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1. Information and uncertainty

Our primary motivations are an information-theoretic con-ceptual background and methods of analysis adopted forprobability distributions. Such notions like information,uncertainty, indeterminacy and/or information deficit arenaturally quantified in terms of information inequalities.The relationship between statistical (informational) andthermodynamic notions of entropy of a physical (model)system, has received some attention as well, [1–6].
The pertinent information measures are seldom consideredin the time domain. Our main purpose is to quantify theirtemporal behavior, while taking for granted that dynam-ical processes of interest do induce suitable continuous
∗E-mail: pgar@uni.opole.pl

probability densities (see e.g. [7–10]). Particular atten-tion is paid to the time evolution of information entropiesand inferred uncertainty measures [7, 8, 10].
1.1. Entropic functionals
To facilitate further discussion, we shall not attempt afully fledged space-time formalism, and pass to time-dependent model systems in one space dimension. Letus consider continuous probability densities on the realline, with or without an explicit time-dependence: ρ ∈
L1(R); ∫R ρ(x)dx = 1. Our minimal demand is that thefirst and second moments of each density are finite.Therefore we can introduce a two-parameter family ρα,σ (x),labeled by the mean value 〈x〉 = ∫ x ρ(x)dx = α ∈ R andthe standard deviation (here, square root of the variance)
σ ∈ R+, σ 2 = 〈(x − 〈x〉)2〉.For a given probability density ρ we name a function
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− lnρ(x) a surprise level function and identify its meanvalue with the familiar notion S(ρ) of the Shannon en-tropy of a continuous probability distribution, c.f. [8]:
S(ρ) = −〈 lnρ〉 = − ∫ ρ(x) lnρ(x)dx . (1)

Let us assume ρ(x) to be (weakly) differentiable, so that wecan give meaning to its first, second and third derivatives.Besides the obvious information-theoretic notion of theShannon entropy, we introduce another information-theory functional F (ρ), often named the Fisher informationmeasure (the name originates from statistical inferencetheory):
F (ρ) ≡ 〈(∇ lnρ)2〉 = ∫ (∇ρ)2

ρ dx . (2)
The above introduced expressions lnρ(x) and∇ lnρ allowus to infer a number of interesting formulas. We assumethe natural boundary data at finite or infinite (employedbelow) integration boundaries. We have:

−∇ lnρ = −∇ρρ =⇒ −〈∇ρρ
〉 = 0 (3)

and next
−∆ lnρ = −∆ρ

ρ + (∇ρ)2
ρ2 =⇒

−
〈∆ lnρ〉 = 〈(∇ρ)2

ρ2
〉 = 〈(∇ lnρ)2〉 . (4)

The following identities hold true:
−∆ρ1/2
ρ1/2 = 12

[
− ∆ρ

ρ + 12 (∇ρ)2
ρ2

] =⇒
∇
(∆ρ1/2
ρ1/2

) = 12ρ∇(ρ∆ lnρ) (5)
where we encounter a potential for a “Newton-type forcefield”. Its functional formula should be compared withEq. (4). The mean value of the potential function is non-negative

−
〈∆ρ1/2
ρ1/2

〉 = 14
〈(∇ρ)2

ρ2
〉 = −14

〈∆ lnρ〉 , (6)
while that of the related “force” vanishes:〈

∇
(∆ρ1/2
ρ1/2

)〉 = 0 . (7)

In the above systematics of derivatives there was no indi-cation of a specific physical context. Nonetheless a num-ber of physically interesting quantities can be immediatelyrecognized. They notoriously appear in the local conser-vation laws for diffusion-type processes and in the hydro-dynamical formulation of the Schrödinger picture quantumdynamics [8, 9].Namely, while keeping in mind (hitherto disregarded)dimensional coefficients, we realize that Eq. (3) intro-duces a functional expression for an osmotic velocityfield. Eqs. (4) and (5) actually set links between thehydrodynamical-type pressure function [9] and the Fisherfunctional. Eqs. (6) and (7) relate the so-called quan-tum potential and the pressure. Eq. (8) demonstrates thatthe mean value of a (known as quantum) potential andthe value of the pressure functional coincide, while Eq. (8)tells us that the mean value of the inferred (quantum) forcenecessarily vanishes.Let us emphasize that our only input was a surprise level
function − lnρ(x) for a continuous probability density ρon R , admitting first and second moments, with suit-able differentiability properties and with natural boundarydata being implicit. No specific physical motivations (e.g.quantum or random dynamics) were spelled out.
1.2. Information inequalities
Let us consider a one-parameter α-family of densitieswhose mean square deviation value is fixed at σ . We have

S(ρ) ≤ (1/2) ln(2πeσ 2) (8)
with a maximum for a Gaussian probability density withthe prescribed fixed standard deviation σ . By introducingthe mean value:

〈[
σ 2∇ lnρ+ (x − 〈x〉)]2〉 ≥ 0 (9)

we readily arrive at an inequality
F (ρ) ≥ 1

σ 2 (10)
in which a minimum of F is achieved (among all densitieswith a fixed value of σ ) if and only if ρ is a σ-Gaussian,that in parallel with a maximum for S (compare e.g. [5, 11]).We stress that the above information inequalities Eq. (8)and (10) set respectively lower and upper bounds uponFisher and Shannon functionals, when evaluated with re-spect to any density in the set of all admissible ones (e.g.with standard deviation value σ fixed once and for all).
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Although we have carefully avoided any impact of dimen-sional quantities, the above Eq. (10) actually associates aprimordial “momentum-position” indeterminacy relation-ship (here, devoid of any quantum connotations) with theprobability distributions under consideration. Namely, let
D be a positive diffusion constant with dimensions of h̄/2mor kBT/mβ (c.f. [8]). We define an osmotic velocity field
u = u(x) = D∇ lnρ. There holds:

∆x · ∆u ≥ D (11)
which correlates the position variance ∆x = 〈[x − 〈x〉]2〉1/2with the osmotic velocity variance ∆u = 〈[u − 〈u〉]2〉1/2.This property extends to time-dependent situations and isknown to be respected by diffusion-type processes [12]. Itsprimary version for free Brownian motion has been foundby R. Fürth [11].Not accidentally, the above formula also closely mimics,and in fact induces (through reasoning based on proba-bilistic arguments) the fully-fledged quantum mechanicalposition-momentum relationship ∆x · ∆p ≥ h̄/2, (tenta-tively replace u by mu and set h̄/2 instead of D; see e.g.[13]. We shall come back to this point later.To conclude this section, let us point out that, given ρ(x)and a suitable function f(x), we can generalize the previ-ous arguments. Let us introduce the notions of varianceand covariance (here, directly borrowed from random vari-able analysis [13]) for x and f(x). By means of the Schwarzinequality, we get:
〈[
x − 〈x〉

]2〉 · 〈[f − 〈f〉]2〉 ≥ (〈[x − 〈x〉] · 〈[f − 〈f〉]〉)2 ,(12)hence, accordingly
Var(x) · Var(f) ≥ Cov2(x, f) . (13)

We note that for an osmotic velocity field u(x), we have
〈u〉 = 0 and 〈x · u〉 = −D. Therefore

Var(x) · Var(u) ≥ Cov2(x, u) = D2 , (14)
as anticipated in Eq. (11).The casual intuition behind physics-motivated indetermi-nacy relations is that of the Fourier transform. Indeed,for functions in L2(R) a non-zero function and its Fouriertransform cannot both be sharply localized.Let us point out notable information-theory inequalities[4, 5]:

F (ρ) ≥ (2πe) exp[−2S(ρ)] ≥ 1/σ 2 . (15)
and note that an explicit Fourier transformation input al-lows us to set an upper bound in this chain of inequalities.

The crucial step is to disentangle the L2(R) ingredientsin the L1(R) functional form of the density ρ. This canbe accomplished in many ways. the simplest is either amultiplicative decomposition ρ(x) = ρ1/2(x) · ρ1/2(x), whereclearly ρ1/2 ∈ L2(R). A more general choice involves acomplex function φ ∈ L2(R) and its complex conjugate
φ∗ so that ρ = φ · φ∗ = |φ|2. (We recall that the Fouriertransform of a real function typically is a complex function.)Given an L2(R)-normalized function ψ(x), we denote(Fψ)(p) its Fourier transform. The corresponding prob-ability densities follow: ρ(x) = |ψ(x)|2 and ρ̃(p) =
|(Fψ)(p)|2.We introduce the related position and momentum infor-mation (differential, e.g. Shannon) entropies:

S(ρ) ≡ Sq = −〈lnρ〉 = −∫ ρ(x) lnρ(x)dx (16)
and

S(ρ̃) ≡ Sp = −〈ln ρ̃〉 = −∫ ρ̃(p) ln ρ̃(p)dp (17)
where S denotes the Shannon entropy for a continuousprobability distribution. For the sake of clarity, we usedimensionless quantities, although there exists a consis-tent procedure for handling dimensional quantities in theShannon entropy definition.We assume both entropies take finite values. Then, thereholds the familiar entropic uncertainty relation which isthe sole consequence of the Fourier transform propertiesin L2(R) [14]:

Sq + Sp ≥ (1 + lnπ) . (18)
Let us notice that in view of the properties of the Fouriertransform, there is a complete symmetry between the in-ferred information-theory functionals. After the Fouriertransformation, the Parceval identity implies that thechain of inequalities Eq. (15) can be faithfully reproduced(while replacing ρ by ρ̃) for the “momentum -space” den-sity ρ̃ with the variance σ̃ 2. As a consequence, takinginto account the entropic uncertainty relation Eq. (18), wearrive at [14]:
4σ̃ 2 ≥ 2(eπ)−1 exp [−2〈ln ρ̃〉] ≥ (2eπ) exp [2〈lnρ〉] ≥ σ−2(19)which adds a Fourier transform-inferred upper bound tothe previous inequalities Eq. (15)

4σ̃ 2 ≥ F (ρ) ≥ 1/σ 2 (20)
and sets related upper and lower bounds upon the Shan-non entropy as well.
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All of this has been considered with no mention of any timeevolution. Since the dynamics has a physical provenance,we should carefully investigate the ρ-factorization issueand the impact of a priori dynamical rules for ρ0(x) →
ρ(x, t) upon its concrete realisation. We shall focus on thestandard random dynamics (Smoluchowski processes andphase-space motion) and the Schrödinger picture quantumdynamics.
2. Quantum indeterminacy in the
time domain
If following conventions we define the squared standarddeviation value for an observable A in a pure state ψ as(∆A)2 = (ψ, [A − 〈A〉]2ψ) with 〈A〉 = (ψ, Aψ), then forthe position X and momentum P operators we have thefollowing version of the entropic uncertainty relation (hereexpressed through so-called entropy powers; see, e.g. [4],
h̄ ≡ 1):

∆X · ∆P ≥ 12πe exp [S(ρ) + S(ρ̃)] ≥ 12 (21)
which is an alternative version of the entropic uncer-tainty relation. For Gaussian densities, (2πe)∆X · ∆P =exp[S(ρ) + S(ρ̃)] holds true, but the minimum 1/2 on theright-hand-side of Eq. (21), is not necessarily reached.Let us consider a momentum operator P that is conjugateto the position operator X in the adopted dimensionalconvention h̄ ≡ 1. Setting P = −id/dx and presumingthat all averages are finite, we get:[

〈P2〉 − 〈P〉2] = (∆P)2 = σ̃ 2 . (22)
The standard indeterminacy relationship σ · σ̃ ≥ (1/2) fol-lows.In the above, no explicit time-dependence has been in-dicated, but all derivations go through with any wave-packet solution ψ(x, t) of the Schrödinger equation. Theinduced dynamics of probability densities may imply thetime-evolution of entropies: Sq(t), Sp(t) and thence thedynamics of quantum uncertainty measures ∆X (t) = σ (t)and ∆P(t) = σ̃ (t).We consider the Schrödinger equation in the form:

i∂tψ = −D∆ψ + V2mDψ . (23)
where the potential V = V(−→x , t) (possibly time-dependent) is a continuous (useful, if bounded from below)function with dimensions of energy, D = h̄/2m.By employing the Madelung decomposition:

ψ = ρ1/2 exp [is/2D] , (24)

with phase function s = s(x, t) defining a (current) velocityfield v =∇s, we readily arrive at the continuity equation
∂tρ = −∇(vρ) (25)

and the generalized Hamilton-Jacobi equation:
∂ts+ 12(∇s)2 + (Ω−Q) = 0 (26)

where Ω = V/m. After introducing an osmotic velocityfield u(x, t) = D∇ lnρ(x, t), we have (compare e.g., ourdiscussion of Section I):
Q = 2D2 ∆ρ1/2

ρ1/2 = 12u2 +D∇ · u . (27)
If a quantum mechanical expectation value of the standardSchrödinger Hamiltonian Ĥ = −(h̄2/2m)∆ + V exists (i.e.is finite [15]),

〈ψ|Ĥ|ψ〉 ≡ E < ∞ (28)then unitary quantum dynamics warrants that this valueis a constant of the Schrödinger picture evolution:
H = 12[ 〈v2〉+〈u2〉 ]+〈Ω〉 = −〈∂ts〉 ≡ E = E

m = const .(29)Let us notice that 〈u2〉 = −D〈∇u〉 and therefore:
D22 F = D22

∫ 1
ρ

(
∂ρ
∂x

)2
dx = ∫ ρ · u

22 dx = −〈Q〉 .(30)We observe that D2F stands for the mean square deviationvalue of a function u(x, t) about its mean value 〈u〉 = 0,whose vanishing is a consequence of the boundary condi-tions (here, at infinity):
(∆u)2 ≡ σ 2

u = 〈[u − 〈u〉]2〉 = 〈u2〉 = D2F . (31)
The mean square deviation of v(x, t) about its mean value
〈v〉 reads: (∆v)2 ≡ σ 2

v = 〈v2〉 − 〈v〉2 . (32)It is clear, that with the definition P = −i(2mD)d/dx,the mean value of the operator P is related to the meanvalue of a function v(x, t) (we do not discriminate betweentechnically different implementations of the mean): 〈P〉 =
m〈v〉. Accordingly,

σ̃ 2 = (∆P)2 = 〈P2〉 − 〈P〉2 (33)
Moreover, we can directly check that with ρ = |ψ|2 thereholds [16]:
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F (ρ) = 1
D2 σ 2

u = ∫ dx|ψ|2[ψ′(x)/ψ(x) + ψ∗′(x)/ψ∗(x)]2 = 4∫ dxψ′∗(x)ψ′(x) + ∫ dx|ψ(x)|2[ψ′(x)/ψ(x)− ψ∗′(x)/ψ∗(x)]2
= 1
m2D2 [〈P2〉 − m2〈v2〉] = 1

m2D2 [(∆P)2 −m2σ 2
v
] (34)

i.e.
m2(σ 2

u + σ 2
v ) = σ̃ 2 . (35)

It is interesting to notice that 〈(P − mv)〉 = 0 and thecorresponding mean square deviation reads: 〈(P−mv)2〉 =
〈P2〉 − m2〈v2〉 = m2D2F .By passing to dimensionless quantities in Eqs. (34) (e.g.2mD ≡ 1), and denoting pcl ≡ (arg ψ(x, t))′ we get:
F = 4[〈P2〉 − 〈p2

cl〉
] = 4[(∆P)2 − (∆pcl)2] = 4[σ̃ 2 − σ̃ 2

cl
]

(36)and therefore the chain of inequalities Eq. (15) gets asharper form:
4σ̃ 2 ≥ 4[σ̃ 2−σ̃ 2

cl
] = F ≥ (2πe) exp [−2S(ρ)] ≥ 1

σ 2 . (37)
We recall that all “tilde” quantities can be deduced oncegiven ψ and its Fourier transform ψ̃.As a side comment, let us add that a direct consequence ofthe mean energy conservation law Eq. (29) are the iden-tities: 〈P2〉/2m = E − 〈V〉 and
F = 1

m2D2 [〈P2〉−m2〈v2〉] = 1
D2 [2(E−〈Ω〉)−〈v2〉] (38)

plus a complementary expression for the variance of themomentum observable:
(∆P)2 = 2m(E − 〈[m2 〈v〉2 + V]〉) . (39)

That combines into the chain of inequalities between var-ious energy characteristics:
E − 〈V〉 > m〈v2〉/2 ≥ m〈v〉2/2 ≥ 0 . (40)

3. Indeterminacy relations for
diffusion-type processes
Let us consider spatial random motionsfor example,standard Smoluchowski processes and their generaliza-tions. Let us consider ẋ = b(x, t) + A(t) with 〈A(s)〉 =

0 , 〈A(s)A(s′)〉 = √2Dδ(s − s′) and the correspondingFokker-Planck equation for the probability density ρ:
∂tρ = D4ρ −∇ · (bρ) (41)

which we analyze under the natural boundary conditions.We assume the gradient form for the forward drift b =
b(x, t) and take D as a diffusion constant with dimensionsof kBT/mβ. By introducing u(x, t) = D∇ lnρ(x, t) wedefine the current velocity of the process v(x, t) = b(x, t)−
u(x, t), in terms of which the continuity equation ∂tρ =
−∇(vρ) follows. The diffusion current reads j = vρ.As mentioned before, we have an obvious indeterminacyrelationship for the osmotic velocity field Var(x)·Var(u) ≥
Cov2(x, u) = D2. The corresponding relationship for thecurrent velocity field Var(x) · Var(v) ≥ Cov2(x, v), con-trary to the previous quantum reasoning, does not natu-rally yield any analogue of the Heisenberg-type position-momentum uncertainty formulas, c.f. Eq. (35).The cumulative identity Var(x) · [Var(u) + Var(v)] ≥
Cov2(x, v) + D2, reproduced in Ref. [13], does not conveyany useful message about the diffusion process. It cannotbe directly inferred from the Fisher functional F (ρ) whichactually was the case in our previous, quantum discussion,e.g. where we have had VarP = Var(mu)+Var(mv). Forspatial diffusion processes, the latter identity is plainlynonexistent, since there is no diffusive analogue of thequantum momentum observable.Let us mention an early attempt [17] to set an uncertaintyprinciple for general diffusion processes. If we adopt ourconvention (natural boundary data), in view of 〈u〉 = 0and v = b − u, we have 〈v〉 = 〈b〉.For an arbitrary real constant C 6= 0, we obviously have:[C · (v − 〈v〉) + (x − 〈x〉)]2 ≥ 0. The mean value of thisauxiliary inequality reads:

C 2(∆v)2 + 2C · [Cov(x, b) +D
] + (∆x)2 ≥ 0 . (42)

and is non-negative for all C , which enforces a condition[
D + Cov(x, b)]2 − (∆v)2 · (∆x)2 ≤ 0 . (43)
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Note that Cov(x, v) = D + Cov(x, b), so we have in factan alternative derivation of the previous indeterminacy re-lationship Var(x) · Var(v) ≥ Cov2(x, v) for the currentvelocity field.In case of Smoluchowski processes, forward drifts areproportional to externally imposed force fields, typicallythrough b = F/mβ. Therefore the position-current veloc-ity dispersion correlation is controlled by Cov(x, F ). Forfree Brownian motion (e.g. the Wiener process), we have
b = 0, and hence Cov(x, v) = D.To get a deeper insight into the “position-momentum inde-terminacy issue” for diffusion processes, let us begin froma classic observation that, once we set b = −2D∇Φ withΦ = Φ(x), a substitution:

ρ(x, t) ≡ θ∗(x, t) exp[−Φ(x)] (44)
with θ∗ and Φ being real functions, converts the Fokker-Planck equation Eq. (41) into a generalized diffusionequation for θ∗:

∂tθ∗ = D∆θ∗ − V(x)2mDθ∗ (45)
and its time adjoint

∂tθ = −D∆θ + V(x)2mDθ (46)
for a real function θ(x, t) = exp[−Φ(x)], where
V(x)2mD = 12

(
b22D +∇ · b) = D

[(∇Φ)2 − ∆Φ] . (47)
Let us note an obvious factorization property for theFokker-Planck probability density:

ρ(x, t) = θ(x, t) · θ∗(x, t) (48)
which aligns with a quantum mechanical factorization for-mula ρ = ψ∗ψ, albeit presently realized in terms of tworeal functions θ and θ∗, instead of a complex conjugatepair.Let us mimic basic steps, outlined in Eq. (34) for the com-plex factorization of ρ, but in terms of two real functions
θ and θ∗. We have:

F (ρ) = 1
D2 σ 2

u = ∫ dx(θθ∗)[θ′θ + θ∗′

θ∗

]2 = (49)
4 ∫ dxθ′∗θ′ + ∫ dx(θθ∗)[θ′θ − θ∗′

θ∗

]2
.

Since the continuity equation ∂tρ = −∇j is identicallyfulfilled by
j(x, t) = ρ(x, t)v(x, t) = D(θ∗∇θ − θ∇θ∗) (50)

we obviously get:
F (ρ) = F (ρ = θθ∗) = 4 ∫ dx(∇θ)(∇θ∗) + 1

D2 〈v2〉
= − 2

mD2 〈V〉+ 1
D2 〈v2〉 , (51)

to be compared with the quantum mechanical result:
F (ρ = |ψ|2) = 4 ∫ dx(∇ψ)(∇ψ∗)− 1

D2 〈v2〉
= 1
D2 [2(E − 〈Ω〉)− 〈v2〉] . (52)

By reintroducing Ω = V/m in Eq. (51):
F (ρ = θθ∗) = 1

D2 [−2〈Ω〉+ 〈v2〉] (53)
we achieve a notational conformity with Eq. (52).The major difference between the formulas Eq. (53) andEq. (52), apart from the presence or absence of an ad-ditive term E ∈ R, is that a diffusive potential V has apre-determined functional form, Eq. (47). Our general re-striction on V, irrespective of whether this potential entersthe Schrödinger or the generalized heat equations, is thatit should be a continuous and bounded from below func-tion [18]. In the diffusive case this demand guaranteesthat exp(−tH) with H ≡ −D∆+(1/2mD)V is a legitimatedynamical semigroup operator.Let us add that

F (ρ = θθ∗) = 2
mD2

〈
mv22 − V

〉
⇒
〈
mv22 − mu22 − V

〉 = 0 (54)
while

F (ρ = |ψ|2) = 2
mD2

[
E −

〈
mv22 + V〉]

⇒
〈
mv22 + mu22 + V〉 = E . (55)

The variances of osmotic and current velocity fields arecorrelated, respectively, as follows
ρ = θθ∗ =⇒ m2[(∆u)2− (∆v)2] = 2m[m〈v〉22 −〈V〉

] (56)
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and
ρ = ψψ∗ =⇒ m2[(∆u)2 + (∆v)2] (57)

= 2m[E − m〈v〉22 + 〈V〉] = (∆P)2 .
Since (∆u)2 ≥ D2/σ 2, in view of Eqs. (57) and (35) wereadily arrive at the standard quantum indeterminacy re-lation for position and momentum observables ∆P ·∆X ≥
mD.In case of diffusion-type processes we definitely en-counter a non-standard situation. On the left-hand-sideof Eq. (56), there appears a difference of variances for thecurrent and osmotic velocity fields, instead of their sum,for example in Eq. (57). This expression is not necessarilypositive definite, unless 〈V〉 ≤ 0 for all times.Let us make a guess that ∆u > ∆v at least locally in time(in a finite time interval). Then the resulting expression
m2(∆u)2 = m2〈u2〉 = 2m〈mv22 − V

〉
≡ (∆pu)2 ≥ m2D2

σ 2 ,(58)as we already know, yields a dimensionally accept-able position-momentum indeterminacy relationship fordiffusion-type processes,
∆x · ∆pu ≥ mD , (59)

where ∆pu > 0 may be interpreted as the pertinent “mo-mentum dispersion” measure. For free Brownian motion,we have V = 0 and v = −u, hence Eq. (11) is recovered.Upon making an opposite guess (i.e. admit ∆v > ∆u,again, at least locally in time), in view of F ≥ 1/σ 2, wewould have
m2(∆v)2 = m2(∆u)2+2m[〈V〉−m〈v〉22

]
≡ (∆pv )2 ≥ m2D2

σ 2(60)and thus ∆x · ∆pv ≥ mD (61)
would ultimately arise.The above two indeterminacy options (59) and (61) area consequence of a possibly indefinite sign for a differ-ence ∆u − ∆v of standard deviations, in the course ofa diffusion process. This sign issue seems to be a localin time property and may not persist in the asymptotic(large time) regime. We shall give an argument towardsthe non-existence of a fixed positive lower bound for thejoint position-current velocity uncertainty measure in thevicinity of an asymptotic stationary solution of the involvedFokker-Planck equation.

In case of Smoluchowski diffusion processes we may takefor granted that they asymptotically approach [8, 10]unique stationary solutions, for which the current veloc-ity v identically vanishes. Then ∆v = 0 as well, while0 < Var(x) < ∞ ( e.g. ∆x stays finite).In view of Eq. (54), an asymptotic value of the strictlypositive Fisher functional F equals −(2/mD2)〈V〉 > 0.Accordingly, to secure F > 0, an expectation value of Vwith respect to the stationary probability density must benegative, even under an assumption that V is boundedfrom below.Consequently, in the large time asymptotic case, we surelyhave (∆u)2 > (1/σ 2) > (∆v)2 and ∆v → 0, while σ has afinite limiting value (an exception is free Brownian motionwhen σ diverges). The validity of the above argumentcan be checked by inspection, after invoking an explicitsolution for the Ornstein-Uhlenbeck process [8, 10].Thus, ∆x ·∆pv ≥ mD does not hold true in the vicinity ofthe asymptotic solution. On the contrary, ∆x · ∆pu ≥ mDis universally valid.
4. Entropy methods: Thermody-
namical patterns of behaviour in
diffusion-type processes

4.1. Thermodynamical hierarchy
Diffusion processes stand for an approximate descriptionof (macro)molecules whose motion is induced by a thermalenvironment. As such they quantify the dynamics of non-equilibrium thermodynamical systems.The following hierarchy of thermodynamical systems isadopted below: isolated with no energy and matter ex-change with the environment, closed with the energy but
no matter exchange and open where energy-matter ex-change is unrestricted. We keep in mind a standard text-book wisdom that all isolated systems evolve to the stateof equilibrium in which the entropy reaches its maximalvalue. An approach towards equilibrium is here inter-preted as an approach towards most disorderly state.Our further attention will be focused on non-isolated, al-beit closed, random systems and their somewhat differentasymptotic features. Assuming the natural boundary data[10, 21, 22], we shall introduce basic thermodynamical con-cepts and recall the Helmholtz extremum principle for anintrinsically random motion. Thermodynamic function(al)slike internal energy, Helmholtz free energy and entropywill be inferred, through suitable averaging, from a prioriprescribed time-dependent continuous probability densi-ties.A concise resumé of non-equilibrium thermodynamics of
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closed systems comprises the Ist law U̇ = Q̇+ Ẇ and the
IInd law Ṡ = Ṡint + Ṡext , where Ṡint ≥ 0 and Ṡext = Q̇/T(c.f. [19, 20]). We are fully aware that not all objects in-volved (e.g. Q) can be viewed as legitimate analogues ofthermodynamic functions. Nonetheless, in the forthcomingdiscussion, the heat exchange and work time rates are al-ways well defined and an issue of “imperfect differentials”is consistently bypassed.Thermodynamical extremum principles are usually invokedin connection with the large time behavior of irreversibleprocesses. Among a number of standard principles, forreference, we recall a specific one named the Helmholtzextremum principle. If the temperature T and the avail-able volume V are kept constant, then the minimum ofthe Helmholtz free energy F = U − TS is preferred inthe course of system evolution in time, and there holds
Ḟ = −TṠint ≤ 0.
4.2. Thermodynamics of random phase-
space motions
Let us consider a phase-space diffusion process governedby the Langevin equation mẍ +mγẋ = −∇V (x, t) + ξ(t),with standard assumptions about the properties of whitenoise: 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = √2mγkBT δ(t − t′).Accordingly, the pertinent phase-space density w =
w(x, u, t) is a solution of the Fokker-Planck-Kramersequation with suitable initial data:

∂
∂t w(x, u, t) = (62)

[
− ∂
∂x u+ ∂

∂u

(
γu+ 1

m∇V (x, t)) + γkBT
m

∂2
∂u2

]
w

Let us define the Shannon entropy S = S(t) of a con-tinuous probability distribution in the phase-space of thesystem:
S(t) = − ∫ (w lnw)dx du = −〈lnw〉 (63)

(For dimensional reasons we should insert a factor h withphysical dimensions of the action under the logarithm,i.e. use ln(hw) instead of lnw, but since we shall ulti-mately work with time derivatives, this step may be safelyskipped.)We define an internal energy U of the diffusion-typestochastic process as follows: U = 〈E〉, where E =
E(x, u, t) = mu22 + V (x, t). Then, the Ist law of thermo-dynamics takes the form

Q̇+ Ẇ = U̇ (64)

where Ẇ ≡ 〈∂tV〉 is interpreted as the work externallyperformed upon the system. (For future reference wewould like to stress the particular importance of the time-dependent work term in quantum theory.)Furthermore, let us introduce an obvious analogue of theHelmholtz free energy:
F ≡ 〈E + kBT lnw〉 = U − TS (65)

so that
Ḟ − Ẇ = Q̇ − T Ṡ = −TṠint ≤ 0 . (66)

The above result is a direct consequence of the Kramersequation. Under suitable assumptions concerning theproper behavior of w(x, u, t) at x, u integration bound-aries (sufficiently rapid decay at infinities) we have [23]
Q̇ = γ(kBT − 〈mu2〉) and Ṡ = γ

[
kBT
m 〈
( ∂ lnw

∂u
)2〉 − 1].In view of (1/T )Q̇ = Ṡext , the IInd law readily follows:

Q̇ − kBT Ṡ = (67)
− γm

〈(
kBT

∂ lnw
∂u +mu

)2〉 = −TṠint ≤ 0
We denote S ≡ kBS and so arrive at Q̇ ≤ T Ṡ. As abyproduct of the discussion we have Ḟ ≤ Ẇ .For time-independent V = V (x), the extremum principlepertains to minimizing the Helmholtz free energy F in thecourse of random motion:

Ḟ = Q̇ − T Ṡ ≡ −TṠint ≤ 0 (68)
The preceding discussion encompasses both forced andunforced (free) Brownian motion. When V (x) ≡ 0, then noasymptotic state of equilibrium (represented by a proba-bility density) is accessible and the motion is sweeping. Inthe forced case, we realize that w∗(x, u) = 1

Z exp [− E(x,u)
kBT

]
is a stationary solution of the Kramer equation. Therefore,we may expect that the dynamics actually relaxes to this,a (unique) stationary state [10] w → w∗. Obviously, w∗ isnon-existent in the case of free Brownian motion.
4.3. Thermodynamics of Smoluchowski pro-
cesses
Analogous thermodynamical features are encountered inspatial random motions like sstandard Smoluchowski pro-cesses and their generalizations. Given a probabil-ity density ρ(x, t) solution of a Fokker-Planck equation
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∂tρ = D4ρ − ∇ · (bρ), the related Shannon entropy
S(t) = −〈lnρ〉 is typically not a conserved quantity and,with boundary restrictions that ρ, vρ, bρ vanish at spa-tial infinities or finite integration interval borders, variousequivalent forms of the balance equation follow. We se-lect, [8, 22]:

DṠ = 〈v2〉− 〈b · v〉 . (69)A thermodynamic formalism for Smoluchowski processes isstraightforward. We pass to time-independent drift fieldsand set b = f
mβ , adjusting dimensional constants. Exploit-ing j ≡ vρ, f = −∇V and setting D = kBT/mβ, we giveEq. (69) the conspicuous form of

Ṡ = Ṡint + Ṡext (70)
where kBT Ṡint ≡ mβ 〈v2〉 ≥ 0 stands for the entropy pro-duction, while kBT Ṡext = Q̇ = − ∫ f · j dx = −mβ 〈b · v〉(when negative, which is not necessarily the case) maybe interpreted as the heat dissipation rate. In view of
Q̇ = − ∫ f ·j dx, there is a definite power release involved.Notice that because of TṠ ≡ kBT Ṡ, we have

TṠint = TṠ − Q̇ ≥ 0⇒ TṠ ≥ Q̇ . (71)
In view of j = ρv = ρ

mβ [f − kBT∇ lnρ] ≡ − ρ
mβ∇Ψ i.e.

v = −(1/mβ)∇Ψ and f = −∇V , we can introduce
Ψ = V + kBT lnρ (72)

whose mean value stands for the Helmholtz free energy ofthe random motion
F ≡ 〈Ψ〉 = U − TS . (73)

Here S ≡ kBS and an internal energy is U = 〈V 〉.Assuming that ρ and ρVv vanish at the integration volumeboundaries we get
Ḟ = Q̇ − T Ṡ = −(mβ) 〈v2〉 = −kBT Ṡint ≤ 0 . (74)

As long as there is positive entropy production, theHelmholtz free energy decreases as a function of time to-wards its minimum. If there is none, the Helmholtz freeenergy remains constant.With external forcing reintroduced, the regime Ṡ = 0is of particular interest. This occurs necessarily if thediffusion current vanishes and one encounters the stateof equilibrium with an invariant density ρ∗. Then, b =
u = D∇ lnρ∗ and −(1/kBT )∇V = ∇ ln ρ∗ implies ρ∗ =1
Z exp[−V/kBT ]. Hence Ψ∗ = V + kBT lnρ∗ and therefore
〈Ψ∗〉 = −kBT lnZ ≡ F∗, with Z = ∫ exp(−V/kBT )dx, isa minimum of the Helmholtz free energy F .For free Brownian motion there is no invariant densityand we have V = 0 = b, while v = −D∇ lnρ = −u, andtherefore Q̇ = 0⇒ Ḟ = −TṠ = −mβD2 ∫ [ (∇ρ)2

ρ ]dx ≤ 0.

5. Entropy methods in Schrödinger
picture quantum dynamics
A pure state of the quantum system and its Schrödingerpicture dynamics are normally regarded in conjunctionwith the notion of a thermodynamically isolated quan-tum system. A standard tool in the thermal context wouldbe the von Neumann entropy notion which is known tovanish on pure states and to be insensitive to the unitaryquantum evolution. In the below, we shall pay attentionto the Shannon entropy properties in the quantum context[8], to demonstrate that a number of essentially thermo-dynamical features are encoded in the apparently non-thermodynamical regime of Schrödinger picture quantumdynamics.We come back to the Schrödinger evolution of pure statesin L2(R). We employ the natural boundary data (actually,the Dirichlet boundary conditions are sufficient) and thevanishing of various expressions at integration boundariesis implicit in all averaging procedures which follow. Onemust be aware that we pass by a number of mathematicalsubtleties and take for granted that various computationalsteps are allowed.The continuity equation is a direct consequence of theSchrödinger equation. It is less obvious that, after em-ploying the hydrodynamical velocity fields u(x, t) and
v(x, t), the Fokker Planck equation for ρ = |ψ|2 may bededuced. We have:

∂tρ = D4ρ −∇ · (bρ) (75)
where b = v + u =∇(s+D lnρ) where u = D∇ lnρ.The Shannon entropy of a continuous probability distri-bution S = −〈lnρ〉 follows and yields

DṠ = 〈v2〉− 〈b · v〉 ≡ D(Ṡint + Ṡext) (76)
which is a straightforward analogue of the IInd law of ther-modynamics in the considered quantum mechanical con-text:
Ṡint = Ṡ − Ṡext = (1/D) 〈v2〉 ≥ 0⇒ Ṡ ≥ Ṡext . (77)

To address an analogue of the Ist law we need to trans-late to the present setting the previously discussed ther-modynamic notions of U and F = U − TS, where thenotion of temperature is the most serious obstacle. Wehave no obvious notion of (nor physical intuitions about)the temperature for quantum systems in their pure states(for large molecules, like fullerenes or the likes, the no-tion of an internal temperature makes sense, but we aim
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to consider any quantum system in a pure state, small orlarge). Therefore, we shall invoke a dimensional artifice[24].We formally introduce
kBT0 ≡ h̄ω0 ≡ mc2 (78)

and thence
D = h̄/2m ≡ kBT0/mβ0 (79)

with β0 ≡ 2ω0 = 2mc2/h̄, and so arrive at the dimension-ally acceptable identity
kBT0Ṡext = Q̇ . (80)

In view of:
v =∇s = b − u =∇(s+D lnρ)−D∇ lnρ ≡ (81)

− 1
mβ∇(V + kBT0 lnρ) ≡ − 1

mβ0∇Ψ ,

where the time-dependent potential
V = V (x, t) ≡ −mβ0(s+D lnρ) (82)

is defined to stay in notational conformity with the stan-dard Smoluchowski process (Brownian motion in a conser-vative force field [8]) definition b = −∇V/mβ0, we finallyget
−mβ〈s〉 ≡ 〈Ψ〉 = 〈V 〉 − T0S =⇒ F = U − TS , (83)

where U = 〈V 〉 and F = 〈Ψ〉.Remembering the explicit time dependence of b(x, t) =
−(1/mβ0)∇V (x, t), we arrive at the direct analogue of the
Ist law of thermodynamics in the present quantum context:

U̇ = 〈∂tV〉 − mβ0〈bv〉 = Ẇ + Q̇ . (84)
The term corresponding to the previous “externally per-formed work” entry reads Ẇ = 〈∂tV〉. But
V = −mβs − kBT lnρ =⇒ 〈∂tV〉 = −mβ0〈∂ts〉 = Ẇ

and therefore
− d
dt 〈s〉 = −〈v2〉 − 〈∂ts〉 ⇒ Ḟ = −T0Ṡint + Ẇ (85)

where Ṡint ≥ 0.

In view of Eq. (29), in the thermodynamical descriptionof the quantum motion, we encounter a never vanishingconstant work term
Ẇ = mβ0E = β0〈Ĥ〉 . (86)

The quantum version of the Helmholtz-type extremumprinciple reads:
Ḟ − mβ0E = −T0Ṡint ≤ 0 . (87)

It is instructive to notice that
T0Ṡint = T0Ṡ − Q̇ ≥ 0⇐⇒ Q̇ ≤ T0Ṡ (88)

goes in parallel with
Ḟ ≤ Ẇ = β0〈Ĥ〉 . (89)

Let us stress that the non-vanishing “external work” termis generic to the quantum motion. If a stationary state isconsidered, our 〈Ĥ〉 is equal to a corresponding energyeigenvalue.For negative eigenvalues, the “work” term corresponds towhat we might possibly call the ”work performed by thesystem” (upon its, here hypothetical, surroundings). Then
Ḟ is negative and F has a chance to attain a minimum.Since bounded from below Hamiltonians can be replacedby positive operators, we may in principle view mβ0E =
β0〈Ĥ〉 as a positive (constant and non-vanishing) time rateof the “work externally performed upon the system”. Thisobservation encompasses the case of positive energy spec-tra. Accordingly, Ḟ may take both negative and positivevalues, the latter up to an upper bound mβ0E .Basic temporal patterns of behavior, normally associatedwith the non-equilibrium thermodynamics of closed irre-versible systems, somewhat surprisingly have been faith-fully reproduced in the quantum Schrödinger picture evo-lution which is known to be time-reversible. Nonetheless,we have identified direct analogues of the Ist and the IIndlaws of thermodynamics, together with the involved no-tions of Ṡint ≥ 0 and Ṡext = (1/T0)Q̇. One should ob-viously remember about the pre-selected sense of time
t ∈ R+, that was employed in our discussion.An asymptotic t → ∞ behavior of the quantum motion iscontrolled by the analogue of the IInd law:

Ḟ − Ẇ = −mβ0 ddt
(
〈s〉+ Et) = −T0Ṡint ≤ 0 . (90)
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where there appears the work (performed upon or per-formed by the system) term Ẇ = 〈∂tV〉 = mβ0E , a valuewhose sign is indefinite (either positive or negative).Let us recall that in classical non-equilibrium thermody-namics, the so-called minimum entropy production prin-ciple [19] is often invoked in connection with the “speed”with which a minimum of the Helmholtz free energy is ap-proached. For sufficiently large times, when the systemis in the vicinity of the stationary (equilibrium) state, oneexpects that the the entropy production TṠint ≥ 0 is amonotonically decaying function of time, i.e. that
d
dt Ṡint < 0 . (91)

The quantum motion obviously looks different. In thatcase, Ḟ may be positive and one cannot exclude transitions(including those of an oscillatory nature) from negative topositive Ḟ values and back. In certain quantum states,the Helmholtz free energy F may have a minimum, a max-imum, an infinite number of local minima and maxima, ornone at all. There is no reason for the minimum entropyproduction principle to be valid in quantum theory, exceptin very special cases.Since the work term is a constant of quantum motion, wehave :
Ḟ + T0Ṡint = mβ0E =⇒ F̈ = −T0 ddt Ṡint , (92)

which formally reproduces the temporal behavior charac-teristic to Smoluchowski diffusion processes, c.f. Eq.(74).There are however “speed” properties which are specialto the quantum dynamics and have no dissipative coun-terpart.The above time rate formula Eq. (92), which is commonto both quantum and diffusive motions scenarios, clearlyis consistent with the correlation of a minimum of Ḟ witha maximum of the Ṡint . However, we have as well al-lowed the reverse scenarioi.e., that a maximum of Ḟ mayarise in conjunction with a minimum of Ṡint . More com-plicated, e.g. oscillating, forms of the entropy production-Helmhholtz free energy interplay cannot be a priori ex-cluded in the quantum case.Remembering that T0Ṡint = mβ0〈v2〉 and exploiting thetotal mean energy formula, Eqs. (29) and (55), we canidentify the respective “speeds” in conjunction with theSchrödinger picture quantum motion. In view of Eq. (92),the pertinent time rates stay in a definite negative feed-
back relationship.:
F̈ = +β0 ddt

(
m〈u2〉+ 2〈V〉) = −mβ0 ddt

〈
v2〉 . (93)

This observation should be contrasted with the behaviorinduced by diffusion-type processes, where TdṠint/dt =
mβd〈v2〉/dt. Now, c.f. Eq.(54), we have

F̈ = −β ddt
(
m〈u2〉+ 2〈V〉) = −mβ ddt

〈
v2〉 (94)

which really makes a difference (in view of the signinversion in the functional expression for F̈ ). There is nofeedback anymore.

6. Outlook
We have discussed in detail the uncertainty/indeterminacymeasures that can be associated with time-evolving prob-ability distributions of two basic origins. We infer them fordiffusion-type processes and Schrödinger picture quantumdynamics.There are deep analogies between the quantum dynamicsin the Madelung representation and the classical Fokker-Planck description of diffusion processes. We have ex-ploited them in two complementary ways.First, the position-momentum indeterminacy relations fordiffusion processes were deduced by a modification ofmajor steps in the quantum procedure (compare, e.g.,Eqs. (34) and (49)). Second, we have faithfully repro-duced in the quantum setting major thermodynamic rela-tions between heat, work and free energy by adopting tothe quantum formalism a number of derivations that wereconsistently tested in the context of the Smoluchowski dif-fusion processes.The minor surprise is that major properties of a non-isolated but closed (we use the terminology of Ref. [19])random system have been directly reproduced for thequantum system, which is normally considered as ther-mally isolated. Our analysis allows us to attribute to thequantum system in a pure state the major properties ofa non-isolated but closed thermodynamical system. Themajor difference between the quantum and diffusive be-havior, if restricted to thermodynamically motivated quan-tities, can be read out from the rate formulas Eqs. (93) and(94).To avoid misunderstandings, let us recall that in the clas-sical situation work, heat and free energy notion have welldefined meanings. Work is interpreted as an energy dueto macroscopic degrees of freedom which perform an or-dered motion and are perceived as a source of work. Heatis perceived as a thermal energy, while free energy is themaximal amount of energy which can be extracted as work.A physical meaning for these three concepts is definitelyreliant on a differentiation between the total system, the
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investigated physical subsystem and the sources of workand heat (environment).We cannot propose a clean physical picture for deceiv-ingly thermodynamical patterns of behavior associatedwith quantum dynamics. At the moment, we have no sat-isfactory explanation of a possible physical meaning forthe “work performed upon” and “work performed by” thesystem, nor for heat, for an isolated quantum system. Al-beit we have demonstrated that this system shows pat-terns of behavior that are characteristic for non-isolated
closed thermodynamical systems, in parallel with those fordiffusion-type processes.On formal grounds, the present paper exploits propertiesof −〈lnρ〉 and of 〈(∇ lnρ)2〉, while admitting the time-dependence of ρ. The functional 〈(∇ lnρ)2〉 plays themajor role in all our considerations and is responsiblefor the emergence of indeterminacy relations, both in thediffusive and quantum motions.The final outcomes of the discussion heavily rely on theassumed factorization of the probability density ρ. It isaccomplished either in terms of two real (time-conjugate)functions ρ = θ · θ∗, or in terms of two complex conjugatefunctions ρ = ψ · ψ∗.

Appendix
Since the employed thermodynamic formalism may lookstrange for quantum theory practitioners, let us exemplifythe previous observations by invoking simple quantummotion cases.
Case 1: Free evolutionLet us consider the probability density in one space di-mension:
ρ(x, t) = α[π(α4 + 4D2t2)]1/2 exp(− x2α2

α4 + 4D2t2
) (95)

and the phase function (we recall that ψ = ρ1/2 exp(is/2D)is adopted):
s(x, t) = 2D2x2t

α4 + 4D2t2 −D2 arctan(−2Dt
α2
) (96)

which determine a free wave packet solution of theSchrödinger equation with the choice of V ≡ 0 and initialdata ψ(x, 0) = (πα2)−1/4 exp(−x2/2α2).One can readily deduce that
D(Ṡ)int = 〈v2〉 = 8D4t2

α2(α4 + 4D2t2) (97)

has an initial value 0 and attains a maximum 2D2/α2 inthe large time limit. Moreover, there holds
E = 12 (〈v2〉+ 〈u2〉) = D2

α2 , (98)
where 〈u2〉 = (2D2α2)/(α4 + 4D2t2). Clearly, an initialvalue of 〈u2〉 is 2D2/α2, while 0 stands for its asymptoticlimit.The feedback relationship Eq. (92) sets a link betweenthe speed at which the entropy production attains itsmaximum and the speed at which Ḟ decreases towardsits minimal value Ḟmin = mβ0E − T0Ṡmaxint , (compare e.g.Eq. (87)).
Case 2: Steady state in a harmonic potentialWe choose a harmonic potential V = 12ω2x in theSchrödinger equation (23) and consider its solution withthe probability density:

ρ(x, t) = ( ω2πD)1/2 exp [− ω2D (x − q(t))2] (99)
and the phase function:
s(x, t) = (1/m) [xp(t)− (1/2)p(t)q(t)−mDωt] , (100)

where the classical harmonic dynamics with particlemass m and frequency ω is involved such that q(t) =
q0 cos(ωt) + (p0/mω) sin(ωt) and p(t) = p0 cos(ωt) −
mωq0 sin(ωt).We have here v =∇s = p(t)/m and therefore:

D(Ṡ)in = p2(t)
m2 (101)

so that in view of E/m = E = p20/2m2 + ωx20 /2 + Dω andEq. (87), remembering that D = kBT/mβ0 = h̄/2m, we get
Ḟ = ωkBT0 +mβ0

[
p202m2 + ωx

202 − p2(t)
m2

]
= ωkBT0 + β0

[
mωx

2(t)2 − p2(t)2m
]
. (102)

It is interesting to observe that the actual behavior of
Ḟ (t) depends on a difference of the potential and kineticenergies of the classical oscillator.
Case 3: Stationary stateLet us make a brief comment on the case of stationarystates. We take a harmonic oscillator ground state as areference. The entropy production vanishes since v = 0.
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We have Ḟ = mβ0E0 = β0E0, where E0 = h̄ω/2 = mDω.Therefore
F (t) = (kBT0)ωt + const (103)

and F is a monotonically growing function.We recall that presently Ḟ = Ẇ = β0E0. The never ceas-ing time rate of “work performed upon the surrounding”needs to be kept in memory as a distinguishing feature ofthe quantum motion.Because of −mβ0〈s〉 = F and 〈s〉 = s, we have
s(t) = −Dωt + const , (104)

as should be the case in the exponent of the sta-tionary wave function ψ = ρ1/2 exp(is/2D). Indeed,
−E0t/2D = −ωt/2 = s(t)/2D − const.
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