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We present a unification of different and independently investigated aspects of the chiral 
invariant Gross-Neveu model. Special emphasis is placed on the relevance of classical (cm 

number, non Grassmann) spinor solutions of the G-N field equations for the construction, 
and thus understanding of the respective quantized Fermi model. To get an insight into the 
“quantum meaning of classical field theory” if specialized to the G-N case, we perform the 

path integral quantization procedure which first leads to the Fermi oscillator problem, and 
then, after appropriate generalizations, to the quantum Fermi G-N model. Path integrals are 

carried out with respect to c-number spinor paths only. and in fact no reference is necessary to 
the Grassmann algebra methods, which are conventionally used to integrate out fermions. 

1. QUANTIZED MODEL, ITS LATTICIZATION AND ALL THAT 

Let us consider the relativistic field theory model in 1 + 1 dimensions describing 
the four-fermion interaction of the chiral (a = f 1) N-component (colored, a = 
1, 2,..., N) field v = I,,: 

[v,,(x), w&WI+ = &3L4x - u). 

It is known as the Nambu-Jona-Lasinio or the SU(N) chiral invariant Gross-Nevel 
model, and its spectrum was found by using the Bethe Ansatz techniques in [l-4; 
The Hamiltonian corresponding to (1. l), 

H = 
I 

dx (-iwTa a,w+, + iv!!, a,y/-, + 4w~,v/~~w+~w-,)~ (1.2) 
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solves the eigenvalue problem for vectors which are constructed from the Fock 
vacuum IO), v/,,(x) 10) = 0 Va, a, x as follows: 

Ik I,..., k,, u, ,..., a,,F)=lk,u,F) 

x w,*,.,w ... v,*,a,k) 10) (1.3) 
x n 

x = x F, . exp i y Xikr(i, . n n 6 n,o,ci,. 
perm i=l i-l 

The coefficients F, = F(u,,~,,..., ax(n)) are supposed to describe the dependence of the 
wave function x on isotopic color indices. 

An explicit form of the eigenvectors can be found by making the apropriate 
regularizations of the problem: introducing an ultraviolet cutoff /1 and then solving 
the periodic problem on the finite space interval L. This route is equivalent to making 
the lattice approximation of the initially continuous model. Then, while having solved 
the lattice eigenvalue problem, one “tills the Dirac sea” and removes the cutoffs, thus 
arriving at physically relevant results in the continuum limit. 

In this procedure, the latticization of (1.1) is rather indirect, since according to 
conventions one should reformulate (1.1) explicitly in terms of lattice fermions which 
is manifestly not the case in [l-5]. 

The lattice version of our eigenvalue problem comes through the formula 

F, = F(u, ,..., a,) = Pi,i+ I . Si.i+ I . F(u, (..., u;+ I, CI~...., a,,)) (1.4) 

where Pi, is the color exchange operator, while Si, is the two-particle S-matrix, which 
acts on the color indices, while being explicitly dependent on chiralities only 14, 5 ]: 

s. = ) 14) + W) Pk,l exp if% A= f2 

h’ h ;1 = 0, 

(1.5) 

9 = arctg $. c=4g(l- gZ))‘. 

The periodicity requirement results in the following eigenvalue problem: 

exp(ikjL) e F = Z,i . F, F=Fi,, vj = 1, 2 ,..., n, 

zj= sj+l,j ... Sn.jSl.j *‘* sjp,*j 
(1.6) 

and both (1.4) and (1.5) have their relatives in the statistical physics investigations of 
16-81 of many body problems in one space dimension with the repulsive delta 
function interaction (6, 7) and the generalized Heisenberg ferromagnet 18, 51. 
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Remark. The (semi) classical chiral invariant Gross-Nevey model is known to be 
a completely integrable system [9]. In the quantization of such systems (nonlinear 
Schroedinger, since Gordon, massive Thirring, Toda chain, xvz Heisenberg chain, 
etc.) as described in [ 10, 111 (see also [ 12, 13]), the starting point is the associated 
linear problem of the form X# = 0 which is then replaced by 

(1.7) 

where X=X(A) and A is a spectral parameter. This linear problem allows us to 
introduce the so-called monodromy operator on the space interval [--L, +L 1 such 
that 

#(L) = T,(A) 4(-L). (1.8) 

To determine T,(A) for any specific nonlinear model to which (1.7) corresponds is 
the heart of the method. However, 7’,(l) may be poorly definable in terms of 
quantum fields while on the continuum level. Therefore one makes an additional to 
the infrared regularization L, the ultraviolet one /1 = L/6. Then (1.7) is replaced by 
the discrete transfer problem 

4 n-t1 =L&)$,. Cl.91 

Appropriate L,‘s were catalogued in [lo] for the simplest models. 
Warning: in the above we differentiate between “semiclassical models.” which 

mean quantum mechanics of spinor systems, and “semiclassical quantization,” which 
is related to the second quantization of the former first quantized model. 

Let us consider the multi-component n particle quantum system. Its Hilbert space 
is Y?$=h@“, where h = @yEI Ci, Ci = C Vi is one dimensional. The Hamiltonian is 

(1.10) 

provided we identify II + 1 with 1. Here P,, is the transposition operator 
interchanging the kth and lth factors in the tensor product h@‘“. The so defined 
generalized Heisenberg ferromagnet was investigated in [8] by means of the Bethe 
Ansatz. In [5] it was shown that the model obeys the quantum inverse scattering 
technique (complete integrability arising as a result). An algorithm to generate the 
eigenvectors and eigenvalues for (1.7) was completely described in 15 1. 

The lattice transfer operator L,(A) of (1.9) was introduced in 151 in the form 

Lk@) = 4) I+ b(A) pk.,+, 3 

a@) + b(A) = 1, a(A) = A/@ + i&), E=tl* 
(1.11) 
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The transition operator r,(n) = L,(A) L,- ,(A) ... L,(A) has a trace t(n) = Sp T,,(n) 
with the property 

=H (1.12) 

which in fact suggests a correction of the expression (1.10) for the Hamiltonian: 
otherwise the energy would diverge with n + co. 

At this point we can come back to the latticized Gross-Neveu model, since due to 
(1.5) and (1.6) a discrete transfer problem (1.9) is provided by the two-particle S- 
matrix: 

@k@) = ‘k.k+ I@) (1.13) 

with s,,(n) given by (1.5). The operator e, of (1.13) differs from that given by ( 1.11) 
through the factor exp ilyl only, which is manifestly not influencing the trace 
operation for ?,,(A). Consequently (1.13) corresponds to 

fn(ll)=exp(U. fp. n). L,(l) . . . L,(n) (1.14) 

provided we introduce c = 4g( 1 - g’)- ’ in the place of F = * 1 appearing in (1.11). 
Recall that cp = arctg c/2. Then by virtue of (1.12) we arrive at 

f(n) = Sp fn(n) = exp(idcp) Sp T,(1) = exp(Mcp) . t(A) (1.15) 

which implies 

-n(o=H-Np, (1.16) 

where N is the particle number operator in the linear chain. p = c( 1 + q/c), and H is 
given by (1.12). 

Needless to say, because of (1.16) the periodicity conditions derived by Sutherland 
in [S] need only a minor modification to be converted into those of the chiral Gross- 
Neveu model while following the Bethe Ansatz route, 1 l-5 1. 

Lattice operator quantities like those in (1.16) should in principle allow a 
reconstruction in terms of fundamental fields of the model. In fact in the quantum 
version of the inverse scattering scheme the lattice operators Lk(l) are defined in 
terms of the appropriate lattice fields [lo]. In the chiral Gross-Neveu case, the field 
content of the model as provided by (1.1) and (1.3) needs a Fock representation of 
the CAR algebra. With the cutoffs L, A implicit we can define lattice fermions as 
follows: 

‘Y,,(k) = -$jR, Xk@) ‘l’,,(X) dx 

Xk(X) = 1, x E A, ; 0 otherwise, 
(1.17) 
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where A, is the kth interval (site of length 6 in the sequence covering L = n . 6). With 
the notation v+,(k) = b,(k), y+(k) = d,(k) instead of (1.1) we have 

[b,(k), ~,*,W)l + = 60, > a,,, = [d,(k), @W)l+ 3 (1.18) 

all other anticommutators vanishing, and 

b,(k) IO) = 0 = d,(k) IO), Va = 1, 2 ,..., N; k = l,.... n. (1.19) 

To investigate the color exchange mappings let us consider the following operators: 

n îk = \” (d,“(i) b,(k) + b,*(i) d,,(k)}. 
,r-, 

(1.20) 

It is easy to check that (1 - nkinik) is the color exchange operator between species of 
the same (positive) chirality: 

nki ’ nik 

1 ’ k...n . . . 1 . . . 
a, . . . ak . . . a, . . . a, 

while (1 - fikinik) realizes the color exchange between species of different chirality 
with the objection, however, that its domain must consist of the chiral invariant 
vectors. Since such a domain is of general interest for ours, we can define the color 
exchange operator as 

P, = 1 - nkinik - iTkin’, - i?,,t?,. 

If one inserts (1.22) into (1.16) one receives the lattice approximation of the chiral 
invariant Gross-Neveu model in terms of the original (latticized) field variables. 

Notice that three distinct color exchange operations included in (1.22) refer to the 
cases ;1= *2,0, respectively, of the two-particle scattering (1.5). The number 
operator N of (1.16) reads 

N = 5 TT {b,*(i) b,(i) + d:(i) d,(i)}. 
a=, ,F, 

(1.23) 

Remark. A latticization procedure for Fermi models needs some care, since an 
energy doubling problem may arise if the gradient term is incorrectly translated to the 
lattice language. With respect to Fermi models of some relevance it is known, for 
example, that the spin l/2 xyz Heisenberg model is quite correct lattice approx- 
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imation of the massive Thirring model (see e.g., [ 121). For the (non-chiral) SU(N) 
Gross-Neveu model two inequivalent lattice approximations were proposed [ 14, 151. 
However, the approximation of [ 141, while approaching continuum, proves to be 
reliable for lowest excitations only, and one does not have full control of the limiting 
procedure. The construction of [ 151 involves the additional to Fermi, Bose degrees of 
freedom. Their contribution is shown to vanish in the continuum limit, then allowing 
one to reproduce the well-known semiclassical spectrum of the model. Nevertheless, 
this approximation is not purely fermionic. 

In our chiral Gross-Neveu case we arrived at the lattice approximation which 
involves the original Fermi field degrees of freedom only. Let US mention that a 
reasonable lattice approximation in terms of purely fermionic variables may not exist 
for more sophisticated Fermi models, especially in 1 + 3 dimensions. In such a case 
the lattice approximants should either involve the additional to Fermi, Bose degrees 
of freedom, or admit a purely Bose approximant. For some of the simplest examples 
it is now known that in the appropriate continuum/scaling limit the initially Bose 
model can suffer a “metamorphosis into fermion” according to the Bose + Fermi 
metamorphosis prescriptions investigated in [ 12, 13 1 and appearing to come into play 
on the more general footing, by virtue of [ 16 1. 

2. “BOSONIZATION" AND THE CLASSICS-QUANTA RELATIONSHIP 

The Bethe Ansatz solution of the eigenvalue problem for the chiral invariant 
Gross-Neveu model requires that basic quantities (observables, eigenvectors. etc.) are 
constructed in terms of the generators of a Fock representation of the CAR algebra. 
with the number 2N of internal degrees of freedom, N being the number of colors. 

As proved in [ 171, such a representation can always be “bosonized,” i.e., 
reconstructed in terms of the CCR algebra (Bose) generators with the number of 
internal degrees of freedom kept the same for bosons and fermions. On the other 
hand, one knows (see [ 181, also [ 191) that the chiral Gross-Neveu fermion can be 
written in the canonical Bose form as 

- i fi [ )‘“#i(X) + J”I dz $i(Z) ] ( 3 
x 

(2.1) 

N 

y $Jx) = 0, i = 1, 2 . . . . . N, 
i=l 

where Ki is the Klein factor necessary to guarrantee the anticommutativity of vi’s at 
distinct space points. Since the formula (2.1) preserves its validity inthe interaction 
picture where free fields only enter the above expressions (compare the free field 
correspondences of [ 19]), we find that effectively the number of 2N (internal) Fermi 
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degrees of freedom is described in terms of N (internal) Bose degrees of freedom. At 
first glance it is in manifest contradiction with our previous “bosonization” statement 
based on [ 171. However, this is not the case. In [20] we have demonstrated that in 
the “bosonization” of Fermi models if one imposes the positivity requirement on the 
involved Bose Hamiltonian, then the number of the internal degrees if freedom is 
(effectively) diminished by one-half. This means that (2.1) is a correct expression on 
the physical domain. Recall, however, that the Bethe states (1.3) were by the 
construction outside of the physical domain. 

If a:,(k), a,,(k), Q = f, a = l,..., N, are the CAR algebra generators for 
(1.1 k( 1.3) the “bosonization” of [ 171 allows us to identify them in the CCR algebra, 
whose (Bose) generators we denote A,&(k), A,,(k). For any operator quantity of the 
chiral invariant Gross-Neveu model @ we have then the expression (power series 
expansion in terms of normal products) 

~=F(u*,u)=F(a*,a)[A*,A]rF~A*,A]. (2.2) 

Then for any element P of the Bose (CCR) algebra we can follow the standard 
coherent state expectation value argument in the tree (zero loop) approximation: 

4,(k) I P> = v,,(k) I vh 

(~~:~:~~)=(U,(:F[A*,A]:~~)=(O(:F[A*+(D,A+~]:~0) 

=F[yl,(Dl =F,,. 

(2.3) 

It allows us to attribute the classical c-number images to the quantum objects. In 
this number, the procedure (2.3) allows us to map the quantum equations of motion 
into the corresponding classical (Euler) equations. For Fermi spinor systems, upon 
the “bosonization” we can thus follow the well known for Bose systems tree approx- 
imation routes (see [20-221). Be aware, however, that we use the tree approximation 
concept for “bosonized” fermions without specifying the parameter which should be 
let equal zero (as the Planck constant h is used). The Planck constant is inap- 
propriate in this respect. 

With (2.2), (2.3) and the “bosonization”/tree approximation recipe for studying 
fermions, we arrive at the problem first seriously discussed in 123, 24, 9 1 in 
connection with the family of Gross-Neveu-type models. Namely, that of the 
relevance of classical solutions of the nonlinear spinor field equations for the 
understanding of the related quantum Fermi systems (see, e.g., [25]). 

As is well known, for boson fields the classical solutions of the field equations 
provide first (zero loop) approximations to the properties of the quantum system. For 
Fermi models the situation is not so clear, though some indications can be drawn 
from [9, 23-251. However, the quantization-of-spinor-fields series [ 26, 20, 2 1 ] 
supplemented by [ 131 sheds a new light on this problem as summarized by (2.2), 
(2.3). 
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3. CLASSICAL FIELDS OF THE CHIRAL INVARIANT GROSS-NEVEU MODEL 

Now we shall consider (1.1) as describing the (semi) classical system, which 
means that the entering fields are not operators but c-number (commuting ring) 
functions. We replace the coupling constant g of (1.1) by g*/2, and notice that the 
model admits an equivalent description in terms of 123. 91: 

’ L = W[ iy”3, - g(0 + iry,)) v/ (3.1) 

provided the auxiliary fields o, n satisfy the equations of motion: 

0 = -gpw, x=-iglC/ysy*L+L’=L-{(a2+x’). (3.2) 

The Euler equations of motion for (3.1) describe N massless Dirac fields in 1 + 1 
dimensions in the external potential: 

[iy”a, - g(a + iny,)] vi = 0, V i = 1 , 2,. .., N, (3.3) 

to which the constraints (3.2) do apply. 
A thorough study of the system (3.2), (3.3) is given in [9] by using the inverse 

scattering techniques, for the cases N = 1 which is the free field case, and the 
nontrivial N = 2 case. 

At this point let us assume that spinors $, , d2 are solutions of the N = 2 system. 
Let us define the following sequence of spinors: 

v/1 =b,d,, v2 = b,#,...., ‘i/Zk-I =bzhm,#,, v2h = b2h 42 3 

N=2k, k = 1, 2 ,..., n, 

where b,‘s are real numbers. Observe that (3.4) reads 

i.e., if we demand that real coefficients bi satisfy 

‘? bikp, = 1 = ;- b;, 
k:l krl 

(3.4) 

(3.5 1 

(3.6) 

the solution of the N = 2k problem with k an integer reduces to the SU(2) one. For 
the N = 2 model, the upper and lower components of Gross-Neveu spinors are 
completely determined by Jost functions of the related linear problem (see (6.46) in 
[9]), and the explicit solutions for one soliton case were checked to lead to the 
formulas for u, rr which were previously obtained by Shei in 1241: 

m 2k2 1 
“=~-%- 1 + exp[2k(x-x,)] ’ 

2k(m* -k*) 
(3.7) 

1 
71= 

w 1 + exp[2k(x - x,)] ’ 
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with m, k being (arbitrary) integration constants, m being related to the boundary 
conditions at space infinity. 

In the notation of (91 the formulas (3.7) follow from 

i = 1, 2,.. ., N, 

(3.8) 

so that 

[is- (a + i7cy5)] li/i=O. 

(3.9) 

where r = f<t - x), 1;1= f(t + x), are replaced by 

iu,, = #*v, iv,, = 4 . u. (3.10) 

By solving (3.10) one arrives at analytic expression for upper and lower components 
of the Gross-Neveu spinors in terms of the Jost functions of the related linear 
problem. These functions satisfy 

Y, Y/:: + Y2 Y:: = 1, y = u*u, 

space-time dependence being suppressed, and lead to the following expressions for the 
Gross-Neveu spinors: 

(3.12) 
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so that 

u + i7r= u*u = Y,(O), 

u-ii7I=u*u= Y’,(O)+ !PT (p) Y, (+) I Y*(O) - Y*(o) 1, (3*‘4) 

the space-time dependence being suppressed again. 

4. QUANTUM MEANING OF CLASSICAL FIELD THEORY: 
FIRST ENCOUNTER 

Let us recall that for the massive Thirring model, we have demonstrated in I13 ] 
that the (semi) classical model, which is known to be a completely integrable system, 
allows a consistent quantization in the quantum inverse scattering formalism. The 
resulting model is the Bose one, nevertheless, it is equivalent to the conventional 
Fermi one. We conjecture in [ 131 that the Bose MT should in principle allow a 
reconstruction as the reducible Fermi MT. A relationship of the latter with the (semi) 
classical MT was established in [21, 201 by using the “bosonization”/tree approx- 
imation recipe. 

For the massive (partially broken chiral invariance) Gross-Neveu model 127, 231 
there is no doubt that in the semiclassical quantization procedure, after integrating 
out fermions (see the DHN recipe of [28]), the stationary phase method, if applied to 
the effective action, leads to the solution 

tyj=bj (~~~~~ jexp(-St), $“bj= 1, 

R2=2(m-E) 1 

g* cosh2/3x . (1 + a2 tanh* /Ix) ’ 
(4.1) 

q = tan-‘(a tanhpx), 

a= 

with 

-g@y=a=- 2(m-E) 1 -a* tanh’px 

g cosh*/?x. (1 +a2 tanh’px) 

-igli/y,ty=n=- 
4(m-E)a tanh /Ix 

(4.2) 

g cash* /?x . (1 + a2 tanh’ /Ix)’ ’ 

For the chiral invariant G-N model, we know that (3.7) is also a solution of the 
stationarity condition in the semiclassical quantization procedure of [ 24 1. 
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For the N = 2 (nonchiral) Gross-Neveu model, the complete integrability was 
proved in [9], and the fields occurring in the associated linear problem are simply 
related to the fundamental spinor fields (c-number ones) vi, I+?~, i = 1, 2. 

The solution for the bilinear o derived in [9], formula (5.18) is precisely the DHN 
solution of [28] obtained via the stationarity condition for the effective action in the 
semiclassical quantization of the model. A generalization of this observation to N > 2 
cases is immediate by methods analogous to (3.5) (3.6). 

Coming back to the chiral invariant Gross-Neveu model, let us recall that the 
starting point for the semiclassical quantization procedure is the functional integral 

trexp(--iHT) =I [dy][diJ][dcr][drr] exp i!Idll’rI dxy’(cJ. & ICI, F)], 
L 

(4.3) 

where L?(cJ, rc, I+Y, I+?) is given by 

9 = p[i8 - g(u + i7ry5)] v/ - j(u’ + 7r’) (4.4) 

and all fields (J, rc, w, IJ are viewed as independent: u, 71 belonging to the commuting 
ring, while w, t,ii being elements of the Grassmann algebra and satisfying, in addition 

v(t + r) = -v(t). W(f + q = -W(t), 

u(t + q = o(t), ?r(t + r) = 7r(t). 
(4.5) 

The integration with respect to I,U, I,? leads to 

trexp(--iHT)=~[do][dn]I,[u,n]~exp -+ * S+mdldx[u2+n2]( 
I u 0 -cc 

:= 1 [du][dn] exp iSefF[u, rc], (4.6) 

where the Fermi [dy/][dy/] integral gives 

a 
k 

= i ln vk(x, f + r> 

vk(x, f, ’ 

(4.7) 

N being the number of color degrees, k = 1. 2,... . 
In the above vk is the (conventional c-number) classical solution of the Dirac 

equation 

[i8 - g(u + @5)] vk = 0, Vk= 1, 2,.... (4.8) 
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Since the action appearing in (4.6) is divergent one must make a subtraction of the 
vacuum self-energy, and then to renormalize the o2 + rr* term. After these steps, the 
stationarity condition for the effective action 6S/&r = 0 = &S/&r is found to be 
satisfied by the time-independent solution u = a(x) given by (3.7). This result seems 
to be rather striking since although we have in principle integrated out fermions, 
further basic steps do involve classical (c-number) spinor relatives of Fermi fields. 
This allows us to suspect that the Grassmann integration procedure in a hidden way 
gives account of the classical constraints (3.2). 

5. THE FERMI OSCILLATOR PROBLEM 

The derivation of the formula (4.7) is based on the formalism described in 
Appendix A of [28], aiming at the calculation of tr exp(-MT) for quantized Fermi 
systems by means of the path integral-like formula. The starting point is a simple 
Fermi oscillator defined by the Lagrangian: 

e = iu”(t) d(t) - wa*(t) a(t) = a”(t) 
L I 
i $- w U(f). 

Since this system has two energy levels separated by the interval o, we may 
introduce them as 

E,,=E+, 
2 E, =I&+:. (5.2) 

with E, being arbitrary. Then, obviously, 

tr exp(-i~~ = e-iE0T(eiw/2 + e-iw/2) = 2e-iE0T cos T ! ! jC .  (5.3) 

According to the formal rules applicable to Grassmann algebra elements [ 30, 3 1 ], we 
can arrive at the same result: 

trexp(-iHT)=j [da][du*]exp l,f L,,dt 
c 1 

= ze-iE,T Wi dldt - w) = 2e- iEoT 

det(i d,/dt) (5.4) 

where one assumes the normalization 

tr exp(-iZf7JUZ, = 2eCit0r 

and solves the eigenvalue problem 

(5.5) 

(5.6) 
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which for the antiperiodic boundary condition 

f”O + T> = -f,(t) 

implies 

F,,(W)=- (2n;1)= -0, n=0,+1,*2 )...’ 

and this in turn yields 

+a, 

rI 
5l(~) +O” u UT 

1 

WT -= 
M9 n:-m l+ (2n+ 1)72 =cos2. n=-lx 

(5.9) 

It is worth noting [ 3 1 ] that if the integration (5.4) had been done with a*(t), a(t) as 
the c-number complex functions, the answer so obtained would be exactly the inverse 
of (5.4): one must take care of imposing the antiperiodic boundary conditions in this 
case as well. 

(5.7) 

(5.8) 

Remark. In any theory in which Fermi fields enter the action through bilinear 
terms (or factors) one has a workable procedure of integrating over the Fermi 
(Grassmann algebra) variables (see, e.g., [30-321). Suppose we have an action 

S=- .dt -dxy?Av, 
! J 

(5.10) 

where I+Y, I+? are either commuting or anticommuting functions, and A is some linear 
operator. We assume to have two complete orthonormal sets of functions (c-number 
ones) (w,), {I,?,) such that 

(5.11) 

Then, upon making the expansions 

we may replace v/, p by a, a*, which are again either commuting or anticommuting 
objects. The path integration measure in 

(” WI ldvll exp(--S) (5.14) 
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can be replaced by n, da, da:, and if to assume that vi/,‘s are eigenfunctions of the 
operator iA, we arrive at the following result: 

I = 1 [dty] [dp] exp(--S) = ( [da] [da*] exp (- T I,a,?a,.) . (5.15) 

The final result now depends on whether we work with commuting or anticommuting 
fields. In the commuting case we get 

(5.16) 

while in the anticommuting case the answer is 

r,=n&.=(detA). (5.17) 

Except for this difference between Fermi and Bose cases, the additional ones may 
come into play because of the difference in general choices of the (anti) periodicity 
conditions. 

Let us now come back to the Fermi oscillator problem, which is defined by using 
the CAR algebra generators 

[a,a*] - 1 t- p-3 alO)=O, a*lO)=ll), ,*‘=()=a’, (5.18) 

which determine the Fock representation. Such a representation has an apparent 
embedding in the Fock representation of the CCR algebra as follows: take generators 
of the CCR algebra (the Schroedinger representation is a good example), 

Ib,b”]- = l,, blO)=O, ~b*“~O)=~n), 
fi 

(5.19) 

and introduce the operators 

a* = b* :exp(--b*b):, a = :exp(-b*b): b. (5.20) 

These operators, though defined in the whole representation (Hilbert) space for 
(5.19), act nontrivially (e.g., without annihilating any other vector than the Fock 
vacuum IO)) on a proper subspace h, of h spanned by two vectors IO) and I 1). We 
have 

[a,a*]+ = :exp(-b*b): + b* :exp(-b*b): b = 1,. (5.21) 

where 1, is a projection in h : h,- = 1,./z. 
Let us notice that the Hamiltonian h; for the Fermi oscillator in the representation 

(5.20) reads 

hF = oa*a = wb* :exp(-b*b): b, (5.22) 
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while this for the Bose oscillator has the form 

h^, = wb*b, &=b” 
i 

d t i--w b. 
df i 

(5.23) 

Let furthermore ]/I) be a coherent (Bose oscillator) state for the Fock representation 
of the CCR algebra 

I/?) = exp(/?b* - /3*b) IO). (5.24) 

Any bounded operator 

2 = x K,, b*“b” 
nm 

(5.25) 

has its normal symbol [32] given by 

@I 8 I/3) = B = 1 K,,/?*n/?m. (5.26) 
nm 

Then its functional representative (e.g., kernel) reads 

B[p*,p] = B . expP*/3. (5.27) 

The kernel of the infinitesimal operator &It) is of main importance in the derivation 
[30] of the path integral formula for tr exp(--iHT). We have 

i’,[p*, /?](At) = exp@*/3 - ihk’ At), 

hi’ = @I & ID> = Q$*p, 
(5.28) 

so that the (formal continuum limit) path integral representation of tr exp(-iLB 7J 
reads [30] 

IB = tr exp(-ih^, r> 

= 1 [@l[dP*l exp iir W*(t)&) - d*@>PWI dt 

=l [dP][d/l*] expil’L,,d& 
0 

(5.29) 

with the accuracy to the normalization factor which reflects the choice of the 
boundary conditions. 

Because the Fermi propagator o&U) can be represented in the Hilbert space of 
the Bose oscillator, we can follow step by step the just described route. Let us notice 
that 

fiF(At) = exp(-i&,,. At) g 1, - iJF At 

= :exp(-b*b): + b* :exp(-b*b): b - iwb* :exp(-b*b): 6, (5.30) 
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so that the normal symbol for oF(At) reads 

@I oF(At) ID) Z exp(-P*/?) + p*p exp(-P*P) - io . At a p*/3 . exp(-p*/?), (5.3 1) 

and consequently the infinitesimal kernel is 

o&l*, P](At) E 1 + p*p - iw/?*/? At 

=(l+P*P)(l-iwdt lr:*P) 

r (1 +B*/3). exp (-iw At 1 $&) 

= exp ln( 1 + /?*p) . exp -iw At (5.32) 

where ln(1 +/?*/I) replaces the p*p term of (5.28), while c@*p/l + /?*/3) appears 
instead of w/3*8. 

The formal continuum expression for tr exp(-ihF r) evaluated according to the 
Bose oscillator recipe of [30] reads 

(5.33) 

It is a c-number alternative for the usual Grassmann algebra path integral formula, 
which, though not of a comparable calculational simplicity, does involve integrations 
with respect to the conventional c-number paths only. Let us stress that the crucial 
difference between the Bose oscillator formula (5.29) and (5.33) lies in the 
appearence of the “damping” factor I/( 1 + p*p) in the otherwise oscillator action. It, 
however, implies that the only set of paths P*(t), /3(t) which give comparable 
contributions to both II; and IB consists of 

(1) solutions of the equation (i d/dt - co) /I = 0, 

(2) all paths constrained to obey the restriction Ip*pI + 1. 

This is the sense in which we find it reasonable to talk about the relevance of the 
classical c-number problem for the construction of its quantized Fermi partner: the 
oscillator c-number problem does indeed manifestly contribute to the Fermi oscillator 
transition amplitudes. 

It is not useless to mention that the stationarity demand for I, if imposed in the 
form 

(5.34) 
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results in the equation 

which in turn implies the conventional oscillator equation of motion 

(5.35) 

(5.36) 

6. QUANTUM MEANING OF CLASSICAL FIELD THEORY: 
CHIRAL INVARIANT GROSS-NEVEU MODEL 

The above analysis of the Fermi oscillator problem opens a possible line of attack 
against anold problem of whether classical solutions to c-number spinor field 
equations have any relevance for the construction of their quantized Fermi parters, 
([23, 241, see also [25, 16, 26, 131). 

Let us recall basic features of the oscillator example: 

h,Il)=h,Il)7 hBlo)=hF/o)~ h, = l,h, l,, 

[hB, IFI- = 0, q. = IFq = L(lO), 1 l)), 
(6.1) 

with 1, given by (5.21). 
Coming back to the Fermi quantized CGN problem, (1.1) and (1.2), let us observe 

that the eigenvalue equation for H = HF with eigenvectors of the form [ 1 ] 

16 4 =@, ... 1 dx, x F(x,,..., x,,, a, ,... , a,) @a, ,... , a,) 1’1 v&.&q> IO) (6.2) 
In.al I 

is solved immediately if F(x, o) is an eigenfunction of the n-particle Hamiltonian 

(6.3) 

P, being an operator interchanging chiralities ai and aj. The eigenvalue problem for 
h is received after applying HF to IF, 0, commuting all the operators through the 
product of v*‘s to IO), and then inegrating by parts the kinetic term. Now suppose 
that instead of the Fermi Hamiltonian (1.2) we consider the Bose Hamiltonian: 
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i.e., the one with the Fermi functional form but Bose operators appearing instead of 
the Fermi ones. 

Let us furthermore introduce the “bosonized” Fermi fields of the CGN model as 
follows [ 171: 

where an antisymmetric function 

4x, 3 a,, a, ,‘.., xnr a,, a,) = U”(X] 3 a,, a, ,..., x,, a,, a,). 
xiaiai -.* xjajaj ...) = -a(... xjajaj . . . xiaiai . ..). u(*.. 

(6.6) 

we define as follows 

u = a(x,, a, a, ,.... x,, a,, a,) = 
1&<. Pjkl , , 

Pjk = aajaksajak [ O(xj - Xk) - O(Xk - Xj)] + S,,,kO(l aJ - ak I)(- 1)’ + o’.Yi-‘A’ 

(6.7) 

Note that 

u 2n+l_ - 0, v n = 0, 1, 2 (...( (6.8) 

and that at xj = xk, u is symmetric with respect to an interchange al tt ak : 

Pjk(Xj=Xk)=SajnkO()aj-akl)-6,j,,o(laj-akl)-(1 -~,io,>(l -~,j,,). (6.9) 

It is not difficult to check (see [ 171) that 

w,*,.,(xJ ... Y,*,&n> IO) 
= 0, 5 aI. aI - x,, a,, a,) CX,a,(xl) ... 4,*,&J IO). (6.10) 

Consequently the Fermi CGN eigenvectors can be rewritten by using Bose operators, 
and then HB can be consistently applied to them. The procedure is exactly the same 
as in the Fermi case and we arrive at the eigenvalue problem for h (6.3) but with 
another wave function 

F”(x, a) = F(x, a) . u(x, a, a) (6.11) 
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appearing in place of the previous F(x,a). However because of 

a.o = a.a’n+’ = (2n + 1) &Q7 = (2n + 1) a*aio I I (6.12) 

to be valid for all permutations of {(x, a, a)} and all n = 1, 2,..., we arrive at 

and consequently 

ap = 0 (6.13) 

-i f aj3,F”(x, a) = -iu(x, a, a) i ajajF(x, a). (6.14) 
j= I .i= I 

On the other hand because of the symmetry of u upon interchange aj et ak at x,~ = xk 
we arrive at 

\‘ &xi - xj) P”[i( 1 - aiaj)] P(x, a) 
7 

= u(x, a, a) 1 P”[i(l - aiaj)] &xi - xi)F(x, a) 
ij 

(6.15) 

so that the eigenvectors of HP are at the same time the eigenvectors of HR. 
We observe that 

H,IF,r)=H,.IE’,c$ l,(F,r)=]F,<). l,.H,l,=H,. [H,,l,.l-=(A (6.16) 

where 1, is an operator unit of the “bosonized” Fermi algebra [ 17 ] 

[w,&h yl!&Wl+ = 4dd(~ - Y> 1, (6.17) 

Hence for the chiral invariant Gross-Neveu model, we have proved the existence of 
the same Bose-Fermi interplay we had previously recovered for the oscillator 
problem; see (6.1). It, however, implies that for both (6.1) and (6.16) 

tr exp(-iti,t)= tr exp(-iHFt) + tr exp[-i(1 - IF) H,(l - 1,) t]; (6.18) 

i.e., the Fermi trace appears as a well defined contribution to the Bose trace, and the 
only problem (this one is perfectly resolved by using the purely formal trick of the 
Grassmann algebra reformulation) is to be able to extract tr,- from tr,. 
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On the other hand, since tr exp(-iH,t) has quite a conventional c-number path 
integral representation 

ZB = tr exp(-iH,t) =J [&*][drp] exp(-is), 

S= tdt dx(irPbrp+g[(~qo)2-((rpY,~)21) c I 0 

dx [iv*@ - H(x)], 

(6.19) 

with the Hamiltonian density given by (1.2); 

and cp *ri, = XI=, cp,*@, , it is not completely hopeless to look for a c-number path 
integral representation of tr exp(-iHPt). The easiest way is to follow the stationary 
phase approximation concept. Let us recall that its essence lies in replacing the path 
integral j [d$] exp(-iS) by exp(-S) with 8 = S(#, (6S/@ = 0). In our case the 
stationarity conditions 

(6.21) 

result in identifying $*, 4 with c-number classical solutions of the CGN equations of 
motion. 

Our problem is to investigate the role of such solutions with respect to I,. 
Obviously (6.19) can be derived by starting from the Bose quantized CGN 
Hamiltonian, H, = H,.(yl* + #*, (o + 4). Let us observe that 

where 1;. = 1, and quantities l,..##l,. are the continuum analogs’ of the Fermi 
oscillator spin l/2 variables. An explicit form of 1, (6.17) does not promise any 
explicit simple formula for (lF##lF)(x); let us, however, make a lattice analysis of 
the problem. If to take a linear chain of spins l/2, 

lF&+lF = 1;g,“1; = ak” 
(6.23) 

l,;= 11 1;. 1:. = :exp(-$k*#J: + #k* :exp(-#,*#,): #kr 
k 
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with 

(6.24) 

then formally: 

1:. Z :exp(-64*(x) 4(x)): + Q*(x) :exp(-8$*(x) 4(x)): 4(x) xEA,. 

u: g ~9 4*(x) :exp(-6@*(x) 4(x)): = fi a*(x), (6.25) 

a; g ~4 :exp(-b@*(x) 4(x)): 4(x) = flu(x), 

so that (formally as well) 

lFlq 1;y-’ \‘ 6”. a’(x ,,..., x,)$*(x,) ... 4*(x,) 
k 7 n! k,ikn 

X :exp 
1 

- 1 6#*(xk) #cxk) [ : #(x,) ‘** #cx,) 
k 

+d 

- ‘yn! J 
‘dx, . . . . 

j  
dx, a’(~, r..., xn> #*(xl) ... 4*bJ 

X :exp (-rdz(*(z)d(r)):)(x,)...P(I~)=lr~ x; E A,, . (6.26) 

Hence from a purely formal point of view, a continuum analog of (6.23) for a single 
internal degree of freedom reads 

l&#(X) 1, = l;##(x) 1; = IF(x), 

1: = :exp(-dx 4*(x) 4(x)): + dx 4*(x) :exp(-dx 4*(x) 4(x)): 4(x). 
(6.27) 

u*(x) = #*(x) :exp(-dx 4*(x) 4(x)), 

u(x) = :exp(-dx 4*(x) 4(x)): $(x). 

If adopted to the CGN model we would have 

1;= fi fi l;aO, l?, = l;(@ + $,,>, 
a=, a=, 

(6.28) 
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and then 

HF = lFHB 1, 

+ 4gy &(X) 0” 
ub 

b(X) Uib(X) u-,,(x)[ 

= 
J 
. dx H,.(x), (6.29) 

where to understand the meaning of the kinetic terms it is necessary to use the more 
rigorous lattice predecessor of (6.29): 

’ ;1: ‘;dk) u+b(k) O+b(k) u-,(k)} 
ab 

which allows for the computation 

= 4*(k) :ew-4*(k) qW)): ~,l:ew-4*(k 14 O(k y)l: 4(k Y)llr=,, 

=4*(k) :exp(-4*(k) i(k)): a#. y)ly-o 

+ 4*(k) :exp(-4*(k) 4(k)): I-la,$*(k Y)I,~=~ :exp(-4*(k) 4(k)): 4’(k) 

- 4*(k) :exp(-4*(k) 4(k)): 16,4(k Y)I,~=,, 4(k) t 

= 4*(k) :exp(-4*(k) 4(k): a,4(k Y),~=~ 

+ @*(x) :exp(-Q*(x) 4(x)): 8,4(x), xEA, (6. 

so that due to the identification 

1) 

(6.32) 
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we arrive at the (formal again) identity 

HF = l,.HB 1, 

(6.33) 

= 
J 
. dx H,:(x) 

Because of (see (6.30)) 

OJAf) = exp(-iH,.dt) z 1,. - i At H, 

z exp 
i 
-ixHH,-(k)At ~11 [If-iAtH,(k) , 

k h I 

1:.= 1 I I;?, (6.34) 

the functional kernel of the lattice operator (6.34) 

U,:(At) = 1 1 (/I 1:. - iAt H,..(k) ID) exp 2 c ,O&(k)/3,,(k) (6.35) 
k a=1 a=~, 

due to 

Gal lr,IP)exp~:Z:P,*a(k)P,,(k)= 11 1’) 11 +P,*,WL,Wl~ (6.36) 
n m n=, “=I 

and 

P jara* (k) z fi Pm@>, xEA,, 

allows for the previous (Fermi oscillator) procedure, so that for the lattice case we 
have 

tr, exp(--iH,t) = f [d/?*][d@] exp i.i,‘di 

PZXk> ,&m(k) 
1 + P,*,(k) P,,(k) - 

(PI H,.(k) IP) exp C,, P,*,(k) P,,(k) , 
L 11 + P,*,(k) P,o(k>l 

(6 37) 
’ 
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with 

GBI H,(k) IP) = L [-@T,(k) exp(-PT,(k)P+,@)) a,P+,(k Y>,.~=~ 
* 

+ C,(k) w(-PT,(k)P-,W) a,P-,(k Y),~=~ 

x exp -L [P,*,(k>b,,(k) +&$,(k)P,b(k)]) b+b(k)P-,(k)* (6.38) 
n 

If now to approach the continuum, then /3&,(k) /3,,(k) goes over to S/?$,(x) 
/3,,(x)+ &,8&(x) ,8,Jx). Note that in the path integral (6.37) we should integrate 
with respect to all ,8(k), /3(k) from -co to +co. If, however, to restrict considerations 
to these collections of (,!?,#,(k)} for which the corresponding spinor trajectories satisfy 

P,*,C~) P,,(x) < A < 033 (6.39) 

A arbitrary, then the integrand in (6.37) simplifies and allows for a consistent 
continuum limit 

6 + O* tr, exp(-iH~t),S,D<,~ -+ tr exp(-iH,t),4*O<,d 

with 

+ 4gx PT”l(x)P*b(X)P+b(X)P~,(X), 
ab 

(6.41) 

provided we replace [ 1 + #I&(,(x) /3,,(x)] and [exp @da(x) p,,(x)] by 1 when 6- 0. 
It demonstrates that spinor paths subject to the restriction (6.39) give exactly the 

same contribution to both Bose JR and Fermi I,. traces for the CGN model. All the 
classical (c-number) solutions of the CGN field equations which satisfy (6.39) are 
“stationary points” of the action in both Bose and Fermi cases. 

Let us, however, emphasize that all of the quanta1 difference between bosons and 
fermions comes from the irregular paths, i.e., those for which it is incorrect to replace 
exp @*/I by 1. Let us consider a c-number spinor field of the CGN system denoted 
x,x u = -gXx, 7c = -igfy,x. The most staightforward Iirst step to account for 
quantum fluctuations about the classical spinor path is to compute the (Bose) path 
integral 

(6.42) 
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so that potentials are kept in their O-loop (classical) order at a fixed choice of 2.x. 
The Fermi contribution I,(a, n) to IB(u, 7-c) is immediately extracted by using the 
previous (Shei’s) path integral on the Grassmann algebra (4.7), but it is actually no 
wonder that the stationarity points u, rc of the effective action ought to be related to 
the initial classical c-number CGN problem. Otherwise the c-number and Grassmann 
algebra path integration methods would not be reconciled, and this in turn would 
contradict our previous observation about the relationship of Bose and Fermi traces 
for the CGN model. 
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