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Shannon entropy and Fisher information functionals are known to quantify certain
information-theoretic properties of continuous probability distributions of various ori-
gins. We carry out a systematic study of these functionals, while assuming that the
pertinent probability density has a quantum mechanical appearance ρ

.
= |ψ|2, with

ψ ∈ L2(R). Their behavior in time, due to the quantum Schrödinger picture evolution-
induced dynamics of ρ(x, t) is investigated as well, with an emphasis on thermody-
namical features of quantum motion.
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1 Information – is there anything where nobody looks ?

Shannon and von Neumann entropies are typical information theory tools which can be
used to quantify the information content and possibly information loss/gain incurred by a
quantum system, initially prepared in a specified (macro)state.

The von Neumann entropy is known to vanish on pure states, hence one presumes to
have a complete information about such state. An incomplete information concept thus
seems to be related only to mixed states.

On the other hand, right in connection with pure states of a quantum mechanical sys-
tem, the Shannon entropy is known to give an access to another information theory level.
Namely, it enables quantifying an information content of continuous probability distribu-
tions, that can be inferred from any ψ ∈ L2(Rn) vector by means of the Born recipe
ρ

.= |ψ|2.

Since, in physics, the very concept of entropy is typically interpreted as a measure of
the degree of randomness and the tendency (trend) of physical systems to become less
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organized (disordered), it is quite natural to think of entropy as about the measure of uncer-
tainty or disorder. Notions of information and uncertainty are deeply intertwined. Spectac-
ular examples of this intertwine are provided by information theory measures employed in
quantum theory in the description of so-called entropic uncertainty relations that are valid
in L2(Rn) for Born postulate-induced continuous probability densities, [3].

The term information, in the present context, may be literally understood as the inverse
of uncertainty. As far as the notion of an organization is concerned, the Shannon entropy
(and a number of other entropic measures) is known to quantify the degree of the probabil-
ity distribution complexity, [1], and (de)localization, [2], for stationary and non-stationary
Schrödinger wave packets.

Let us tentatively accept the casual statement that a (thermodynamically) isolated sys-
tem is represented in quantum mechanics by a state vector which conveys statistic pre-
dictions for measurement outcomes. Then, we are tempted to identify and quantify an
information content of a state vector, even though we know that the von Neumann entropy
(the standard quantum measure of information) identically vanishes on a pure quantum
state. The related semantic word-game due to Roger Penrose is worth mentioning: “when
a system has a state |ψ〉 there ought to be some property in the system that corresponds to
its |ψ〉-ness”, [4].

A more formal issue appears if we pass to the quantum dynamics, when we should in
principle address an information theoretic interpretation of quantum evolutions. Clearly,
in terms of the von Neumann entropy, nothing illuminating can be said about the quantum
motion of pure or mixed states of an isolated system, since the unitary evolution leaves the
von Neumann entropy intact. Therefore, the von Neumann entropy behavior in time may
become interesting only if we pass from isolated to (thermodynamically) open systems.

Quite to the contrary, the Shannon entropy of a continuous probability distribution may
show up a non-trivial pattern of temporal behavior which deserves a closer inspection.
Even, if our attention is confined to an isolated quantum system in its pure state.

2 Information functionals and indeterminacy relations

Given an L2(R)-normalized function ψ(x). We denote (Fψ)(p) its Fourier transform.
The corresponding probability densities follow: ρ(x) = |ψ(x)|2 and ρ̃(p) = |(Fψ)(p)|2.
We introduce the related position and momentum information (differential, e.g. Shannon)
entropies:

S(ρ) .= Sq = −〈ln ρ〉 = −
∫

ρ(x) ln ρ(x)dx (2.1)

and

S(ρ̃) .= Sp = −〈ln ρ̃〉 = −
∫

ρ̃(p) ln ρ̃(p)dp (2.2)
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where S denotes the Shannon entropy for a continuous probability distribution. For the
sake of clarity, we use dimensionless quantities, see e.g. however [5] for a discussion of
how to handle dimensional quantities in the Shannon entropy definition.

We assume both entropies to take finite values. Then, there holds the familiar entropic
uncertainty relation [3]:

Sq + Sp ≥ (1 + ln π) . (2.3)

If following conventions we define the squared standard deviation value for an observ-
able A in a pure state ψ as (∆A)2 = (ψ, [A − 〈A〉]2ψ) with 〈A〉 = (ψ, Aψ), then for
the position X and momentum P operators we have the following version of the entropic
uncertainty relation (here expressed through so-called entropy powers, see e.g. [6], ~ ≡ 1):

∆X ·∆P ≥ 1
2πe

exp[S(ρ) + S(ρ̃)] ≥ 1
2

(2.4)

which is an alternative version of the entropic uncertainty relation.
An important property of the Shannon entropy S(ρ) is that for a continuous probability

distribution ρ(x) with an arbitrary finite mean 〈X〉 and a fixed variance σ2 = 〈(X −
〈X〉)2〉 = ∆X2 we would have

S(ρ) ≤ 1
2

ln(2πeσ2) . (2.5)

S(ρ) becomes maximized in the set of such densities if and only if ρ is a Gaussian with
variance σ2. For Gaussian densities, (2πe)∆X ·∆P = exp[S(ρ) + S(ρ̃)] holds true, but
the minimum 1/2 on the right-hand-side of Eq. (2.4), is not necessarily reached.

In below, we shall devote some attention to the Fisher information measure [2, 7]:

F(ρ) .= 〈(∇ ln ρ)2〉 =
∫

(∇ρ)2

ρ
dx (2.6)

which stays in a remarkable relationship with the Shannon entropy of the very same con-
tinuous probability distribution [7]:

F(ρ) ≥ (2πe) exp[−2S(ρ)] ≥ 1
σ2

. (2.7)

Clearly, we have F(ρ) ≥ (1/σ2) with the equality allowed only if ρ is a Gaussian with
variance σ2.

Let us notice that in view of properties of the Fourier transform, there is a complete
symmetry between the inferred information-theory functionals. After the Fourier transfor-
mation, the Parceval identity implies that the chain of inequalities Eq. (2.7) can be faithfully
reproduced (while replacing ρ by ρ̃) for the “momentum -space” density ρ̃ with the vari-
ance σ̃2. As a consequence, taking into account the entropic uncertainty relation Eq. (2.3),
we arrive at [3]:

4σ̃2 ≥ 2(eπ)−1 exp[−2〈ln ρ̃〉] ≥ (2eπ) exp[2〈ln ρ〉] ≥ σ−2 (2.8)
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Let us consider a momentum operator P that is conjugate to the position operator X in
the adopted dimensional convention ~ ≡ 1. Setting P = −id/dx and presuming that all
averages are finite, we get:

[〈P 2〉 − 〈P 〉2] = (∆P )2 = σ̃2 . (2.9)

The standard indeterminacy relationship σ · σ̃ ≥ (1/2) follows.
In the above, no explicit time-dependence has been indicated, but all derivations go

through with any wave-packet solution ψ(x, t) of the Schrödinger equation. The induced
dynamics of probability densities may imply the time-evolution of entropies: Sq(t), Sp(t)
and thence the dynamics of quantum uncertainty measures ∆X(t) = σ(t) and ∆P (t) =
σ̃(t).

3 Hydrodynamical velocity fields and their variances

Let us consider the Schrödinger equation:

i∂tψ = −D∆ψ +
V

2mD
ψ . (3.1)

where the potential V = V(−→x , t) (possibly time-dependent) is a continuous (it is useful, if
bounded from below) function with dimensions of energy, D = ~/2m.

By employing the Madelung decomposition:

ψ = ρ1/2 exp(is/2D) (3.2)

with the phase function s = s(x, t) defining v = ∇s we readily arrive at the continuity
equation

∂tρ = −∇(vρ) (3.3)

and the generalized Hamilton-Jacobi equation:

∂ts +
1
2
(∇s)2 + (Ω−Q) = 0 (3.4)

where, after introducing an additional velocity field

u(x, t) = D∇ ln ρ(x, t) , (3.5)

we have

Q = 2D2 ∆ρ1/2

ρ1/2
=

1
2
u2 + D∇ · u . (3.6)

If a quantum mechanical expectation value of the standard Schrödinger Hamiltonian
Ĥ = −(~2/2m)∆ + V exists (i.e. is finite [9]),

〈ψ|Ĥ|ψ〉 .= E < ∞ (3.7)



Information Dynamics in Quantum Theory 5

then the unitary quantum dynamics warrants that this value is a constant of the Schrödinger
picture evolution:

H =
1
2
[
〈
v2

〉
+

〈
u2

〉
] + 〈Ω〉 = −〈∂ts〉 .= E =

E

m
= const . (3.8)

Let us notice that 〈u2〉 = −D〈∇u〉 and therefore:

D2

2
F =

D2

2

∫
1
ρ

(
∂ρ

∂x

)2

dx =
∫

ρ · u2

2
dx = −〈Q〉 . (3.9)

Let us observe that D2F stands for the mean square deviation value of a function
u(x, t) about its mean value 〈u〉 = 0, whose vanishing is a consequence of the boundary
conditions (here, at infinity):

(∆u)2 .= σ2
u = 〈[u− 〈u〉]2〉 = 〈u2〉 = D2F . (3.10)

The mean square deviation of v(x, t) about its mean value 〈v〉 reads:

(∆v)2 .= σ2
v = 〈v2〉 − 〈v〉2 . (3.11)

It is clear, that with the definition P = −i(2mD)d/dx, the mean value of the operator P is
related to the mean value of a function v(x, t) (we do not discriminate between technically
different implementations of the mean): 〈P 〉 = m〈v〉. Accordingly,

σ̃2 = (∆P )2 = 〈P 2〉 − 〈P 〉2 (3.12)

Moreover, we can directly check that with ρ = |ψ|2 there holds [8]:

F(ρ) =
1

D2
σ2

u =
∫

dx|ψ|2[ψ′(x)/ψ(x) + ψ∗′(x)/ψ∗(x)]2 = (3.13)

4
∫

dxψ′∗(x)ψ′(x) +
∫

dx|ψ(x)|2[ψ′(x)/ψ(x)− ψ∗′(x)/ψ∗(x)]2 =

1
m2D2

[〈P 2〉 −m2〈v2〉] =
1

m2D2
[(∆P )2 −m2σ2

v]

i.e.
m2(σ2

u + σ2
v) = σ̃2 . (3.14)

It is interesting to notice that 〈(P−mv)〉 = 0 and the corresponding mean square deviation
reads:

〈(P −mv)2〉 = 〈P 2〉 −m2〈v2〉 = m2D2F . (3.15)

An interesting outcome of this discussion is a definite sharpening of an upper bound in
the inequalities Eqs. (2.7). Namely, by passing to dimensionless quantities in Eqs. (3.13)
(e.g. 2mD ≡ 1), and denoting pcl

.= (arg ψ(x, t))′ we get:

F = 4[〈P 2〉 − 〈p2
cl〉] = 4[(∆P )2 − (∆pcl)2] = 4[σ̃2 − σ̃2

cl] (3.16)
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and therefore the chain of inequalities Eq. (2.7) gets a sharper form with a manifest upper
bound for the Shannon entropy of ρ = |ψ|2 set by:

4σ̃2 ≥ 4[σ̃2 − σ̃2
cl] = F ≥ (2πe) exp[−2S(ρ)] ≥ 1

σ2
. (3.17)

We recall that all “tilde” quantities can be deduced from the once given ψ and its Fourier
transform ψ̃.

4 Thermodynamical features of the quantum dynamics

We have emphasized that a pure state of the quantum theory and its Schrödinger pic-
ture dynamics are normally attributed to a thermodynamically isolated quantum system.
We would like to demonstrate that a number of essentially thermodynamical features is en-
coded in this innocent-looking, apparently non-thermodynamical regime. To this end some
basic notions of the non-equilibrium thermodynamics must be introduced.

4.1 Quantum detour - thermodynamics of open systems

We shall give a concise resume of the pertinent framework following [10]. It is taken for
granted that in case of an open quantum system, the bath drives a system to an equilibrium
state. The state of the system plus reservoir is described by a density matrix. Let ρt be the
reduced density matrix of a quantum system in a combined weak coupling and adiabatic
approximation of the general system-reservoir dynamic problem, t ≥ 0:

d

dt
ρt = −i[Hsys(t), ρt] + Ldiss(t)ρt

.= L(t)ρt (4.1)

We introduce the following thermodynamical notions: (i) an internal energy of the system
E(t) = Tr(ρtHsys(t)), (ii) the work performed on the system by external forces W (t) =∫ t

0
Tr[ρs(

d
dsHsys(s))]ds. (iii) the heat supplied to the system by the reservoir Q(t) =∫ t

0
Tr[( d

dsρs)Hsys(s)]ds.
The laws of thermodynamics, tailored to the manifestly non-equilibrium dynamical

regime can now be formulated. The first law of thermodynamics reads:

d

dt
E(t) =

d

dt
W (t) +

d

dt
Q(t) . (4.2)

Let us introduce the relative entropy (ρ|σ) = Tr(ρ ln ρ − ρ ln σ) and the account for the
stationary state input L(t)ρeq = 0 , with ρeq = Z−1 exp[−βHsys(t)]. Then, the second
law of thermodynamics takes the form:

d

dt
S(ρt|ρeq) = σ(ρt) +

1
T

dQ

dt
(4.3)

where σ(ρt) ≥ 0 is called the entropy production, while Q̇/T refers to the entropy/heat
exchange with the bath. Obviously, we have TdS ≥ dQ.
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4.2 Back to classical non-equilibrium thermodynamics

For the record, we indicate that the following hierarchy of thermodynamic systems is
adopted in the present paper [11,12]: isolated with no energy and matter exchange with the
environment, closed with the energy but no matter exchange and open where energy-matter
exchange is unrestricted.

Our previous discussion was confined to an open quantum system. Accepting the stan-
dard text-book wisdom that all isolated systems evolve to the state of equilibrium in which
the entropy reaches its maximal value, we shall pay attention to closed random systems and
their somewhat different asymptotic properties. A concise resume of a non-equilibrium
thermodynamics of closed systems comprises the Ist law of thermodynamics

U̇ = Q̇ + Ẇ (4.4)

and the IInd law of thermodynamics:

Ṡ = Ṡint + Ṡext , (4.5)

where Ṡint ≥ 0 and Ṡext = Q̇/T , c.f. [11,12]. Let us emphasize that Q̇ and Ẇ are always
well defined, but the adopted (time derivative) notation does not imply that one may infer
Q and W as legitimate thermodynamic functions, c.f. an issue of “imperfect differentials”
in classical thermodynamics.

Thermodynamic extremum principles are usually invoked in connection with the large
time behavior of irreversible processes. One looks for direct realizations of the entropy
growth paradigm, undoubtedly valid for isolated systems, [13]. Among a number of stan-
dard thermodynamic extremum principles, we recall a specific one named the Helmholtz
extremum principle. If the temperature T and the available volume V are kept constant,
then the minimum of the Helmholtz free energy

F = U − TS (4.6)

is preferred in the course of the system evolution in time, and there holds [12]

Ḟ = −T Ṡint ≤ 0 (4.7)

In below, we shall analyze the validity of thermodynamic principles and the role played by
the direct analog of the Helmholtz free energy, in case of quantum motion, and specifically
in the seemingly non-thermodynamical context of the Schrödinger picture evolution.

4.3 Thermodynamical features of the quantum motion - closed systems in action

We come back to the Schródinger picture evolution of pure states in L2(R). We impose
the natural boundary data on quantum motion and they are implicit (vanishing of various
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expressions at integration boundaries) in all averaging procedures in below. One must be
aware that we pass-by a number of mathematical subtleties and take for granted that various
computational steps are allowed.

The cnotinuity equation is a direct consequence of the Schrödinger equation. It is less
obvious that after employing the hydrodynamical velocity fields u(x, t) and v(x, t) the
Fokker Planck equation for ρ = |ψ|2 may be deduced. We have:

∂tρ = D4ρ−∇ · (bρ) (4.8)

where b = v + u = ∇(s + D ln ρ) where u = D∇ ln ρ.
The Shannon entropy of a continuous probability distribution S = −〈ln ρ〉 follows and

yields

DṠ =
〈
v2

〉− 〈b · v〉 .= D(Ṡint + Ṡext) (4.9)

which is a straightforward analog of the IInd law of thermodynamics in the considered
quantum mechanical context:

Ṡint = Ṡ − Ṡext = (1/D)
〈
v2

〉 ≥ 0 ⇒ Ṡ ≥ Ṡext . (4.10)

To address an analog of the Ist law we need to translate to the present setting the previously
discussed thermodynamic notions of U and F = U − TS, where the notion of tempera-
ture is the most serious obstacle. We have no obvious notion of temperature for quantum
systems in their pure states (for large molecules, like fullerenes or the likes, the notion of
internal temperature makes sense, but we aim to consider any quantum system in a pure
state, small or large). Therefore, we shall invoke a dimensional artifice [14].

We formally introduce

kBT0
.= ~ω0

.= mc2 (4.11)

and thence

D = ~/2m ≡ kBT0/mβ0 (4.12)

with β0 ≡ 2ω0 = 2mc2/~, and so arrive at

kBT0Ṡext = Q̇ . (4.13)

In view of

v = ∇s = ∇(s + D ln ρ)−D∇ ln ρ
.= (4.14)

− 1
mβ

∇(V + kBT0 ln ρ) .= − 1
mβ0

∇Ψ ,

where the time-dependent potential

V = V (x, t) .= −mβ0(s + D ln ρ) (4.15)
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is defined to stay in a notational conformity with the standard Smoluchowski process
(Brownian motion in a conservative force field [2]) definition b = −∇V/mβ0, we finally
get

−mβ〈s〉 ≡ 〈Ψ〉 = 〈V 〉 − TS =⇒ F = U − TS , (4.16)

where U = 〈V 〉 and F = 〈Ψ〉.
Remembering about an explicit time dependence of b(x, t) = −(1/mβ0)∇V (x, t), we

finally arrive at the Ist law of thermodynamics in the present quantum context:

U̇ = 〈∂tV 〉 −mβ0〈bv〉 = Ẇ + Q̇ . (4.17)

The externally performed work entry reads Ẇ = 〈∂tV 〉. But:

V = −mβs− kBT ln ρ =⇒ 〈∂tV 〉 = −mβ0〈∂ts〉 = Ẇ

and therefore
− d

dt
〈s〉 = −〈v2〉 − 〈∂ts〉 ⇒ Ḟ = −T0Ṡint + Ẇ (4.18)

where Ṡint ≥ 0.
In view of Eq. (3.8), in the thermodynamical description of the quantum motion, we

encounter a never vanishing constant work term

Ẇ = mβ0E = β0〈Ĥ〉 . (4.19)

The associated Helmholtz-type extremum principle reads:

Ḟ −mβ0E = −T0Ṡint ≤ 0 . (4.20)

It is instructive to notice that

T Ṡint = T Ṡ − Q̇ ≥ 0 ⇐⇒ Q̇ ≤ T Ṡ (4.21)

goes in parallel with
Ḟ ≤ Ẇ = β0〈Ĥ〉 . (4.22)

Let us stress that the non-vanishing external work term is generic to the quantum mo-
tion. If a stationary state is considered, our 〈Ĥ〉 is equal to a corresponding energy eigen-
value.

For negative eigenvalues, the work term receives an interpretation of the “work per-
formed by the system” (upon its, hitherto hypothetical, surrounding ?). Then Ḟ is negative
and F may possibly have a chance to attain a minimum.

Since bounded from below Hamiltonians can be replaced by positive operators, we may
in principle view mβ0E = β0〈Ĥ〉 as a positive (constant and non-vanishing) time rate of
the “work externally performed upon the system”. This observation encompasses the case
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of positive energy spectra. Accordingly, Ḟ may take both negative and positive values. The
latter up to an upper bound mβ0E .

Basic features of the non-equilibrium thermodynamics of closed irreversible systems,
somewhat surprisingly have been reproduced in the quantum Schrödinger picture evolu-
tion. We have identified direct analogues of the Ist and the IInd laws of thermodynamics,
together with the involved notions of Ṡint ≥ 0 and Ṡext = (1/T )Q̇.

An asymptotic behavior of the quantum motion is controlled by the analog of the IInd

law:
Ḟ − Ẇ = −mβ0

d

dt
(〈s〉+ Et) = −T0Ṡint ≤ 0 . (4.23)

where there appears an work (performed upon or performed by the system) term Ẇ =
〈∂tV 〉 = mβ0E value whose sign is indefinite (either positive or negative).

Let us notice that in classical non-equilibrium thermodynamics the so-called minimum
entropy production principle [11] is often invoked in connection with the “speed” with
which a minimum of the Helmholtz free energy is approached. For sufficiently large times,
when the system is in the vicinity of the stationary (equilibrium) state, one expects that the
the entropy production T Ṡint ≥ 0 is a monotonically decaying function of time, i.e. that

d

dt
Ṡint < 0 . (4.24)

The quantum motion looks different. In that case, Ḟ may be positive and one cannot
exclude transitions (including those of an oscillatory nature) from negative to positive Ḟ

values and back. It may happen that in certain quantum states, the Helmholtz free energy
F may have a minimum, a maximum, an infinite number of local minima and maxima, or
none at all. There is no reason for the minimum entropy production principle to be valid in
quantum theory, except for very special cases.

There is however a “speed” property which is special for the quantum case, with no
dissipative counterpart. Namely, since the work term is a constant of quantum motion and
Ḟ + T0Ṡint = mβ0E , we have the following negative feedback relationship between the
speeds of the growth/decay of the entropy production and the Helmholtz free energy time
rate:

d

dt
Ḟ = −T0

d

dt
Ṡint . (4.25)

If the Helmholtz free energy time rate drops down, the entropy production time rate
needs to increase and in reverse. Therefore a minimum of Ḟ in principle may be achieved,
if a maximum of the entropy production Ṡint is attained. In reverse, a maximum of Ḟ may
arise in conjunction with a minimum of Ṡint.

Remembering that T0Ṡint = mβ0〈v2〉 and exploiting the total mean energy formula,
Eq. (3.8), we can identify the respective “speeds”:

d

dt
Ḟ = β0

d

dt
(m〈u2〉+ 2〈V〉) (4.26)
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and

T0
d

dt
Ṡint = mβ0

d

dt
〈v2〉 (4.27)

that stay in a feedback relationship. By recalling our discussion of Section III, we realize
that variances of the hydrodynamical velocity fields decide about the time rate of the en-
tropy production and Helmholtz free energy in the quantum case. They stay in the above
mentioned feedback relationship, consult e.g. also [2, 15].
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