduced (boson) gen­
erating functional (8.1) as a (c-number) generating 
functional for the Green's functions of the Dirac field. 

Note (ldded in proof: In the course of the paper the 
words "classical" and "quantum" concern the c-number 
and q-number levels respectively of the given theory, 
and have nothing to do with any Pi - 0 limit. The natural 
system of units Pi = c = 1 is employed. 

A complete operator formulation of steps (5. 14)­
(5.16), which should be more convincing for an un­
familiar reader, can be found in the Phys. Rep. C 
(1978) paper of Ref. 5. 
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