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Summary. We derive the Boson expansion for the Jordan-Wigner representation of the algebra
of the canonical anticommutation relations (CAR).

In the many-body problems, people frequently employ the Jordan-Wigner
construction of the representation of the CAR algebra, which is based on the use
of an infinite family:
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of spin 1/2 raising and lowering operators. In practical applications, the above
part-Boson, part-Fermion nature of operators stands for a difficulty in the theory,
because no simple linear transformation between o,’s and g, ’s such as would be
required to diagonalize a quadratic form (the Hamiltonian), leaves these rules
invariant.

There is no difficulty in transforming the rules (1) into a complete set of the
CAR. The famous Jordan-Wigner trick is here all right. The Fermion creation and
annihilation operators appear according to:
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Here ¢, ¢,=0, o, and the inverse transformation reads:
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Another construction of the generators of the CAR based on the use of (1) is
realized by:
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Both in the case (2) and (4) we deal with a Fock representation if o, 2 =0 for all
k=1,2, w5
Let us now consider spin operators to be constructed in the Fock representa-
tion of the CCR algebra, according to:
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) o) =ay :exp (—a, a):
lay, a]l - =64 15
[a,, a)]-=0 a, 2,=0 for all k.

Let us further introduce the following projectors, acting as operators in the Boson-
Fock space Fj: 1% Fp=F}
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we get at once:
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which gives a complete ““bosonization” formula for the Jordan—Wigner represen-
tation of the CAR, applicable both in cases (2) and 4).

In this connection we refer to [3], where a global “bosonization™ prescription
for Fock representations of the CAR was given. Obviously, due to the boundeness
of the operators (7) (the general property of the CAR) one can extend these ope-
rators to the form of [3]. From a physical point of view, the “bosonization” @)
corresponds to the so-called spin 1/2 approximation of the given starting Boson
theory, when each single degree of freedom is either singly excited or not excited
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at all. Such a situation for the (initially) Boson system can happen only if a contact
with a suitable low-temperature environment is provided. For more information
on the applications of the Boson expansion methods in quantum theory see [5].
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I1. Tapbayescku, Bo3ommbIe PO3JIOKEHHS TIpe/ICTABJICHHS ﬁopnaua-Bnmem

Conepxamme. PaccmoTtpenst 6o308HBIE TIpenCTaBNEHUN anrebp kaHOHHYECKHX AHTHKOMMYyTa-
IMOHHBIX COOTHOIIEHHH B KOHCTPYKLHM Wopnana, Buruepa.




