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Previously we have found that the semiclassical sine-Gordon/Thirring spectrum can be 
received in the absence of quantum solitons via the spin l/2 approximation of the quantized 
sine-Gordon system on a lattice. Later on, we have recovered the Hilbert space of quantum 
soliton states for the sine-Gordon system. In the present paper we present a derivation of the 
Bethe Alnsatz eigenstates for the generalized ice model in this soliton Hilbert space. We 
demonstrate that via “Wick rotation” of a fundamental parameter of the ice model one arrives 
at the Bethe Ansatz eigenstates of the quantum sine-Gordon system. The latter is a “local 
transition matrix” ancestor of the conventional sine-Gordon /Thirring model, as derived by 
Faddeev et al. within the quantum inverse-scattering method. Our result is essentially based 
on the N < co, d = 1, m < 1 regime. Consequently, the spectrum received, though resembling 
the semiclassical one, does not coincide with it at all. 

1. SINE-GORDON SOLITONS: 
CLASSICAL DERIVATION OF “COLLECTIVE" PARAMETERS 

A. @,,(x, t) = @,, = 0 trivially satisfies the famous sine-Gordon equation 

q l@(x, t) = m2 sin @(xl t), m>O (1.1) 

in 1 + 1 dimensions. Let us rescale (1.1) to arrive at m = 1; then the N-soliton 
solution of (1. 1 ), N = 1, 2 ,..., can be generated from @,, by a successive application of 
the so-called BIcklund transformations: 

B,: QO(x, t) -+ B,(@,)(x, t) = @,(x, t) = 4 tan-’ exp 8,(x, t), (1.2) 
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where 
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0,(x, 0 = Y, * (x - v,o, 
U-U-' a’- 1 

v, = 
U+U-' 

=mt 

USa-' 
Ya = 

2 
= (sgn a)(1 - v~)-‘/~ = G (1.3) 

and 

@Ak 0 = Qiq. . .aN(X, t) = (B,, ’ * * B,J(@J(X, t). (1.4) 
The Backlund mapping 

is defined by [ 11. 

(1.6) 

Here @“, @’ denote space and time derivatives of @, respectively, and the parameter 
a is allowed to be complex. 

In case of the sine-Gordon system, an analytic formula for QN(x, t) is known 
[2, 31 in terms of the N + 2 variables: (a) = (a, ,..., a,), x, t plus N additional phase 
parameters (6). There is a large freedom in the choice of (a), x, t but there are severe 
limitations on the choice of (a) to arrive at sine-Gordon N-solitons. Namely, if 
specialized to the sine-Gordon system (l.l), Backlund transformations must satisfy 
the following identities [ 1, 3 1: 

a,b E c, Ial, lb1 E (0, oo>, 

B,.B,=B,.B,, a#b; B,. B,=B;rO; Be, = B,‘. Cl.71 

Here we know [4] that if a E R, then B, realizes a canonical transformation 71, of 
one soliton into another. If a E C, then a product mapping B,B,. = B,,B, realizes a 
canonical transformation 7c,., . The set of all rc,, 7c,*, , ] a ] E (0, co), if constrained by 
(1.6), (1.7), and (1. I), forms an Abelian group of canonical transformations of the 
sine-Gordon system, responsible for mappings between elements of its soliton sector. 

B. Let us admit m # 1 in (1.1). This equation, upon power expansion of the 
sine reads 

(Cl - m’) @(x, t) = m* f, {2i11kI;, qx, t)2k+ l, (1.8) 
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i.e., 

A(a) @(x, t> = J[@](x, q, 

Lqa>=o-m*. 
(1.9) 

Let ~(x, t) be a solution of A(a) ~(x, t) = 0. Then, by making use of the 
Yang-Feldman relation, and performing an infinite sequence of successive iterations, 
we formally arrive at 

@(x, q = $44 t> +~(a>-l J[Vl(& q* @(x, f> = @[v71@, 4 (1.10) 

for any (including solitons) solution of (1.1). However, the choice of @ is restricted 
by a particular choice of rp. For example, if @ is to be regarded as the 1-soliton, we 
should have [S. 61 

~(4 t> = (P&, 0 = ew[~,(x, 4 + 4 = ew[w,x + ~&)I, 

d,(t) = 6 - my, 0, t, 
(1.11) 

where 6 is an arbitrary real phase (eventually modulo x to account for a change of 
sign of q). INotice that 6,(x, t) differs from the 0, given by (1.3) by a multiplicative 
factor m (it equals 1 in (1.3)). For the general N-soliton solution QN, which in the 
large-time asymptotics reads 

The respective free field a, should appear in the form [5,6] (see also [7-91) 

(1.12) 

(1.13) 

with a restriction that if a E C, then the parameter a* appears in the sequence (a). In 
addition, neither a appears in the sequence (a) more than once, and the appearance of 
--a is prohibited once a appears in (a). The breather #,,, is characterized by 

l3Jx, t) = y$ {a& + Oaf) + iu,(u,x + t)) 

= y$ (a, + iu,u,)x + 3 (a, 2, + ia,)t, 

u=u, fiu,, 6=6,+iS,, 
(1.14) 

Ial* - 1 
U0=]u12+1’ 

ya = (1 - U;)-“2. 
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C. Let us concentrate on N-solitons with a real (a) parameterization. At this 
point it is worth recalling Hirota’s [2] formula for N-soliton solutions of (1.1) at 
m= 1: 

tan(i@) = g/L 

f = C@) exp E BijPiPj + t pi(yi<i + Si) 2 
fl=O,l icj i=l I 

g= XC@ exP 5 Bijpipj + t /Ji(yici + Si) 3 
p=O,l i<j i=l I 

(1.15) 

where C@) and C(O) denote summations over all possible combinations of ,~i = 0, 1, 
p2 = 0, l,..., ,D~ = 0, 1 under the restrictions that Cy=, ,U~ is even or odd, respecitvely. 
Here 

&=x-vi& yi = (1 - v~))~‘* sgn a. I) (1.16) 

exp B,, = (Yi - Yj>’ - (Yivi - Yj”j)* 

” (Yi + yj)’ - (YiVi + YjVj)’ ’ 

Because of (1.15) and (1.16) one is able to rewrite any N-soliton solution of (1.1) as 
an explicit function of N free fields qa and velocities vi: 

@N(X, t> = q&,, ,***, cD,,>(x, t) = 2 * *. f $4;: ::;; * (P::(x, t) *** f&$x, t) (1.17) 
II,=0 n,rg=o 

where the power series expansion of [5, 61 is adopted. One must be aware that the 
expansion coefficients of (1.17) do exhibit a manifest (v) = (u, ,..., uN) dependence 
through exp B, of (1.16), and because of v(a) = ~(-a) are completely insensitive to 
reflection a, -+ -a,. 

In fact, at a fixed choice of the velocity sequence (v) = (vi ,..., v,), (1.17) exhibits a 
manifest reflection ai + --a and a displacement (translation) freedom of each q,(x, t) 

entry. 
Let us introduce the following notation: 

p,(x, t) = exp my& - S,l (1.18) 

where 

qa=va(t-to)~6=6,=my,v,to, 

4, = v, =s y, = (sgn a)( 1 - 4:)-l”, 
(1.19) 

i.e.. 

(1.20) 
p,(x, t) = exp m(sgn a>(1 - 4Zlp 1’2 (x - 4,) 

= rp[sgn a, qa3 &l(x) 
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and consequently 

@,cxy f, = @Nisgn aly 41, dl,...l en a,,?, qN1 dN]- (1.21) 

At a fixed choice of (di,..., dN) which determines expansion coefficients of (I. 17) we 
can freely vary both (q) = (q, ,..., qN) and (sgn a) = (sgn a, ,..., sgn a,) variables, the 
continuous and discrete ones, respectively. 

2. ANALYSIS OF QUANTUM SOLITON SECTORS 

A. The quantized sine-Gordon field 

/i(a) 4(x, t) =J[dq(x. t), 

@(x, f> = 4&,(x, f> + ‘4 (a) - l J[& 1(x, r) 

can be found (S-101 in the form of the Haag series: 

(2.1) 

= n$o -gdo, .*. ~dc7”c(x,t,o, ,...) on) :c&JY,) *-. ~jn(un): (2.2) 

where Gin(x, t) stands for a renormalized free-mass m neutral scalar Bose field (plane 
wave!) solution of 

A (a) @in(X, f, = O; (2.3) 

ui is the space-time variable (x, t), and an operator product is normal ordered: 
annihilation operators to the right. Notice an essential contrast to the classical case, 
where the whole variety of non-plane-wave solutions of the sourceless equation was 
allowed. In the quantum case we consider a single plane-wave operator solution only. 
Its annihilation operator is given by 

a(k) = 1 dx exp(--ikx) [ &w @Jx, 0) + i&(x, 0) 1 (2.4) 

where the initial data of the field satisfy the canonical commutation relations 

[@in(X, O>, A,( Y7 O>] - = id(x -Y) (2.5) 

and the Fock representation of the CCR is selected by demanding ia(k)lO) = OVk. 
By exploring (2.2) we can, in principle, follow the tree approximation scheme of 

15-91: 

toI :@‘[@i, + P]: (x9 f> lo) = @[P](Xl f, 

= (PI :@l44,1: (x3 t) Iv> 
(2.6) 
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where each quantum solution Vii,, is shifted (boson transformation) by a c-number 
solution, and Irp) appears as a continuous generalization of the coherent product state 
[6], which formally reads 

IV) = up lo> = exp ]i j dx [S(X) $in(Xv 0) - g(X) Zin(X> 0)] 1. 

Here f(x) and g(x) are the real functions, which we relate to p(x) via complex 
amplitudes: 

a(k) = 1 dx exp(-ikx)[&%?j(x) + ig(x)]. (2.8) 

One must be aware that the classical amplitude a(k), in general, is not a square 
integrable function. Consequently, (2.7) has a formal meaning only, unless read in the 
direct product language of [6, 111 after putting the theory on a lattice (ultraviolet 
cutoff): 

U, s U,“= II” (exp(aa* - Eu)~‘}~, 
k 

(2.9) 

where f” is a Fock state for the Schriidinger representation of the CCR. The routine 
stationarity condition [ 12, 131 if applied to the coherent state expectation value of the 
sine-Gordon Hamiltonian in the tree approximation would imply f(x) = 0 and g(x) 
to be the time-independent solution of the free-field equation n(a) g(x) = 0. Conse- 
quently, 

1 
-1 

dk 

271 @Tz 
a(k) E(k) = 1 dx g*(x) (2.10) 

and the a-labeling of coherent states can be replaced by the g-labeling. 

B. A classification of coherent states Irp) and the related irreducibility sectors 
IDPS(Iq)) of the CCR algebra (2.5) was given in [6] under a fundamental 
assumption that the boson transformation parameters g(x) (a(k), respectively) allow 
the generation of classical sine-Gordon solitons from (2.1) and (2.6). The 
displacement freedom was taken into account in [6], but not the reflection one. Let us 
recall that the phase q is completely arbitrary in the exponent of the free field (D, and 
that the time dependence is absorbed in phases. If to fix the sequence (4)” of N 
velocities, we have determined a concrete (@Nth Hilbert space sector in the in-field 
(von Neumann’s) Hilbert space H. Denote it by H$,. Hy4, can still be decomposed 
into a direct sum (respectively integral) of pairwise orthogonal CCR algebra 
irreducibility sectors, each one being characterized by a fixed choice of the sequence 
(en a>” and (qlN, the former being discrete, sgn a = f 1, and the latter being 
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continuous, q E R. A more precise notation should now replace this IDPS(]p)). 
Namely, a coherent state 1~) is specified as follows: 

(2.11) 

where H,, c H is the quantum soliton Hilbert space of [6]. Let us add that sectors 
H$, and Ei$, are pairwise orthogonal in H,, unless (4) n (4’) = (4) = (4’). The 
integral (2.10) is obviously divergent; take g(x) = exp myx or g(x) = Cy=, exp myix 
as examples. 

Once (4)” is fixed, then irrespective of the choice of (sgn a)” and (q)N we still 
remain within the same Hilbert space sector H$,, which is then a carrier Hilbert 
space for the (Q)th N-soliton operator. Hence, one can as well choose all ai E R + and 
qi = 0 vi = l,..., N to investigate the sectorial structure of the soliton Hilbert space in 
terms of H;“& . 

By virtue of (1.17), (1.21), and (2.2), the choice of (4)” fixes the expansion coef- 
ficients of the N-soliton quantum operator, and the notion of &y’(x) = @yq)(@J(x) 
should be introduced in place of &‘N(~) = @J~(@J(x) formerly defined in [6]. As far 
as the structure of the soliton Hilbert space is concerned, the explicit (4) dependence 
of soliton operators can be disregarded. We however wish now to understand the 
operator structure of the model. 

Now, JN = #ytit = &,@,) implies that for any coherent soliton state 1s) = jcp);“,, = 
]sgn (I, 4):) E Hz, the c-number field: 

(2.12) 

is the N-soliton solution of the sin-Gordon equation, (1.1). 
Let us mention that no coinciding 4’s are allowed in the velocity sequence (4). 

While constructing the coherent soliton states (2.6), (2.7) we were unable to 
guarantee the fultillment of this “classical Pauli principle” [ 11, compare, e.g., (1.7). 
This defect was also inherent in [ 5 ] where we have made a priori choice of “correct” 
soliton states to complete the construction of H,,. Quite the same problem is met, 
though not even mentioned, in the attempts of [ 15, 171 to construct quantum 
Backlund transformations for the sine-Gordon system. 

C. Each 1-soliton velocity 4 = (a’ - l)/(a’ + 1) gives rise to the 
(asymptotic) I-soliton momentum: 

k= ds =8m ui,l’ (2.13) 

which is a monotomically growing function of the positive argument la I such that 
jul+O=sk+-oo, lul-+oo=>k++co. Consequently, the (4)” labeling can be 
replaced by an explicit momentum (k)N labeling, with k E R. 

Each N-soliton and consequently a coherent soliton state exhibits some kink- 



300 PIOTR GARBACZEWSKI 

antikink content due to the occurrence of (sgn u)~ sequence. This content can be 
established as follows [3]: we assume the momenta (k)N to be ordered in the 
ascending order of magnitude k, < k, < .e. < k,. To k, we attach the number 
si = tl, to k,, s2 = -1 and so on up to ~~(-l)~+l. The number 

R, = (-I)‘+’ sgn a, = si sgn a, (2.14) 

identifies the kink, R = + 1, or antikink, R = -1, presence in the multilink coherent 
state. 

It means that upon an ordering k, < . ‘+ < k, of momenta, a sequence (R)N of 
topological charges [3] can be used instead of (sgn a)“: 

(2.15) 

The sine-Gordon Hamiltonian exhibits a translational symmetry, but neither the 
soliton fields nor the soliton coherent states are translationally invariant. At a fixed 
choice of (k)N, (R)N, any mapping of a sequence (q) into another (4’) results in a new 
solution of the sine-Gordon equation and in a new coherent soliton state: 

I(R), (q))?.w l(R), (q’N;yk, being orthogonal [6]. The conventional remedy in 
connection with these translation (in)variances is the introduction of (quantum) 
collective coordinates [7-9, 16, 171. We shall, however, follow a slightly different 
route and eliminate the translation freedom by considering the general states in Hy,,, 
which are of the form 

The choice of such states as the state of interest for the quantum sine-Gordon system 
is motivated by the additional to translations of reflection freedom: if we replace a 
sequence (R)N in (2.15) by another (R’)N, we arrive at a different N-soliton solution 
of (1.1) at (k)N fixed and at a different coherent soliton state ]_R’, a)$, which is 
orthogonal to ]_R, g)$, . Notice that a reflection Ri -+ -Ri replaces a soliton by an 
antisoliton or, inversely, at a fixed momentum value k,. 

One should also notice that classical energy is the same for all possible choices of 
(q)“‘, (R)N, provided (k)N is untouched. 

Remark. In the above, we do not consider solutions with breathers; let us, 
however, mention a classically arising “spin” sectorial structure of the set of 
sine-Gordon solitons. Namely, let us make use of the asymptotic formula (1.12). To 
each asymptotic field there corresponds a topological invariant 

(2.17) 
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sj(@) = l/2 for the I-soliton, -l/2 for the antisoliton, and 0 for a breather. Hence, 
for any n -t 2m = N soliton solution the m-contribution to s3(@) equals 0. 

Let us d.enote 

s(@) = $ ls3(@il (2.18) 
i=l 

and notice that the N-soliton solutions, N fixed, can be classified according to the 
s(a), sj(@) labels: 

N=l s=; sj = *; 
N=2 m=O s=l s3 = *I, 0; m=l s = s3 =o 
N=3 m=O s=j 3 1 s3 = fi, f-i; m=l 1 S = 7, s,=*+ 
N=4 m=O s=2 Is,I<2; m=l s = l,ls,l < 1; m=2,s=s,=O 

and so on Iwith the growth of N, where for each N, the specification of s(Q) relies on 
the number of breathers involved. 

In the considerations of Section 2, we have omitted breathers, hence m = 0 VN. 
Consequently, we can specify s3(@) in a different way. Let n indicate the number of 
solitons, while 17 is the number of antisolitons in the large-time asymptotics of QN ; 
then 

N=n+n”=2s, s3 = j(n - I?). (2.19) 

3. GENERALIZED ICE MODEL EIGENSTATES IN H,, 

A. Let us consider a specialized version of (2.16), where summations with 
respect to (R = + 1)” are undone. Then 

(3.1) 

We admit these choices of x only under which states (3.1) are normalized. It implies 
that at each fixed choice of x, a nice orthonomality property can be observed in H$,: 

(3.2) 

For each choice of x let us denote hk) a linear span of all Ix,p);yk, in Hy’). Recall 
that to introduce the (Z?)N parametrization, we have demanded an ordering 
k, < -.. < k, of the momentum set (k). Any fixed sequence (R)N, say (+ 1, + 1, - 1, 

-l), of topological invariants we call a configuration. To change a 
cfojl&&ration of the state /x,_R)~ (kj it suffices to make one or more reflections 
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Ri+ -Ri of the topological invariants in the sequence (R)“‘. With (3.2) in mind, we 
can introduce in hk) the following R-raising-lowering operators: 

a: = rci) IR ,,..., Ri=+l ,..., RN)(RN ,..., R,=-l,..., R,I, 
&if 

(3.3) 
a; = -%- (‘) IR, ,..., Ri = -l,..., RN)(RN ,..., Ri = +l,..., R, I. 

CGf 

Here C$,, means that we perform summation over all admissible configurations of 

PIN under an assumption that Ri is left untouched. The simplified notation 

IB) = IXJ);, was used in (3.3). A sequence {o+, u-)~ of operators (3.3) satisfies the 
following commutation relations on hk) E NY&: 

[u,t,aj’]-=o= [q,u;]-, 
[u;,qp =o, i#j, 

(3.4) 

and 

[#J;,q?]+ = s Co I...) -l,... )( . . . . -l,... I + v (i) ) . . . . +1,... )( . . . . +1,... I = l,, (3.5) 
conf &if 

where 1, is an identity on Irk). We also have 

(u+)* = 0 = (u;)‘, 

u,+ I..., -l,... )=I . ..) +1,... ), (3.6) 

0; I..., +1,.,.) = / . ..) -l,... ), 

and, consequently, 

a; I..., -l,... )=O=u[ I . ..) +l,... ). (3.7) 

A sequence {u+,u-}~ of Pauli operators determines a Lie algebra of the SU(2)N 
group in Irk): 

[UT, uj”] _ = 2, * q&f, a, 6, c = 1, ,2, 3, i,j= 1,2 ,..., N, (3.8) 

where gi is the spin-l/2 SU(2) group generator related to a,? by 

u; =-L (UT + a;), 
fi 

u; = I (UF -u;), 
fi (3.9) 

ui” = (-l/2) + u:u;. 

Notice that (3.6) provides us with mappings of a soliton into antisoliton or, 
conversely, at a fixed momentum value ki. 

Equivalently, an application of a:ut to I..., +l,..., -l,...) can be interpreted as a 
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momentum exchange between a soliton and antisoliton in the multikink coherent state 

IxJ)K 

B. Let Iv/) E hk), then 

Iv>= 1 WR*...RNIR1,...,RN):=~:~la), 
c0nf a 

(3.10) 

where a stands for a configuration of topological invariants. Let F be a linear 
operator in /Z(J): 

which if a.pplied to 1~) gives rise to 

(3.12) 

Here (TV), is the ath coordinate of the vector w = (w,), to which a transfer matrix T 
is applied. 

We shall now choose a realization [ 18 ] for F in terms of the previously introduced 
Pauli operators: 

F= tr(L,L, ... LN). (3.13) 

Where the trace is calculated for the product of N, 2 x 2 matrices with operator- 
valued matrix elements, 

3 4 
w3uk + W4uk, 

1 * 2 

L,= 
w,(Tk-lw2(Jk 

w,u: + iw,a:, 3 
-Wjuk + w40; 

(3.14) 

and the w;s are real numbers, ui = [a:, ok]+. 
? is known as the transfer operator of the symmetric eight-vertex Baxter model 

[ 19, 201. It is well known that under the periodic boundary conditions, the spin-l/2 
xyz model Hamiltonian commutes with the transfer operator f on h(j): 

N 3 
I 

Hxyr = -s r J&u;+, 
j=1 ,YI 

(3.15) 

with 7 being related to parameters (w ):, but still exhibiting a l-parameter freedom of 
choice 121): j=J’((r), [ER+. 

Because of [f, fiX,,]- = 0 a solution of the spectral problem for p establishes this 
for RXYp or inversely. A study of 

w=+Y)~mY),=w, va (3.16) 

can be found in [ 19, 201. It is important to notice that the eigenvectors and eigen- 
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values of T are completely specified by solving the matrix problem (3.16) and hence 
do not rely on the specific choice of x and momentum sequence (k). The N- 
dependence, however, remains of interest. Once a set of coordinates (w,) = IJY is given, 
a Hilbert space vector 1~) is an eigenvector of f in hh). A complete solution of the 
matrix eigenvalue problem (3.16) was given in [ 19, 201. Compare, e.g., formula (13) 
in [20]. The number 2N of linearly independent eigenvectors {I$+}~,,,...,~,~, vk = (wt) 
can be established and the corresponding eigenvalues of H,,, were derived in [ 191; 
see also [22,23]. For a fixed choice of (w}; and c E R +, a solution is unique, and the 
spectrum consists of the “free” energy and the “bound state” series A,, which may 
terminate at any integer not exceeding 2N - 1. 

C. For the isotropic tiXyZ problem, an operator S = X7= i Zi is a generator of 
the symmetry group.Jhe respective Casimir invariants are S* and ,S3. Because of the 
conservation law S = 0, the diagonalization problem for Zf,,, resolves the 
simultaneous diagonalization problem for s” and S, as well. Hence, together with an 
energy eigenvalue E we should be able to specify the s, sj eigenvalues of SU(2)N 
Casimir operators, for each given eigenvector 1~). 

For the general xyz case, all s = N/2, N/2 - l,... eigenvalues are allowed to occur. 
At this point we shall make a severe restriction by demanding 

w,=w*=o (3.17) 

in (3.1 l), which convertes the general xyz problem into its specialized version known 
also as the symmetric six-vertex or the generalized ice model [ 18, 24-271. One should 
observe that (3.17) excludes vertices 7 and 8 of the initial eight-vertex problem, see 
[18, Sect. D] or [21, Sect. 31. Equation (3.17) if combined with the periodic 
(toroidal) boundary conditions implies that the transfer operator ? can be written as 
a sum of terms each of which contains the same number of cr+ as this of cP and thus 
does not change the number of down (or up) spin arrows in a state. Consequently, 
the eigenvectors of F have a particularly simple form: 

Iv> = s v/,(,x): I@)), (3.18) 

where for a given initial configuration (R), we have n(R) = (R,(,),..., RncN,), i.e., a 
permutation of the sequence (R). Notice that at a fixed choice of the momentum 
sequence k, ( k, a.. < k, one finds 

tn(R>> = b(R))(k) = b(k), (3.19) 

i.e., (3.19) describes the allowed momentum exchanges among 1-soliton constitutents 
of the quantum N-soliton state 1~) = 1 v)(k) at a fixed choice of labels n and n’ of 
(2.19). 

Consequently, the eigenstates (3.19) of f, in addition to a fixed N = 2s = n + f 
label, admit the s, = n - n’ parametrization. It establishes a correspondence of the 
classical sectorial structure of the set of sine-Gordon solitons without breathers, 
(2.17t(2.20) and the quantum soliton states. 
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Consequently 

I w> = I ICIP~ (3.20) 

where n indicates the number of 1-solitons, while G this of antisolitons in the soliton 
eigenstate 1~) of f. 

D. We can immediately construct the soliton eigenstates of interest by 
taking into account the ice-model solution given in [ 15, 18 1. Notice that a state 
I+ . . . +) =: Ily)“JJ is an eigenstate of ?, and analogously for I-,..., -) = Iv/)“‘. If we 
take the all-spins-up eigenstate I w)$’ 
eigenstates of ?? read 

as a reference state IO) in h;vk)(X), then other 

Ilj/)N-1.1 = Jp) = E exp(iti> . aj IO), exp(@iV) = 1, (3.2 1) 
j=l 

1 i//y--m*m z IP1,...,P*) = x f(j, ,...,j,> - ai; .*a aj, IO) (3.21’) 
lSj,<... <j,SN 

. . . . . . . . . 

where, in case of (3.21’), the expansion coefficients exhibit a manifest (p)- 
dependence:: 

f(j, ,...,j,) = x a(n) . exp 
nES, 

(3.22) 

Summations are carried out with respect to permutations of the sequence (1,2,..., m) 
and we have m! coefficients a(~), each one corresponding to one permutation 7~. 

The set (p) = (pj,...,p,) of wave numbers is not arbitrary and should be restricted 
by a periodicity condition after establishing the set of appropriate a(~). This has been 
done in [27’]. With the accuracy up to an overall normalization constant, we have 

ev[-i@p, 411 = 
1 + exp i( p + q) - exp(ip) 
1 + exp i( p + 4) - exp(iq) 

and the per:iodicity condition reads 

B(p, 9) = --ew--i&p, s)], 

(3.23) 

(3.24) 

thus imposing restrictions on the admissible values of wave numbers pi. 
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The generalized ice problem is an example of the completely integrable system 
(like the more general Baxter model), and its solution via the quantum inverse 
method [26] allows construction of all the eigenvectors of p by starting from the 
reference state 10) with all spins-up and then applying appropriate pseudoparticle 
creation operators: 

(3.25) 

It completes the derivation of the f eigenstates in h&k). Notice that amplitudes 
f(j,...,j,) are completely independent of the choice of x and of the soliton momentum 
sequence (k). The N dependence only matters for the construction of (3.23)-(3.25). 

Recall that 10) is the N-soliton reference state consisting of I-solitons only: 10) = 
I+,..., +);yk) . In the above considerations antisolitons play the role of particles put into 
the soliton “sea.” For example, 6(p) IO) = / p) is a single pseudoparticle state, while 
[pi ,..., p,) is the m-pseudoparticle state received by “putting” 1 or m antisolitons into 
the N - 1 and N - m soliton “sea,” respectively. 

For the wave functions and pseudoparticle energy spectrum, the x, (k) dependence 
is completely irrelevant; hence quite a universal (N, m), m < N, sectorial structure 
can be recovered in H,,. At each choice of N, soliton states of the form (3.2 1 ), 
(3.25) can be thought of as elements of an equivalence class labeled by the respective 
? operator eigenvalues r( p,..., p,) = r”, . By varying N, this equivalence class 
structure can be extended to the whole of H,,. 

4. “WICK ROTATION" OF THE ICE-MODEL VARIABLES: 
SINE-GORDON EIGENSTATES IN H,, 

A. Within the quantum inverse-scattering method, quite a variety of 1 + 1 
dimensional models, in the “local transition matrix” formalism [ 19, 201, exhibits the 
same algebraic structure. In terms of the basic inverse-scattering (operator-valued) 
data, they can be viewed as representations of the same operator algebra. 

The basic object of the theory, the transition (monodromy) matrix for the N-site 
chain is given by 

T= TN(A) = 
( 
A@) B(l) q> 

1 
qA) 9 C(k) = -B*(n), II(/l) = A *(A), (4.1) 

where in the original formulation of [25 1 one relates N to an interval L divided into 
smaller pieces with a regular spacing A: N = L/A. In the above, one usually takes 
L E R, otherwise -B*(x). A *(I) should be introduced in (4.1). The fundamental 
commutation relations for matrix elements of T read as follows: 
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IA(~),ACu>]=o=[~(~),~Ol>l-=[~(~>+~(~>,~01>+~CU)I-, 
B(I)Acp) = b(J,Pu)Hp)A@) + C(kPU)ACu)W)7 

(4.2) 

B(u) D(A) = b(& P) B(A) w> a> + c(k P> WI a$)* 

The factors b(A,,~u) and c&p) are elements of another important ingredient of the 
inverse method, the R-matrix: 

0 b c 0 

0 0 0 1 

(4.3) 

which for the Baxter model differs in that R,, =R,, =a# 1, R,, = R,, =d#O, 
while for the nonlinear Schrodinger model, the Toda lattice, since-Gordon system, 
Heisenberg ferromagnet has the form (4.3). 

To specify a concrete model of interest, one must choose the appropriate matrix 
elements of (4.3). The representation of (4.2) is constructed in a Hilbert space 

NO zN?N= fl hi, hi=h Vi, 
i=l 

h being some Hilbert space, by selecting a state R, E RN such that (we put A = 1, !) 

A(A)Q, = exp(a(~)NJ Q,, 

D(A) f2, = exp{ d(l)N} R,, 
(4.4) 

- 
C(A) f2, = 0, d(k) = a(A). 

Then, a Hilbert space vector: 

IA 
i=l 

(4.5) 

under a restriction (periodicity condition) 

ewl [41k) - 4~k)lNl = ,Ql k = 1, 2,..., n (4.6) 

j#k 

is an eigenvector of the operator A(A) + D(A): 

[A(A) + W)] 12, ,a.., 4J = A@“, A* ,a.., UL, r..., A,), (4.7) 
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where 

d(l)N fl ’ . 

j= 1 c(n, nj> 

(4.8) 

To specify a concrete model of interest one must thus choose the appropriate matrix 
elements for R and the appropriate values (which in fact follow from the former 
choice) for a(k), b(k), c(A), and d(A). 

B. The underlying specification of the generalized ice model reads as follows 
[25]: 

W,Z,)= 
sin(v - v’) 

sm(v - 21’ - q) ’ 
v=lnk, v’=lnp, 

&ill)= - 
sin 217 

sin(v - 21’ - 2q) 

(4.9) 

and in addition to the variable v, a parameter v appears, which is related to the 
Baxter’s parametrization of {w } ‘: : 

wI=w2=psin2q, w,=psinqcosv, w,=pcosvsinv (4.10) 

an overall normalization p being irrelevant. Then 

exp(a(L)NJ = [sin(o + rl)lN, 

exp{d(A)N} = [sin(v - rj)]” 
(4.11) 

allows one to compute (4.6) and (4.8). 
One should realize that the (v) parametrization is related to the (p) 

parametrization of the previous section via [ 181: 

so that we have in fact 

IPIY..,Prn) = fi B(u,) Q,? 
i=l 

(4.12) 

(4.13) 
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C. The quantum inverse-scattering data for the sine-Gordon model read 

[291 

WA iu> = sh(v - 0’) 

sh(v - u’ + iy)’ 

44 P> = 
i sin y 

sh(v - U’ + iy)’ 
(4.14) 

a@) = $ ch(2u - iy), d(A) = a(;i), 

where, consequently, 

exp(ip,N) = exp 
I 
i $ N sin y sh 2v,) 

! 

= expl ML) - 4AJlW 

(4.15 

and to be in agreement with [ 291, m 6 1 must be assumed. Equation (4.15 
determines the momentum variable by analogy to (4.13). Let us emphasize that we 
have determined the quantum sine-Gordon case of [29] in the regime N < co, A = 1, 
which obviously contrasts with the Faddeev et al. Final goal of letting A go to 0 and 
L = NA to infinity (then the semiclassical sine-Gordon/massive Thirring spectrum 
can be recovered). 

D. With respect to the eigenvalue formula (4.8) and the periodicity 
condition (~4.6), both the ice model and the sine-Gordon model are related in a very 
simple way. Namely, it is enough to make a Wick rotation of the fundamental 
variables, e.g., 

v -+ iv, v’ + iv’, a = Y, 

to go from one one model to another, for then 

Y E (0,271) (4.16) 

sin(v-v’-2q)+sin[i(v-v’+iy)]=ish(v-u’+iy). (4.17) 

One point however must be clarified. Namely, upon the Wick rotation (4.10), the ice- 
model data (4.9) are transformed as follows: 

sin(u - v’) sh(v - v’) 
sin@ - U’ - 2~) + sh(u - v’ + iy)’ 

(4.18) 

-sin(2q) i sin y 
sin(u - v’ - 2~) * sh(v - v’ + iy) 
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and the emergence of the imaginary factor (-i) in the context of (4.10) should be 
explained. For this particular purpose one must return to Baxter’s model, from which 
both of the above-cited ice and sine-Gordon models can be derived. 

E. Let us exploit an original Baxter’s parametrization of basic, symmetric 
eight-vertex model quantities, in terms of the elliptic functions of a fixed elliptic 
modulus k [30, 311: 

a=w,+w,, b=wq-w3, c=w, + w2, d=wl-w2, 

a = p sin(u + V, k) = 0(2tl) e(u - V) H(u + vl), (4.19) 

b = p sn(u - V, k) = 0(Q) H) o(u + v), 

c = p sn(2v, k) = H(211) 8(u - V> &u + tl>, 

d = p-2kubc = H(2q) H(u - 9) H(u + V). 

One knows [ 181 that by defining a constant p0 = k”2p and then letting k go to 0 
while p goes to co, we can recover the ice-model parametrization (4.10). Then 

a=w,+w,+p,sinrlcoso+p,cos~sinu, 

b=w,-w,-+p,sinqcosu-p,cosvsinu, 

c = w, + w2 + 2p, sin 211, 

d=w,-w2+0. 

(4.20) 

In connection with the Wick rotation (4.16) let us note the following property of the 
elliptic function sn(u, k) under the so-called Jacobi’s imaginary transformation [ 32]: 

sn(iu, k) = i SC(U, k,), k + k, = 1, (4.21) 

where the following behavior of the elliptic functions sn(u, k) and sc(u, k) is of 
interest to us: 

!jy sn(u, k) = sin U, 

lim SC(U, k,) = 1~ SC(U, 1 - k) = sh U. 
k,+l -+ 

(4.22) 

By making use of (4.21) and (4.22) the relationship of the generalized ice and 
sine-Gordon models via the Baxter model is made clear. Namely, the limit k -+ 0 
before the Wick rotation of u E R was done leads us to the generalized ice model. On 
the other hand, the limit k-+ 0 after making the Wick rotation recovers the 
sine-Gordon system. In terms of (4.19) these limits are especially clear: 
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a + p. sin(u + II), 

b -+ p,, sin(u - v), 

c -+ p. sk@v), 

d+O, 

while after the transformation v + iv, we arrive at 

a = pi sc(u - fir, k,), 

b = pi sc(u + iiy, k,), 

c=psn y, 

d=p-‘kabc 

so that k, --) 1 (or, equivalently k+ 0 in k + k, = 1) implies 

a + ipo sh(v - iir), 

b -+ ip, sh(v + $iy), 

c -b p. sin y, 

d-, 0. 

(4.23) 

(4.24) 

(4.25) 

Now an effect of the Wick rotation on (4.18) is 

a(A) = $ cos[2(u + q)] + a(A) = $ ch(2v - ir) (4.26) 

which completes the ice-sine-Gordon model relationship, see however [33]. 

F. The original Baxter model parameters a, b, c, and d are introduced as 
Boltzmann weights at a fixed inverse temperature of the reservoir which keeps a 
system at thermal equilibrium. This applies to the ice model, whose properties have 
thus a purely thermal (statistical) origin. However, the “Wick rotation” (4.16) 
transforms a set of weights (4.23) 

a = exp(-/?s,) = p. sin(v + v), b = exp(-/?a& = p. sin(u - q), 

c = exp(-/?sI) = p. sin 2q, d=O 
(4.27) 

into a new set of complex quasiweights, where c and d only are left unchanged, so 
that the meaning of p persists after applying (4.16). Let us assume that after “Wick 
rotation” si becomes E( + i&f’, i = 1,2. As a consequence, we get 

ipo sh(v - iv) = exp(-/?a;) exp(-i/Is;) 

ip, sh(u + iv) = exp(-/?s;) exp(-$a;), v E (0, n>. 
(4.28) 
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Hence, 

p,, ch u sin ?I = exp(-/?&I) . cos /?&I’ = -exp(-/Is;) Cos DE;‘, 

-p,, sh u cos v = exp(-/?&I) . sin /Icy = exp(-/Is;) sin p&J 
(4.29) 

which implies that 

tg/Ic;=tgp p-s; 
c ) P 

= tg v . ctg ?J. (4.30) 

Then solutions for E;, i = 1, 2 are available from 

exp(+;) = 
p. ch u sin q 

exp(-/Is;) = - 
p. ch v . sin q 

COSPEI ’ cosp&y . 
(4.31) 

Notice that 

cos p&i 
exp[-p(c{ - E;)] = - ~ 

cos /3&i 
(4.32) 

and that solutions ET, a = ‘, “, i = 1, 2, do exhibit a manifest p, v, q dependence if v 
and q are considered as independent variables. 

G. A main consequence of the above discussion is that all the results 
obtained by Faddeev et al. in [29, 301 for the sine-Gordon model in the N < co, 
A = 1 regime, can be completely translated to the ice-model language and inversely. 
Except for the “Wick rotation,” both models have completely identical operator 
structure. Consequently, upon the Wick rotation, all the results of Section 3 do 
reproduce properties of the sine-Gordon system in the presence of solitons. The 
underlying energy spectrum is related to the momentum exchange among solitons 
only. 

Notice that the assumption A = 1 prevents us from obtaining a continuum limit 
which is the next step in [29 1: to approach the semiclassical sine-Gordon/Thirring 
model spectrum. In fact, we have shown in [21] that a semiclassical spectrum can be 
recovered in the so-called spin-l/2 approximation of the sine-Gordon system (real- 
time development problem at nonzero temperature), but then without the notion of 
soliton operators. In [6] the quantum soliton operators were introduced and coherent 
state domains for them were constructed. As a straightforward continuation of 161, 
the present observations emerge. We have received a quantum soliton spectrum, 
which though resembling the semiclassical sine-Gordon/massive Thirring one does 
not at all coincide with the latter. 
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