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Abstract. We establish circumstances under which the dispersion of passive contaminants

in a forced flow can be consistently interpreted as a Markovian diffusion process.

1. Introduction. Probabilistic concepts are ubiquitous in diverse areas of theoretical

physics, in particular in connection with probabilistic models for various partial differ-

ential equations and their solutions. We shall name the common examples: Boltzmann,

Navier-Stokes, Burgers, Euler, Fokker-Planck, Kramers, Schrödinger equation. The latter

one, in conjunction with the Born statistical interpretation postulate, was the subject of

an extensive research by E. Nelson, [11], and quite recently (while from a slightly different

perspective) by K. L. Chung and Z. Zhao, [2]. A number of ideas due to Nelson, that

were originally suited to analyze the stochastic counterpart of the Schrödinger picture

quantum dynamics, gave an inspiration to a novel unifying framework of the so-called

Schrödinger boundary data and stochastic interpolation problem, [15, 5, 7, 8, 4]. That

sets a conceptual and formal (stochastic analysis methods) basis for a surprisingly rich

group of topics being potentially of interest to both mathematicians and physicists. They

range from stochastic processes of the nonequlibrium statistical physics, through classical

dynamics of complex systems (chaos in terms of densities) to quantum theory. On the

other hand they involve random processes which are compatible with the infinitely divis-

ible probability laws and their more general (perturbed) versions, hence go beyond the

diffusion process setting. A sample of arguments taken from this line of active research

is presented below.

2. The Schrödinger boundary data problem and Markovian interpolating

dynamics. According to pedestrian intuitions, one normally expects that any ”reason-

able” kind of time developement (dynamics, be it deterministic or random), which is
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analyzable in terms of probability, under suitable mathematical restrictions may give rise

to a well defined stochastic process. An inverse operation of deducing the detailed (possi-

bly individual, microscopic) dynamics, which is either compatible with a given probability

measure (we shall be mostly interested in those admitting densities) or is compatible with

its time evolution, does not have a unique solution. However, the level of ambiguities can

be substantially reduced, if we invoke the so-called Schrödinger problem of reconstructing

the microscopic dynamics from the given input-output statistics data or from the a priori

known (evolving in time) probability density. That gives rise to a particular class of solu-

tions (most likely interpolations), in terms of Markov stochastic processes, and diffusion

processes in particular, [5, 4].

In its original formulation, due to Schrödinger, [14, 15], one seeks the answer to

the following question: given two strictly positive (usually on an open space-interval)

boundary probability densities ρ0(~x), ρT (~x) for a process with the time of duration T ≥ 0.

Can we uniquely identify the stochastic process interpolating between them? The answer

is known to be affirmative and, in particular, one can ultimately single out a unique

Markovian diffusion process which is specified by solving the (Schrödinger) boundary

data problem:

mT (A,B) =
\
A

d3x
\
B

d3y mT (~x, ~y) (1)\
d3y mT (~x, ~y) = ρ0(~x)\
d3xmT (~x, ~y) = ρT (y)

where the joint probability distribution has a bi-variate density in the specific factorised

form

mT (~x, ~y) = u0(~x) k(x, 0, y, T ) vT (~y) (2)

and the two unknown functions u0(~x), vT (~y) come out as solutions of the same sign

of the integral identities (1). Provided we have at our disposal a continuous bounded

strictly positive (ways to relax this assumption were discussed in Ref. [6]) function

k(~x, s, ~y, t), 0 ≤ s < t ≤ T , which for our purposes (an obvious way to secure the Markov

property) is chosen to be represented by familiar Feynman-Kac integral kernels of con-

tractive dynamical semigroup operators:

k(~y, s, ~x, t) =
\
exp[−

t\
s

c(~ω(τ), τ)dτ ]dµ
(~y,s)
(~x,t)(ω). (3)

The pertinent (interpolating) Markovian process can be determined by checking (this

imposes limitations on the admissible function c) whether the Feynman-Kac kernel is pos-

itive and continuous in the open space-time area of interest (then, additional limitations

on the path measure need to be introduced, [1]), and whether it gives rise to positive

solutions (it is desirable to have them bounded, [3, 2]) of the adjoint pair of generalised

heat equations:

∂tu(~x, t) = ν△u(~x, t)− c(~x, t)u(~x, t) (4)

∂tv(~x, t) = −ν△v(~x, t) + c(~x, t)v(~x, t).
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Here, a function c(~x, t) is restricted only by the positivity and continuity demand for the

kernel (3), see e.g. [5, 2, 3]. In the above, dµ
(~y,s)
(~x,t)(ω) is the conditional Wiener measure

over sample paths of the standard Brownian motion.

Solutions of (4) upon suitable normalisation give rise to the Markovian diffusion pro-

cess with the factorised probability density ρ(~x, t) = u(~x, t)v(~x, t) which, while evolving

in time, interpolates between the boundary density data ρ(~x, 0) and ρ(~x, T ). The interpo-

lation admits an Itô realisation with the respective forward and backward drifts defined

as follows:

~b(~x, t) = 2ν
∇v(~x, t)

v(~x, t)
(5)

~b∗(~x, t) = −2ν
∇u(~x, t)

u(~x, t)

in the prescribed time interval [0, T ].

The related transport equations for the densities easily follow. For the forward inter-

polation, the familiar Fokker-Planck (second Kolmogorov) equation holds true:

∂tρ(~x, t) = ν△ρ(~x, t)−∇[~b(~x, t)ρ(~x, t)] (6)

while for the backward interpolation we have:

∂tρ(~x, t) = −ν△ρ(~x, t)−∇[~b∗(~x, t)ρ(~x, t)]. (7)

By (5) the drifts are gradient fields, curl~b = 0. As a consequence, those that are

allowed by any prescribed choice of the function c(~x, t) must fulfill the compatibility

condition

c(~x, t) = ∂tΦ +
1

2

(

b2

2ν
+∇b

)

(8)

which establishes the Girsanov-type connection of the forward drift ~b(~x, t) = 2ν∇Φ(~x, t)

with the Feynman-Kac, cf. [1], potential (at this point we follow the physical terminol-

ogy) c(~x, t). In the considered Schrödinger’s interpolation framework, the forward and

backward drift fields are connected by the identity ~b∗ = ~b− 2ν∇lnρ.

One of the distinctive features of Markovian diffusion processes with the positive

density ρ(~x, t) is that, given the transition probability density of the (forward) process,

the notion of the backward transition probability density p∗(~y, s, ~x, t) can be consistently

introduced on each finite time interval, say 0 ≤ s < t ≤ T :

ρ(~x, t)p∗(~y, s, ~x, t) = p(~y, s, ~x, t)ρ(~y, s) (9)

so that
T
ρ(~y, s)p(~y, s, ~x, t)d3y = ρ(~x, t) and ρ(~y, s) =

T
p∗(~y, s, ~x, t)ρ(~x, t)d

3x.

The transport (density evolution) equations (6) and (7) refer to processes running in

opposite directions in a fixed, common for both, time-duration period. The forward one,

(6), executes an interpolation from the Borel set A to B, while the backward one, (7),

executes an interpolation from B to A, compare e.g. the defining identities (1).

The knowledge of the Feynman-Kac kernel (3) implies that the transition probability

density of the forward process reads:

p(~y, s, ~x, t) = k(~y, s, ~x, t)
v(~x, t)

v(~y, s)
, (10)
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while the corresponding (derivable from (10), since ρ(~x, t) is given) transition probability

density of the backward process has the form:

p∗(~y, s, ~x, t) = k(~y, s, ~x, t)
u(~y, s)

u(~x, t)
. (11)

Obviously, [5, 15], in the time interval 0 ≤ s < t ≤ T there holds:

u(~x, t) =
\
u0(~y)k(~y, s, ~x, t)d

3y (12)

v(~y, s) =
\
k(~y, s, ~x, T )vT (~x)d

3x.

Consequently, the system (4) fully determines the underlying random motions, forward

and backward, respectively.

3. Diffusion process in a forced flow. Whenever one tries to analyze random

perturbations that are either superimposed upon or intrinsic to a driving deterministic

motion, quite typically a configuration space equation ~̇x = ~v(~x, t) is invoked, which is

next replaced by a formal infinitesimal representation of an Itô diffusion process d ~X(t) =
~b( ~X(t), t)dt +

√
2νd ~W (t). Here, ~W (t) stands for the normalised Wiener noise, and ν for

a diffusion constant, cf. (4)-(12).

The dynamical meaning of ~b(~x, t) relies on a specific diffusion input and its possible

phase-space (e.g. Langevin) implementation, that entail a detailed functional relationship

of ~v(~x, t) and ~b(~x, t), and justify such notions like: diffusion in an external force field, dif-

fusion along, against or across the deterministic flow, [9, 13]. The pertinent mathematical

formalism corroborates both the Brownian motion of a single particle and the diffusive

transport of neutrally buoyant components in flows of the hydrodynamic type.

Clearly, in random media that are statistically at rest, diffusion of single tracers

or dispersion of pollutants are well described by the Fickian outcome of the molecular

agitation, also in the presence of external force fields (then in terms of Smoluchowski

diffusions). On the other hand, it is of fundamental importance to understand how sta-

tistically relevant flows in a random medium (fluid, as example) affect dispersion. In the

context of fluids, we might refer to diffusion enhancement due to turbulence, behaviour of

Brownian particles in shear flows, but also to general effects of the external forcing (var-

ious forms of deterministic or random ”stirring” of the random medium) exerted upon

gradient or non-gradient, compressible and incompressible flows, and carried by them

passive constituents.

Except for suitable continuity and growth restrictions, necessary to guarantee the

existence of the process ~X(t) governed by the Itô stochastic differential equation, the

choice of the driving velocity field ~v(~x, t) and hence of the related drift ~b(~x, t) is normally

regarded to be arbitrary.

However, the situation looks otherwise, if we are interested in a diffusion of passive

tracers in the a priori given flow whose velocity field is a solution of the nonlinear partial

differential equation, be it Euler, Navier-Stokes, Burgers or the like. An implicit assump-

tion, that tracers passively buoyant in a fluid have a negligible effect on the flow, looks

acceptable (basically, if the concentration of a passive component in a flow is small).

Then, one is tempted to view directly the fluid velocity field ~v(~x, t) as the forward drift
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~b(~x, t) of the process, with the contaminant being diffusively dispersed along the stream-

lines. But, in general, the assumed nonlinear evolution rule for ~v(~x, t) must be checked

against the dynamics that is allowed to govern the space-time dependence of the forward

drift field ~b(~x, t), [11], which is not at all arbitrary. The latter is ruled by standard consis-

tency conditions that are respected by any Markovian diffusion process, and additionally

by the rules of the forward and backward Itô calculus, [9, 11].

This particular issue we have analyzed before in the context of Burgers flows, [8], where

the Burgers velocity field was found to be inappropriate to stand for the forward drift of

a Markovian diffusion process. Actually, the backward drift was a correct identification.

Then, the forced Burgers dynamics (at this point we shall slightly adjust the previous

convention by defining Ω(~x, t) = 2νc(~x, t), see Eq. (3))

∂t~vB + (~vB · ~∇)~vB = ν△~vB + ~∇Ω (13)

and the diffusion-convection equation

∂tσ + (~vB · ~∇)σ = ν△σ (14)

for the concentration σ(~x, t) of a passive component in a flow, in case of gradient velocity

fields, were proved to be compatible with the Markovian diffusion process input.

According to Ref. [8], in that case the dynamics of concentration results from the

stochastic diffusion process whose density ρ(~x, t) evolves according to (7)

∂tρ = −ν△ρ− ~∇ · (~vBρ), (15)

or equivalently:

∂tρ = ν△ρ− ~∇ · (~bρ), (16)

~b
.
= ~vB + 2ν ~∇lnρ.

In case of conservative forcing, the forward drift solves an evolution equation:

∂t~b+ (~b · ~∇)~b = −ν△~b+ ~∇Ω. (17)

For drifts that are gradient fields, the function Ω, whatever its functional form is, must

allow for a representation formula, which is reminiscent of the Cameron-Martin-Girsanov

transformation, (8) i.e. Ω(~x, t) = 2ν[∂tΦ + 1
2 (

~b2

2ν + ~∇ ·~b)], where ~b(~x, t) = ~∇Φ(~x, t).

For the existence of the Markovian diffusion process with the forward drift ~b(~x, t), we

must resort to potentials (physicist’s notion) Ω(~x, t) that are not completely arbitrary

functions. Technically, [5, 2, 3], the minimal requirement is that the potential is bounded

from below. This restriction will have profound consequences for our further discussion

of a diffusion process in a flow.

If we set ρ = ρ1 + ρ2, and demand that ρ1 6= ρ solves the Fokker-Planck equation

with the very same drift ~b(~x, t) as ρ does, then as a necessary consequence of the general

formalism, [8, 5], the concentration

σ(~x, t) =
ρ1(~x, t)

ρ(~x, t)
(18)

solves an associated diffusion-convection equation (14). Here, the flow velocity ~vB(~x, t)

coincides with the backward drift ~b∗=̇~vB of the generic diffusion process with the density
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ρ(~x, t) and reads: ~vB = ~b − 2ν ~∇lnρ. Obviously, the forced Burgers equation (13) is

identically satisfied.

We should clearly discriminate between forces whose effect is a ”stirring” of the ran-

dom medium and those acting selectively on diffusing particles, with a negligible effect

on the medium itself. For example, the traditional Smoluchowski diffusion processes in

conservative force fields are considered in random media that are statistically at rest.

Following the standard (phase-space, Langevin) methodology, let us set ~b(~x) = 1
β
~K(~x),

where β is a (large) friction coefficient and ~K represents an external Newtonian force per

unit of mass ( e.g. an acceleration) that is of gradient from, ~K = −~∇U . Then, the effec-

tive potential Ω reads: Ω =
~K2

2β2 + ν
β
~∇ · ~K and the only distinction between the attractive

or repulsive cases can be read out from the term ~∇ · ~K.

4. Back to Nelson. In the above Eq. (13), by formally changing the sign of Ω, we

would arrive at the attractive variant of the problem that is however incompatible with

the diffusion process scenario in view of the unboundedness of −Ω from below. This is the

major point of our discussion: we may get in serious trouble with the Markovian diffusion

input in case of general external ”stirring” forces. Hence, we must specify an admissi-

ble class of perturbations which, while modifying the flow dynamics, would nonetheless

generate a consistent diffusion-in-a-flow transport of passive tracers.

Should we a priori exclude the attractive variants of the potential Ω? Can we save the

situation by incorporating, hitherto not considered, ”pressure” term effects as suggested

by the general form of the compressible Euler (here ~F = −~∇V stands for external volume

forces and ρ for the fluid density that itself undergoes a stochastic diffusion process):

∂t~vE + (~vE · ~∇)~vE = ~F − 1

ρ
~∇P (19)

or the incompressible, [10], Navier-Stokes equation:

∂t~vNS + (~vNS · ~∇)~vNS =
ν

ρ
△~vNS + ~F − 1

ρ
~∇P, (20)

both to be compared with the equations (13) and (17), that set dynamical constraints

for respectively backward and forward drifts of a Markovian diffusion process?

Notice that the acceleration term ~F in equations (19) and (20) normally is regarded

as arbitrary, while the corresponding term ~∇Ω in (13) and (17) involves a bounded from

below function Ω(~x, t).

Since, in case of gradient velocity fields, the dissipation term in the incompressible

Navier-Stokes equation (20) identically vanishes, we should concentrate on analyzing the

possible ”forward drift of the Markovian process” meaning of the Euler flow with the

velocity field ~vE , (19). At this point it is useful, at least on the formal grouds, to invoke

the standard phase-space argument that is valid for a Markovian diffusion process taking

place in a given flow ~v(~x, t) with as yet unspecified (flow) dynamics. We account for an

explicit force exerted upon diffusing particles, while not necessarily directly affecting the

driving flow itself. Namely, [11], let us set for infinitesimal increments of phase space

random variables:
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d ~X(t) = ~V (t)dt

d~V (t) = β[~v(~x, t)− ~V (t)]dt+ ~K(~x)dt+ β
√
2νd ~W (t). (21)

Following the leading idea of the Smoluchowski approximation, we assume that β is

large, and consider the process for times significantly exceeding β−1. Then, an appropriate

choice of the velocity field ~v(~x, t) (boundedness and growth restrictions are involved) may

in principle guarrantee, [11], the convergence of the spatial part ~X(t) of the process (21)

to the Itô diffusion process with infinitesimal increments:

d ~X(t) = ~v(~x, t)dt+
√
2νd ~W (t). (22)

However, one cannot blindly insert in the place of the forward drift ~v(~x, t) any of the

previously considered bulk velocity fields, without going into apparent contradictions.

Specifically, the equation (13) with ~v(~x, t) ↔ ~b(~x, t) must be valid. By resorting to velocity

fields ~v(~x, t) which obey △~v(~x, t) = 0, we may pass from (13) to an equation of the Euler

form, (19), provided (8) holds true and then the right-hand-side of (13) involves effective

potential Ω bounded from below.

An additional requirement is that

~F − 1

ρ
~∇P

.
= ~∇Ω. (23)

Clearly, for a constant pressure we are left with the dynamical constraint (~b ↔ ~vE):

∂t~b+ (~b · ~∇)~b = ~F = ~∇Ω (24)

combining simultaneously the Eulerian fluid and the Markov diffusion process inputs, if

and only if ~F is repulsive, e.g. −V (~x, t) is bounded from below. Quite analogously, by

setting ~F = ~0, we would get a constraint on the admissible pressure term, in view of:

∂t~b+ (~b · ~∇)~b = −1

ρ
~∇P = ~∇Ω. (25)

Both, in cases (24), (25) the effective potential Ω must respect the functional depen-

dence (on a forward drift and its potential) prescription (8). In addition, the Fokker-

Planck equation with the forward drift ~vE(~x, t)
.
= ~b(~x, t) must be valid for the density

ρ(~x, t).

To our knowledge, in the literature there is known only one specific class of Markovian

diffusion processes that would render the right-hand-side of Eq. (19) repulsive but never-

theless account for the troublesome Newtonian accelerations, e.g. those of the form −~∇V ,

with +V bounded from below. Such processes have forward drifts that for each suitable

function V (~x) bounded from below solve the nonlinear partial differential equation:

∂t~b+ (~b · ~∇)~b = −ν△~b+ ~∇(2Q− V ) (26)

with the compensating pressure term:

Q
.
= 2ν2

△ρ1/2

ρ1/2
.
=

1

2
~u2 + ν ~∇ · ~u (27)

~u(~x, t) = ν ~∇ln ρ(~x, t).
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Their exhaustive discussion can be found in Refs. [11, 8, 5, 15], together with indications

for their possible relevance as a stochastic counterpart of the Schrödinger picture quantum

dynamics. Clearly, we have:

~F = −~∇V , ~∇2Q = −1

ρ
~∇P (28)

where:

P (~x, t) = −2ν2ρ(~x, t)△ ln ρ(~x, t). (29)

Effectively, P is here defined up to a time-dependent constant. Another admissible form

of the pressure term reads (summation convention is implicit):

1

ρ
~∇k[ρ (2ν

2∂j∂k)ln ρ] = ~∇j(2Q). (30)

If we consider a subclass of processes for which the dissipation term identically van-

ishes (a number of examples is known)

△~b(~x, t) = 0 (31)

the equation (26) takes a conspicuous Euler form (19), ~vE ↔ ~b.

Let us notice that (29), (30) provide a generalisation of the more familiar equation

of state P ∼ ρ, thermodynamically motivated and suited for ideal gases and fluids. For

density fields for which −△ln ρ ∼ const, the standard relationship between the pressure

and the density is recovered. For density fields obeying −△ln ρ = 0, we are left with

at most purely time dependent or a constant pressure. Pressure profiles may be highly

complex for arbitrarily chosen initial density and/or the flow velocity fields.

To conclude the present discussion let us invoke Refs. [10, 12, 5] The problem of a

diffusion process interpretation of various partial differential equations has been extended

beyond the original parabolic equations setting, to nonlinear velocity field equations like

the Burgers one, see e.g. [8]. On the other hand, the nonlinear Markov processes associated

with the Boltzmann equation, in the hydrodynamic limit, are known to imply either an

ordinary differential equation with the velocity field solving the Euler equation, or a

diffusion process whose drift is a solution of the incompressible Navier-Stokes equation

(without the curl~v = 0 restriction), [12, 10]. The case of external forcing has never been

satisfactorily solved.

Our reasoning went otherwise. We asked for the admissible space-time dependence of

general velocity fields that are to play the rôle of forward drifts of Markovian diffusion

processes. Our finding is that solutions of the compressible Euler equation are appro-

priate for the description of a non-deterministic (e.g. random and Markovian) evolution

and belong to a class of Markovian diffusion processes orginally introduced by E. Nel-

son in his quest for a probabilistic counterpart of the quantum dynamics, [11, 5]. Our

solution of the problem involves only the gradient velocity fields. However, a couple of

issues concerning the curl~b 6= 0 velocity fields and their nonconservative forcing have

been raised in Refs. [8], with an additional inspiration coming from Nelson’s investiga-

tions.
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