Fractional (Cauchy) and quasirelativistic spectral problems
Piotr Garbaczewski (Opole, Poland)

About: H=T +V, T, = V—H2c2A + m2c* — mc? Ty = he|V|

Confining V=V(X): harmonic or finite well of arbitrary depth

- Lévy-Schrodinger semigroups - additive perturbations of
nonlocal noise generators, spectral properties

- Pseudo-differential QM - analytic continuation in time, holomorfic
semigroups, unitary dynamics, spectral problems, nonlocally
induced (ground-state) jump-type processes

- Math: ,spectral properties of the Cauchy or quasirelativistic process” (Kaleta, Kulczycki, Kwasnicki,

Malecki, Stds, Loérinczi)
Phys: ,Schrodinger-type eigenvalue problems forH=T + V" (r.G)

Lostin math-phys translation:

(i) graph, wedge, vertex vs network/lattice, link, node)
(i)  Stochastic process in the interval vs random motion in the infinite well
(i) Fractional Laplacian in the interval vs Fractional spectral problem in the infinite well



Uses of Lévy-Schrodinger semigroup kernels

H=—-A+V >0 theintegral kernel of exp(—tH)reads Kk(y,x,1) =k(x,y,1) = Z exp(—e ;1) (Dj(}’}':b?{ﬂ-
j
First input: Schrodinger’s boundary data problem (1932)
Deduce the Markovian interpolation consistent with a given pair of
boundary measure data at fixed initial and terminal time instants
t1 < t9; A and B are two Borel sets in R.

m(A, B) /dz/dym (z,y).

f?n(i y)dy = p(x,ty).

R

/ m(z,y)dr = p(y,ta).
R

where
m(x.y) = f(z)k(x, t1.y.t2)g(y)

f(x) and g(y) are of the same sign and nonzero, k(x,s,y.t) is an a
priori chosen, bounded strictly positive and continuous (dynamical

semigroup) kernel, t; < s <t < to.
J-C. Zambrini (1986-7)



Prescribing k(x, s, y.t) in advance, we have functions f(x). g(y) determined uniquely (up
to constant factors) ba marginal data. c.f. Beurling, Fortet, Jamison.

By denoting

Be(z. 1) = / flz)k(t1, 2,z t)dz

B(x,t) = /H.‘r.t. z,t0)g(z)dz
1t follows that

plx,t) = 0(xz.t)0,(x,t) = [pfg;..f::..r.f];:-[j.!;.f:::]{fy.

O(x,t)
Oy, s)’

h<s<t<t

ply,s.x,t) = kly. s, x.1)

Note: If we assume that g(z) = pi/*(z), then likewise 8(z) = pi/*(z), so we end up with

previously mentioned Doob’s type mapping of a semigroup kernel into a transition density.

Useful (derived) concept:

Targeted stochasticity: given a predefined pdf; can it be interpreted as a
unique asymptotic invariant pdf a certain (Markovian ?) stochastic process.

Hint : the ground state (square root of the pdf) of the confining semigroup
does the job; see the boxed text in the above.




Second input: elementary harmonic/functional analysis

Let us consider self-adjoint operators (Hamiltonians) with dense domains in L?(R), of
the form H = F(p). where p = —iV and for —oo0 < k < 400, F = F(k) is a real valued,

bounded from below, locally integrable function. For ¢ > 0 we have:

exp(—tH) = f_ - exp[—tF (k)]|dE(k)

dFE (k) 1s the spectral measure of p.

Let us set

1
v 2T

then the action of ezp(—tﬁ ) can be given in terms of a convolution: E:Ifji(—f'-ﬁ )1 = f =k,

where (f * g)(x) := [, g(z — z) f(z)d=.
If F(p) satisfies the Lévy-Khintchine formula, then k; is a positive measure for all £ > 0 and

-lEf:

[exp(—tF (p)]"

we arrive at the simplest (free noise) positivity preserving semigroups.
The integral part of the L-K formula 1s responsible for random jumps (v(dy) stands for the

Lévy measure):

F(p) = —_[_ m[t’:rpff-py) —1- ;fg;g]ﬂdy)



Third input: (pseudo) relativistic Hamiltonians

R. Carmona, (1988)
Fo(p) = |p|

Folp)=vpi+m2—m, m=0

(better known as Hy = v/m2c! + ¢2p? — mc?)
Within the ramifications of the Schrodinger boundary data problem set #(z,f) = 1 and
A.(xz,t) = p(x,t) so that

exp(—tH)p](x) = pla, )

where F(p — —iV) := H implies
Fo(p) = iplz,t) = —|V|p(z,t)
F(p) = dip(z.1) = —[V/— A + m? — m]p(z, )
Fy 1s a special (Cauchy) case of the symmetric stable probability laws and readily generalizes
to (we can parallel this step by a lift from R to R")
F, = [p/"* = dip(z,t) = —|A["p(z, 1)

with 0 < p < 2. (Note: dip = Ap derives from the Wiener process and H=—-A)



,Rough” conceptual guide: 1D Cauchy semigroup

P. Garbaczewski, R. Olkiewicz, J. Math. Phys. 40, 1057, (1999)

00,=—|V|o,—ve,,  9,6=|V|6+Ve, (21)

where V' 1s a measurable function such that:

(a) forallxeR, V(x)=0,
(b) for each compact set KCR there exists Cx such that for all xe K, V 1s locally bounded
V(.I) = Cﬁ .

Lemma 5: 1f 1=r= p=m and >0, then the operators T| defined by

'y }{.1:}=Ele F(XE)exp

- [; V(Xs m”

are bounded from L"(R) into LP(R). Moreover, for each re[l,] and feL’(R), T;f 15 a
bounded and continuous function.

Lemma 7: For any p=|[ l._:::j aru;I'fE LP(R) there holds

(T{f ) (x)= [ﬁﬂif (x.)f(y)dy, where k/(x,y)=0 almost everywhere



Lemma 8: k{(x.y) is jointly continuous in ().

Lemma 9: k! (x,y) is strictly positive.

let py(x) and p{(x) be strictly

positive densities. Then, the Markov process X| characterized by the transition probability den-
sity:

Viy.sx.t) =kl (x.y) 6(x.1)
p [.}?' Laelt L .I'—.T[ ".} H(}’,S}

(23)
and the density of distributions

p(x,1)=0,(x,t)0(x,1),
where

0y(x,0)= fﬁki’fx,_v}fma{v., O4(y,1)= Lk-&i_;mmgum

is precisely that interpolating Markov process to which Theorem 1 extends its validity, when the
perturbed semigroup kernel replaces the Cauchy kernel.

Clearly, for all 0=s=¢=T we have

04(x,1)= fﬁk?”_sfx,_vw*f}us}d}u

o(y,s)= Lﬁcf_jgx,_mmxjr)dx (24)

Association: set #,

T, 0 = pi?, so getting p(z.t) = (06,)(z.t) =
B0 = —HV with H = |V| + V

U(z,t)ps*(z) and



Appetizer: ground state of the Cauchy oscillator PhysicaA (2010)

& - K \ . 222~
s =91+ (52 1 oas (351

direct reconstruction route:

(o) =t

f(p) the Fourier transform of f= pim(:r}

K ~ o~ -
A f +IpIf = VoS

k=- o) vk =f) o =W/ ¢ = (w/20)"3
2 (k |
Lo — ke

Full spectral problem solved in:  P.G., Stephanovich, Physica A 389, 4419, (2010) and Matecki, Lérinczi, J. Diff. Eqs. 253, 2846, (2012)



A unique normalized ground state function | of d?(k)

= [kl 3 (k)

dk?

is composed of two Airy pieces

that are glued together at the first zero yo of the Airy

function derivative:

Ai(—yo+ k), k>0

L-G(.IC) = 4’4{] { _*'f'ii(—y{] — fg) k < '[]:

1.4 -
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0.0

’ -1
Ay = [Ai(—yg)\/Qyo] . yo ~ 1.01879297

— v, (p) - momentum space

wﬂﬂx}- coordinate space
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FIG. 7: Normalized invariant pdf (30) (full line) for the
quadratic semigroup potential. The Gaussian function, cen-
tered at = 0 and with the same variance o® = 0.339598
is shown for comparison. Panel (a) shows functions in lin-

ear scale, while panel (b) shows them in logarithmic scale to
better visualize their different behavior.

. A -
do(r) = = / Ai(t) cos z(t + yo)dt = pi/*(z)

—Yo

K. Kaleta and T. Kulezycki (2009) - asymptotic decay of eigenfunctions

o for Hy = |A* + (22 — Vo) displays ~ |z| "G heavy tail for |z| > 1

10



Some (minor ?) quieries/problems (Bielefeld, July 2012)

Lévy-Schrodinger semigroups —the induced pdf dynamics needs further exploration, no
rigorous results about X(t) (except for the 1D Cauchy driver, IMP 40, 1057, (1999)), sample
path properties basically unknown (computer-assisted work in progress) , Markovianess not

necessarily obvious, albeit seemingly valid

Pseudo-differential spectral problems are hard or intractable, only a limited number
of solvable cases (stability of matter issues are well developed, c.f. E. Lieb et al., not
mentioned here). Scarce analytic access to ground states and other eigenfunctions, not

even mentioning the eigenvalues.

Current status, as for 30 May 2014

Spectral properties- what do we know ?
Phys: a number of plainly wrong results on eigenvalues and shapes of
eigenfunctions in the physics oriented literature, no explicit insight into
elementary confining spectral problems.
Math: rigorous estimates and approximate spectral solutions for the
infinite well (Cauchy and quasirelativistic) and Cauchy oscillator.
Today topics: quasirelativistic oscillator and finite well (m>0); m=0
spectral solutions as the reference and the validity control.



Solving Schrodinger-type spectral problems: Cauchy oscillator and finite well

"2

s

_—r

| | 1 w(x) — (e + 2z
T(x) = (=) 2 () = —/ pz) — i+ )r.’.,:
H=T+V
H ':‘,-:"-‘i(.’i!‘) — Ei":‘,-:"-‘i(.’i!'). f = 1 2 .....
Computer assisted approach: spectrum-generating algorithm

e~ e 3V (1—hT)e 3V = S(h)

(. t) = [e Hy](2.0) At = h (e, 0) = Y(a, kh)

k=1,2, .., .



R .. L : . ‘ U :

(i) We choose a finite number 1 of trial state vectors (preferably linearly independent) {<I>E; J , 1 <i<n}, where n
1s correlated with an ultimate number of eigenvectors of H to be obtained mn the numerical procedure; at the moment
we disregard an issue of their optimal (purpose-dependent) choice.

(i) For all trial functions the time evolution heginning at ¢ = 0 and terminating at ¢t = h, for all 1 <i <nis
mimicked hy the time shift operator S(h) of Eq. (5)

1) = S(e (2). {

(iif) The obtained set of linearly independent vectors {1115 )} should he made orthogonal (we shall use the familiar
Gram-Schmidt procedure, although there are many others, [7]) and normalized. The outcome constitutes a new set

of trial states {(Dgl): i=12...n}.

(iv) Steps (ii) and (iii) are next repeated consecutively, giving rise to a temporally ordered sequence of n-element
orthonormal sets {EI)( )( '),i=1,2,...,n} and the resultant set of linearly independent vectors

W) =5l e),  i=12.0m,

at time tuqg = (k+1)-h.

13



(v) The temporally ordered sequence of (I)“")( '), k> 1 for sufficiently large k 1s expected to converge to an
eigenvector of S(h), according to:

S(1)00 ) = B G ) P o) "

where 1; actually stands for an eigenvector of H corresponding to the eigenvalue F;. Here:

where

k) =< oY =< oM >

is an expectation value of S(h) in the i-th state o)

.

[t 1s the evaluation of <I)( )( ') and E( )(}) that 1s amenable to computing routines and yields approximate
elgenfunctions and eigeny aduos of H. The dome of approximation accuracy is set by the terminal time value t;, = kh,
at which earlier detected symptoms of convergence ultimately stabilize, so that the iteration (i)-(v) can be stopped.

14



Cauchy oscillator test. In 1D, from the start we need to choose € [—a,al, a > (

[n view of the a priori declared [—a, a| integration houndary limits, irrespective of the initial data choice {<I>£- )

L*(R)}, the simulation outcome is automatically placod in L*([-a. D

For the Cauchy oscillator whose eigenﬁ.mct.ions extend over the whole real line, we effectively get an approximation
of true eigenfunctions by functions with a support restricted to [~a,a]. Clearly, the value of a cannot be too small
and for the present purpose the minimal value of @ = 50 has been found to be a reliable choice. This point must be
continually kept in mind.

For our purposes the natural LQ(R) choice of mitially given trial state vectors is that of Hermite functions

I
JYilT

where H;(x) are Hermite polynomials, defined by the Rodrigues formula

0 (1) = Hiz)e ™ i=01,... (0)

z-l—l

ad
Hi(x)=(-1)"¢" — _5”. 1=0.1,...
We recall that Hy(z) = 1, Hy(z) = 22, Hy(x) = 42® — 2, Hy(x) = 82* — 122 and so on.
The functions (9) form a standard (quantum harmonic oscillator) hasis in L*(R). They loose this property after
the first time-shift operation (6), heing mapped into linearly independent functions with support restricted to [—a, al.
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FIG. 1: Cauchy oscillator ground state (left panel) and the (k)-time evolution of E{k)(h) = ~LIn(&f(h)), (8), for a =
50,100,200, 500. The dotted line indicates the ground state eigenvalue reported in Refs. 24, 25].
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FIG. 3: First excited state 1 of the Cauchy oscillator and the (k)-time evolution of Eék)(h) (8) for a = 50,100,200, 500. The
dotted line indicates the first excited eigenvalue reported in Refs. [24, 25].
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is displayed as well. The corresponding (both limiting and approximating) eigenfunctions, labeled by : = 3,4, 5, are depicted
for z € [-3,3]. @ > 50 is used in the course of algorithmic iterations.



1 r) — f(x
H(a)f(z) ~ [(—/_\)UQ + V()] f(z) = —/|. ‘{ (@) ;};( dz+V(x)f(x) ~ E(a) f(z)

m

0 = 50, instead of the previously mentioned -3, 3]

Let g(z) be another approximate spectral solution corresponding to the eigenvalue E(b), with b > a, that is close to
E(a) (as a member of a sequence converging to the limiting/genuine eigenvalue E associated with an eigenfunction
(x)).

By our f ~ g assumption, a continuation of f from [—a, a to [=b,b] does not differ considerably from g well beyond
the control interval [-3,3] (c.t. Figs. 1, 3, 6). We additionally assume the same about V(z)g(z) (for V(z) ~ 2 this
would need g(x) < 1/2?, in consistency with the estimate (11)). Therefore for 2 € [-b,b] we have (keeping in mind
that we evaluate the Cauchy principal value of the integral):

1 g(z) = gz +2) 1 glz) = g(z +2)
HWMﬂm—/ ; dz +V(2)g(z) ~ E(a) g(z) + - ’ | din (13)
z|<b a<|z|<b

T Z T Z

Hence

ﬂ@ﬂ@wz(lj. (14)

Inserting consecutive houndary values 50, 100, 200, 500 in the above formula we arrive at a perfect agreement with the
numerically retrieved E(b) — E(a) data. Namely, we have: (2/7)(1/50 — 1/100) ~ 0.0064, (2/7)(1/100 — 1/200) ~
0.0032, (2/m)(1/200 — 1/500) ~ 0.0019 and ultimately (2/7)(1/500 — 1/00) ~ 0.0013. b




Cauchy oscillator: validity treshold for the approximate eigenvalue formula

bt

/3

Eoprr = (%) [8n + (=1)"]*°

Ef™" = 1.0188, EPP" = 1.11546,

E;u__;:racf — 23351_ E;’PPT e 232025 Ee:raci 3 -}_182 EEPPT 3 ')6163
Bt = 4.0879, B = 408181, Eeroct _ 48301, EOPT - 482632,
.'I_E':I‘D.C — t‘i . 11 r = t‘i ._

EE:I‘IICf _ 55206. EE?PPT — 551?16 E‘;:raci 6 1633 EL;PPT" 6 16"1").
Eg™e = 6.7867, E™" = 6.78445, cooct _ gl GOPPT _ 1787485,
; Eg=act — 7.3721, ESPP" — 7.37485,

Heract APET = A0 4Q
2" =9.0226, By, =9.02137, Egrect = 9.5354, EPPT = 9.53705,

Ef{"*" =10.0402, ET{"" =10.03914, i . " _
Egrect = 10,5276, E°FPT = 10.52807,

Jeract — 11,0085, EYEPT = 11.00776,
16 16 Jract = 11.4751, EFYT =11.4762,

ESEeet =11.9360, E{FP" =11.93532. v - 7
EfFect = 12,3848, E7HP" = 12.3857.

The approximation accuracy treshold depends on the accepted robustness
level. We are inclined to accept n=10. Note that ,exact” values are
known to be reproducible up to 14 or more decimal digits ! Here 50 digits:

Ex: Airy first zero -2.3381074104597670384891972524467354406385401456724

http://keisan.casio.com/exec/system/1180573400
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Cauchy finite well eigenvalue problem: V(g;):{ﬂ; | {15
trigonometric connections ? Not quite ...

Acos (BZE) x| < 1. fﬂ} Asin (222) |z < 1.
ﬂ- Em+l{ }_{ { 2 :] III;}I —Qm.{ } { { 2 :] III;’?]— ﬂ‘!-:[]._]_._...
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FIG. 7: Ground state solution of the Cauchy well. Numbers refer to: 1 - cos(mz/2), 2 - an approximate solution, Eq. (13) in
[16], 3,4,5.6 refer to the well depths, respectively 5,20, 100, 500. Convergence symptoms (towards an infinite well solution) are
visually identifiable. Left panel reproduces an enlarged resolution around the maximum of the ground state. The right panel
does the same job in the vicinity of the right boundary +1 of the well (curves deformation comes from scales used to increase
a resolution).
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FIG. 8: Convergence towards 11 2 - an approximate ground state, Eq. (13) in [16]; Our algorithm appears to be more reliable,
since 6 and 7 refer to wells whose depths are respectively 500 and 5000. Left panel shows an enlarged vicinity of the maxima.
Right panel shows enlarged plots in the vicinity of +1.
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055 700 705

FIG. 9: Finite versus infinite Cauchy well ground state in the vicinity of the boundary +1 of [—1,1]: 1 (black) - the algorithm
outcome for the finite Vy = 500 well, 2 (green) - an approximate infinite well expression from Ref. [16], 3 (red) - an approximate
form of ¥ (x) ~ (1 — |z|)'/?, in the vicinity of the infinite well barriers, as proposed in Ref. [11].

a.h'm'E 5 20 100 500 5000 Apprcrximate_grc_vu_nd_ s.ta?:e cigenv{ilucf f_{::_r various well depths 4
and integration volume bounds a.

50 0.9538|1.0743|1.1258|1.1408||1.1445

100 0.9602|1.0807]1.1322|1.1472||1.1509

200 0.9634|1.0839(1.1353|1.1504||1.1541|, £(200) — E(100) ~ 0.0032, E(500) — E(200) ~ 0.0019.

500 0.9653|1.0858]1.1372|1.1523||1.1560
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FIG. 10: First excited state i»2. Numbers refer to: 1 - —sin(mz), 2 - an approximate solution (13) of Ref. [16], 3, 4, 5, 6
correspond to finite wells with depths Vi = 5,20, 100, 500 respectively. In the left panel we display an enlarged vicinity of the
maximum of 1/s. The right panel contains an enlargement of closely packed curves in the vicinity of the right boundary 1 of
the well. Note the scales employed.

~_ 0l 5 20 | 100 | 500 || 5000

A~

50 2.3701|2.6060(2.7046|2.7343||2.7419
100 2.3765|2.6124|2.7110|2.7407 || 2.7483
200 2.3707|2.6156(2.7142|2.7430| 2.7515
500 2.3816/2.6175(2.7161|2.7458 2.7534
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FIG. 11: Eigenstate v3. Numbers refer to: 1 - — cos(3mz/2), 2 - approximate solution (13) of Ref. [16], 3. 4, 5, 6 correspon
well depths Vi = 5,20, 100, 500. Left panel contains an enlargement of a minimum of 3. Right panel depicts an enlarger
of closely packed curves in the vicinity of the well boundary.
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Quq3|relat|V|st|c harmonic H=T,+V=[V/-A+m2—m|+2
oscillator

trial funections

0 Acos (22E x| < 1, Asin (222 Tl < 1,
{I)E'L:jif—l(m} - { 0. ( ) III = 1 n Zf{m} — { {: ) ITI > 1 [ = ].-_. 2- .

1.0

2169

00 02 04 06 0.8

FIG. 1: Quasirelativistic oscillator ground state (n=1) is depicted for masses m = 0.01, 0.5, 1, 5, 10, labeled respectively by
1,2, 3, 4, 5. A clear distinction is seen between tentative "small” mass m < 1 and "large” mass m > 5 regimes. The m = 0.01
curve is fapp identical with the ground state of the Cauchy oscillator, whose decay is known to be inverse polynomial ~ C'/ z*,

2, 4].
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FIG. 3: The m dependence of the quasirelativistic oscillator eigenvalues with n = 1, 2, 3, 4, 5. Employed m > 0 values read:
0.001, 0.01, 0.1, 0.5, 1, 3, 5, 10. The m = 0 energy values have been directly imported from the spectral solution of the Cauchy
oscillator [4, 5] and cannot be graphically distinguished from those for m = 0.001.

Viz)=2%|| m=1 |m=3|m=5|m=10{m = 20|m = 50|m = 100
Ey 0.6020(0.39043]0.30801|0.22112|0.15669 [0.09936 | 0.06865
Es 1.6638| 1.1408 |0.91436|0.65998(0.46904 |0.29639| 0.20562
Es 2.5362| 1.8385 | 1.4974 | 1.0939 |0.77957 |0.49125| 0.34230
Ey 3.3210] 2.4971 | 2.0620 | 1.5252 | 1.0886 |0.68591| 0.47874
Es 4.0426] 3.1253 | 2.6111 | 1.9540 | 1.3962 |0.88136| 0.61508

TABLE I: Quasirelativistic oscillator: m-dependence of lowest five eigenvalues.
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m < 1 regime
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FIG. 4: (k)-time evolution of E\* (h) = —% In(£f(h)) (8) and the stabilization symptoms in the computation of the ground
state value: m = 0.001 (left panel), m = 0.01 (middle panel) and m = 0.1 (right panel), for a = 50, 100, 200. For reference we
have depicted the energy level Ey = 1.018792 which is set by the Cauchy oscillator bottom eigenvalue.
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FIG. 5: (k)-time evolution of EY*(h) = —%ln(&'ﬁ“(h}j (8). Computation of the first excited eigenvalue for m = 0.001 (left

panel), m = 0.01 (middle panel), m = 0.1 (right panel), for a = 50, 100, 200. F; = 2.338107 is the first excited Cauchy
oscillator eigenvalue.



Spectral convergence to the Cauchy oscillator

m=( El Eg E;_t E.; E5
[4, 5]|[1.018792|2.338107 (3.248197 |4.087949 [4.820099

TABLE II: Cauchy oscillator lowest eigenvalues.

m=0.001 FE, Es E3 Ey Es

a=>50 |[1.00612|2.32596(3.23723|4.07956|4.81614
a=100 ||1.01245|2.33229|3.24356|4.08500|4.82248
a=200 ||1.01555|2.33540|3.24667|4.08001 |4.82560

TAELE III: Quasirelativistic oscillator: a-dependence of lowest eigenvalues for m = 0.001.

m=0.01 Fy FE» FEq F, s

a=50 ||1.00275]|2.32235|3.23367|4.07593|4.81255
a=100 (|1.00746|2.32707|3.238394.08066|4.81728
a=200 (|1.00893|2.32854 |3.23987(4.08213|4.81876

! 2/3 2/3 1.
3T 3
Eﬂ,— -1~ | 5 i o
2/3 2/3
3\ 1
En—ap ~ (?) (?I- + 1)

30



m = 1 regime
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FIG. 6: Quasirelativistic m > 1 regime. Left panel: eight consecutive eigenvalues E,(m), for masses m = 10, 20, 50, 100,
build an approximate a straight line E,, (m) = ﬁ{ﬂn — 1), n = 1. The best result is obtained if fitting employs m > 10,
Right panel: doubly logarithmic scale gives access to a wider mass range: m = 0.01,0.1,0.5,1, 3, 5,10, 20, 50, 100. Note that
for m > 3.7 i.e. In(2m) > 2, straight line segments are mimicked by In(E,.(m)) = —% In(2m) +In(2n—1), n = 1,2, 3,4, 5, thus
reproducing the nonrelativistic oscillator spectral pattern.

E.(m) = \/%(Qn 1), n=12.. m>L
In[E, (m)] = —% In(2m) +In(2n — 1), n=12,... m > 1
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Quasirelativistic finite well V(z) =

1.0

i(x)

00 02 04 06 038

FIG. 7: Quasirelativistic finite well ground state for Vo = 5. Labels 1,2, 3, 4 correspond to m = 0.01, 1, 5, 10, respectively.
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FIG. 8: A comparison of ground states in case of Vi = 5 for the nonrelativistic (label 1) and quasirelativistic well (label 2):

m = 5 (left panel), m = 10 (middle panel), mm = 20 (right panel).



Shallow well.

mass ||quasirelativistic N |standard V Vo = 5 well: maximal number N of bound states for various masses
0.1 3 1

0.5 4 9 in quasirelativistic and nonrelativistic cases.

1 4 3

3 5 4 2

me ™ L.

5 — (N-1Y<m< —N? [—1, 1] choice

? 6 2 8Va ) 8Va

10 T T

mass |finite well|| n=1 n=2 n=3 n=4 n=>s n=>6 n="7 n—==y
m=10 quasi 0.09951(0.39217|0.86271|1.48933|2.24605|3.10483 (4.03221 -

standard ||0.10190|0.40679|0.91211|1.61267|2.49846(3.54752|4.68404 -
quasi |[[0.05312]0.21154 [0.47264|0.83227|1.28482)1.82341 |2.4390913.12481

m=20 standard ||0.05379]0.21502|0.48318|0.85739]|1.33616]1.01714 |2.59636|3.36634
m—50 quasi |(|0.02227 [0.085892(0.19968|0.35423|0.55213|0.79272|1.07522|1.39867

standard ||0.02261|0.09040|0.20334|0.36132|0.56421 [0.81181 |1.10385|1.43998
m=100 quasi |(|0.01126 [0.0449910.10113[0.17961|0.280370.40334 (0.54842|0.71546

standard ||0.01159|0.04636|0.10431|0.18540|0.28964 [0.41695|0.56733|0.74070

TABLE VII: Quasirelativistic (quasi) versus nonrelativistic (standard) Vi = 5 well: m-dependence of eigenvalues
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FIG. 10: A comparison of the second eigenfunction in the Vj = 5 well for nonrelativistic (label 1) and quasirelativistic (lal
2) cases. Here, m = 5 (left panel), m = 10 (middle panel), m = 20 (right panel).
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Deep well versus infinite well. E, —mc* =

y1(x)
00 02 04 06 08 10

FIG. 12: Quasirelativistic Vo = 500 ground state. Labels 1,2, 3,4 refer to masses m
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0.01,1,5.10. Label 5 refers to the
nonrelativistic infinite well ground state cos{wz/2). Right panel: an enlargment of the vicinity of the maxium.
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FIG. 13: First excited state of the Vo = 500 well. Labels 1,2, 3,4 refer to m = 0.01,1,5,10, label 5 to the curve —sin(wr)

Right panel: enlargement of the vicinity of maximum.



Spectral affinities: Cauchy well versus nonrelativistic well (finite but deep !)

FIG. 16:
are depi
data.
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l

n m=0.01m=0.1lm=0.5| m=1 | m=3 | m=5 | m=10 | m=20 | m=50 | m=100

nonrelat. deep | 1.2160 |1.2287|1.3677 |1.6698|3.3408|5.2254|10.1188|20.0611 |50.0245|100.0122

: oc-quasi 1.13 | 1.5708 | 1.5740| 1.6484 [1.8621|3.3864 |5.2409|10.1226|20.0616|50.0247(100.0123
9 nonrelat. deep | 2.9055 |2.90892.9417|3.0760(4.2393|5.8600|10.4680|20.2435|50.0979| 100.0436
oo quasi 1.13 | 3.1416 |3.1432| 3.1811 (3.20969]4.3439|5.9050|10.4319(20.2452|50.0986 | 100.0493
3 nonrelat. deep| 4.5596 |4.5623|4.5746 [4.6500|5.4697|6.8085|11.0283|20.5443|50.2200|100.1093
oo quasi 1.13 | 4.7124 |4.7134 | 4.7388 |4.8173|5.5863|6.8707|11.0547 | 20.5477|50.2216|100.1110
A nonrelat. deep | 6.2290 |6.2308 | 6.2208 |6.2734|6.8743|7.9735|11.7730|20.9585|50.3905| 100.1943

oo quasi 1.13 | 6.2832 |6.2840|6.3030 (6.3623|6.9626 |8.0298]11.8101 |20.9637(50.3932(100.1972

nonrelat. deep | 7.8344 | 7.8365|7.8331 |7.8633|8.3321|9.2502|12.6725|21.4803|50.6090| 100.3033
oo quasi 1.13 | 7.8540 | 7.8546|7.8699 (7.9174|8.4074 9.3105|12.7155|21.4869|50.6131 | 100.3080

ot

We compare eigenvalues of the Vi = 500 quasirelativistic well computed by two different approximation methods.

We use a nonrelativistic approximation formula for the finite but very deep well and set the computed values against the upper
bound for the infinite quasirelativistic well, e.g. Eq. (1.13) imported from (Kaleta, Kwasnicki, Malecki; 2013)

Proposition 1.1. For alln =1.2,..., we have
| (n—1)m h ? U b
mec® X — +1< E, <me? f — ] +1. (1.13)
\/ 2 mea \/ 2 mea

Set c=h =1 and a=1. Nonrelativistic approximation reliable for m>10:

- 4 min? 1
EY m B> (11— = — 1 - ——
w ( T fﬁ) Bm ( T Vo ) 37




Spectral affinity / spectral convergence: an analytic argument
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(Non-exhaustive) summary of points that need non-amateur math.

- Path-wise description of a jump-type process with killing;
how dothey set down at the stationary (ground) state ?

- Acomplementary path-wise desrcription of the process which
equilibrates to the ,ground state , pdf (trapping in a finite well !)

,Spectral affinity” / convergence with mathematical rigour: m to
O limiting behavior, m to infinity limiting behavior

- Maximal number of bound states in the quasirelativistic and Cauchy
finite wells, from 1D to 3D

- More refined (as much analytic as possible) analysis of shapes
of eigenfunctions. More accurate eigenvalue estimates.

- More refined analysis of nonlocality impact upon the computation of
eigenvalues

- Spectral problems in 3D (partial results only for Cauchy and quasi oscillators)



Source papers: collaboration with M. Zaba and V. Stephanovich;
2010-2014

Physica A 389, 4419-4435, (2010), Levy flights in inhomogeneous
environments, with V. S. (spectral solution for 1D Cauchy oscillator)

J. Math. Phys. 54, 072103, (2013), Levy flights and nonlocal quantum
dynamics, with V. S. (general framework, lots of Fourier-related discussion,
Cauchy wave-packet dynamics)

arXiv:1403.5668, Solving fractional Schrodinger-type spectral
problems: Cauchy oscillator and Cauchy well, with. M. Z.

arXiv:1405.4724, Nonlocally-induced (quasirelativistic) bound states:
Harmonic confinement and the finite well, with M. Z.



