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(I) The Stern-Gerlach experiment is a text-book il-
lustration of the basic ideas of quantum theory. However its
theoretical explanations {2 do not seem to be adequate. Des-
pite of the general agreement that it reflects essentially quan-
tum features, and thus cannot to explained on purely classical

(5'6)), even within the would-be-well estab-

(7,8)

grounds (see however
lished guantum framework there still remain both conceptual

angd technical problems(9_11).

(6-11) Ref.

Among the recent publications on the subject
10 only attempts to address the problem in full generality: One
departs from the coupled set of the Heisenberg equation with the

electromagnetic field solving the Maxwell equation. The latter

feature is not the case in the standard (hence oversimplified)
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approaches to the problem.

From the conceptual point of view, we follow the statis-
tical ensemble interpretation of the wave functions, with empha-
sis(12) on the fact that the only observational quantity which
quantum mechanics needs to address is location.

Our goal is to analyse the propagation of the appropria-
tely localized (Gaussian) wave packet, so that within the limi-
tations of the Stern-Gerlach experiment the verifiable predic-
tions are arrived at: about the location of geometric centers

and intensities (probability distributions) of traces due to

arise on the detecting photo-plate.

(IT) We should study the Pauli equation for neutral mas-

sive (mass M) atoms with the magnetic moment, ﬁ = —ug (for the
lect = - R, h 3-83 .35 a i 1i

electron p = B - E;E ), where s = 5 0 +0 enoting Pauli
matrices

’ 0 1 0 -i 1 0

{ \ { ) ( )
G, = G = 6 = (1)
x \y o/ Y o\ o z 0 -1

The electric potential is equated zero, while the magnetic field

is required to satisfy (as it should(10)) the equation
div B = 0

We choose:

>
a}
[

(O,XzBO(y),O)

> > > (3)
B(r) = ¥xA(r) = (-x,0,2)B_{y)
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In the experiment the effective magnetic interaction is supposed
to affect particles along the relatively small interval of length
L in the y-direction. Along it we can take Bo(y) to be a constant

BBO/By = 0 which amounts to the gauge condition

>
div A = 0 (4)
Hence the Pauli equation reads:

2 uB A
[~ %ﬁ s+ —% (20, - on)}W = ipa ¥ {59

Its solution can be written in the form:

=2

-> 1 3 > f i [—»» P
Y(r,t) = ——=5% [d”p f(p){expz Lpr - 5=t +
(2ﬂ)3/~ L A 2M %)
- > uhB (usoh)z 3]
I« o, - o,p,) - o b
o, . " 2 2 ;
where x= () is a normalized spinor {a|” # [B{° = 1. (6) is not

very useful unless a specific choice of f(p) is made and the
p-integrations performed (compare e.g. for example(7), which for
arbitrary times may be analytically intractable.

To bypass this problem, we shall adopt the Heisenberg
picture, where the time development of the dynamical variables

> > >
(r,p,0) is given by:

SRS 5

J:KLH’rj]—= i

. i|' _ .

i = W LH,S] _ = U(SXB)J > x = UBOZS
s = MB (z¢_ - x0_) $_ = UE_xs
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. 9B
S O | |- _k g
P TR [Ty ). T MR TR T P T MBS
p, = P, = uB_s,
>2
:E—.— e 2
H = %5y - usb (7)

The essential simplification is achieved upon assuming that the
substantial fraction of particles constituting the ensemble pas-~
ses through the &§tern-Gerlach magnet (i.e. along the distance

L) in a relatively short time T<<1. In this short-passage-time

(7)

approximation (see e.g. also ), the dynamics of the Heisenberg
operatofs can be satisfactorily approximated by the leading cont-

ribution to the Taylor series:

telo,T]
w g wn
- > > t »
r{t) = r(0) + tr(0) + 5 T (0) + ... (8)
so that:
v
. t t
x{t) = x + M Px * oM MBoSy (9)
- t
y(t) =y + 5,
2
. t £t
i) 2 M pz * 2M l‘Bosz

To pass to the Schrédinger picture dynamics, we shall follow

(90 and invoke Kennard’s propagator theorem. We denote the
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2x2 matrix operators (9) by x(t), y(t),z(t) to avoid confusing

them with the configuration variables Xy ¥VaZs

the problem comes from:
2 > -
x(-t)G(r,t;r”,0) =
~ > > R >
y(-t)G(r,t;r",0) = y°G(r,t;r”,0)

z(-t)G(T,t;77°,0) =

i.e.
(x + i = %; + %; Uggh OX)G = x7G
(z + iR = %E + %E UBgz o, )G = 276
so that:
G(T,t;77,0) = (I%E>3/2 exp fﬁ%

The propagator for

(10)

(11)

(12)

which in the short passage-time-approximation reduces to:
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3/2 y
G, 07,0 = (M) e AL F - 292 L0+ 143D
(13)
M 2 . 2 .
Y = oogp v 8 T tT{x-xT)n ay=0, Y, = t7(z=z7)n
uBOM
= 73M

This formula is sufficiently simple to enable us to per-

form the propagator on the spinor wave function.

(ITI) Let the initial wave packet, which enters the inte-

raction area, be given by:

> - o
¥E,0 = o(F,0(8)

2

la|® + [8]° = 1 (14)

where ¢(;,0) = pT/z(g,O)exp%w(f,O) is the minimum uncertainty

wave packet, which is centered about:

>
<r> = (Olyolo)

(15)

<> = (0,p,,+0) p,= My

Hence we deal with the localized wave, whose geometric center
moves in the y-direction with the velocity v:

v - > 2 P

H(r,0) = —— 75 exp|- &E__;gl_ .eXp% BeT (16)
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s

Here: 6r13pi= ¢ 8x = 8y = 8z = o.
In the adopted approximation regime, an effect of the pure spi-

nor rotation is:

(1 + iy§3>(2> 2 (%) +

f%% {tz(x-X’)noX + t2(z—2’)noz] =

o exp?%% ﬂtz[(z"z‘) + (x—x‘)J
-

B exp%%znt2{~(z-z’) + (x-X’)}/

T ntz(x—x’)(e—a)<_]> (17)

+

The pure matrix action of the propagator leads to:

> > 3/2 i > > 2 >
G(r,t;r?O)(Z) = (Efz-> exp f%%(r - r7) -(1+iyao)<g> =

3/2 : 2
a<I§—> exp 5%%[(x—x’+nt2)2+(y—y’)2+(z—z’+n%T )2]

=]
o+

2 2
\x—x’+ n%;)z +(y-y’)2+<z—z’— n )2]

¥ (TBL'f/Z [exp iM(?—?’)Z}[f%% ntz(x—x’)(g—a)}<_1>

(18)
We are interested in the short passage time t < % = T«1, where
L is the distance in the y-direction, along which the moving

atoms feel the magnetic shock.

By taking into account the formula
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F 1 [i[B 2 _ 2-
K(r,t,r",t7) = expy w |: (r - r’7) -
2y T LA LM
_p e = ey 1\a3p o [2mif .y -372 [ M (F-F9°2 ]
M e M S¥P|t 2Y Tt -t |
(19)
with its well known property
£+ t” =K(F,t;07,t7) » §(F - ) (20)

expressions of the form (19) for short times can be viewed as

(T) approximations of the Dirac delta. In fact, for small but

non-zero times, we can approximate (18) as follows:
(2n)3/2G(Z,T;§',0)(%) =

2 2
{exos n I ) v~ logemy o I
dd(T)\X X"+ n5 /d(T)(y Yy )G(T)\z z7+n=5 )

[\S)

P L R TN o
BS (py\X ¥+ Nz )8 (qy WY 6 (272" )

2
nT- v N I e 1M
7 S(py (YY) 8y (22 )[ 5% (1) (X7 )J\—1/

(21)

(8-a)

After composing (21) with the Gaussian wave packet, we arrive

at:

> 3 . - B >
w(r,T) = J’d I G(rlTlr 10) W(I,O) =
2 2
T
3/2 ad(x +n SrYez HTT +0)
(2m) ) +
72 72
wa+n3vwz—n7-m)
2 1
- e X 0 aix,y.z,00 )
" 2 \_1
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In the above dx+A,y,zt A ,0), & = Qgi and ¢(;,O) include the
same phase factor exp % <p>(y—yo) with <py> = Mv. On the other
hand, the form of A-deflections which modify x and z variables
in the above can be interpreted as arising due to the uniformly
accelerated motion, whose effect must be a non-zero increment

of the respective velocity (hence momentum) components, which

refer to the motion of the geometric center of our wave packet:

<p.> =0 e <p,> = MnT
(23)

<p_>» =0 - <p_> = * MnT

Within the adopted approximation regime the necessary correc-
tions can be made, so that the final approximate formula for

the Gaussian wave packet which leaves the interaction area

reads:
Blr,T) = (2ﬂ)3/2 ap (X+A,y ,2+4,0) exp{ - % MnT(x+z)J
Bo (x+0,y,2 - 5,0) exp[hi MnT(Z-X)J (24)
2
- 3/2 gy X .10 [N
(27) (B-a) Ozr 5 cb(x,y,z,O)\_U

the phase factor expi%Mv(y—yo) being included in the ¢'s.

(IV) The whole experiment can be described by dividing
the particle motion area into three pleces:
Free motion between the state preparing device (source injecting

the atoms into the Stern-Gerlach magnet) and the magnet, magne-
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tic shock area (magnet itself), free motion between the magnet
and the detectors.

To get some numerical data from our analysis, let us assume
that the over-all distance to be run by atoms is of the magni-
tude 1 m. Let the interaction area be of the length ca 10_2 m,
and let the free motion before entering the magnet be realized
along as small distance.

The average speed of particles we choose as follows:

v = 10%n T~ 10"%s t ~1072g (25)

By t we denote the over-all passage time (in average during

tot
the experiment), while T refers to the time spent under the
magnetic influence.

After leaving the magnet particles display the free propagation

pattern. For the minimum uncertainty state with the width ¢ and

expectations <¥> = (xo,yo,zo), <§> = (pxlpy,pz)z
fgz)@ ) (2m3/4(;+ 1r 32 o {_ W%i—wt—)
exp {% {px(x-xo— i% t)] +py(y—yo— %% t) + pz(z—zo— if-tﬂ
It means that the corresponding probability distribution
C<;>,<5> (;,t) spreads out:
/72 X h2t2 \1/2 (27)

4M202
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-30

Recalling that the electron mass equals m, ~ 10 kg, and

o~ 10_34Js, we can estimate the spreading for the realistic
experimental fit M = 104 m, - Then:
Bl 107t 2 10" 14 2
4M202 1 10802 402
(28)
o~ 107m = o(t) = 1073001 + 1075)1/2

i.e. in the realistic experiment the spreading effects can be
disregarded.
Let us now estimate the deflections of the geometric centers

of the Gaussians, which compose the final wave function after

t = ttot' First of all:
Lo Bt By .- 10723 _J
L] Y M Mp tesia
_ 4 3 J
M =10 m, * n BO 10 kg tesia (29)
T2
The magnetic shock deflection A= n > leads thus to:
2
_ -4 _ -5 n
T = 10 s > Ao = 10 o Tasls
=1 m2
p = MnT , v = NT -+ Av = BO 10 Tesla s (30)
=3 m2
Gyt = By 10 tesla Atot
These data show that the choice
B = 1 tesla _ 102 gauss (31)

(&} m cm
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) _ -3 _ -2 _ -4
gives the value Atot =10 "m = 9 for t = 10 s, T =10 s,

M =10 mg -

Let us consider in more detail the probability distribution cor-
responding to the above inputs. Since the separation of energy
centers for all Gaussians entering the outgoing wave packet
after time t, is of the order of their width at least, the cross
-terms arising in the evaluation of the probability density are

negligible compared to the others. Consequently (Atot is deno-

ted At):
+ 2 3 2 2
[vir,t) |© = (2m)° |a [¢(x+Ao+At,y-vt,z+Ao+At,0)|
3,2 2
+ (2m) 7Bl ¢txrb +b, Y-V, z-8 A ) | (32)
2,4

2
s 2m318-al® 53 R
(e}

2 otx,y-vt,z,0) |

Neglecting the time dependent correction tcthe width we arrive

at:
2
5 (y=y _-vt)
|W(r,t)|2 = —”——l—”—— exp |-~ ”—“9*”—_"]
(2n)3/203 L 202 ]
. [ (x+Ao+At)2 + (zea +h)?
o] © exp L- 5 +
20
2 2
2 I (x+Ao+At) + (z-Ao—At)
+ |B| expL - 5 +
20
) 2. 2
+ |-a]? lﬂilzz— x2 exp{ - X +§ ]}

20 20

We deal thus with a sum of the three Gaussian distributions

centered respectively about the points Xy =7 (Ao + At),
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y = vt, z, = -(Ao + At) and (0,vt,0).
Because of the presence of x as the multiplicative factor in
the third term it may give significant contributions only in

the neighbourhood of the maximum of the function

fi(x) = xzexp fs 3—5 )
g
(34)
f7(x) =0 ->x=3%7 ¢

It means that the third term contributes about points
(V2 o, vt,0). Whether this contribution is sizable against the
other two, depends on |a—6|2 and on the magnitude of the coef~

ficient, which with our fits equals

2 52
£(/Z0) = &£ (35)

(nm) 202 10% 4
n2 e

204 2

thus implying

(nT) 212

4

x° exp (- ~§—-)g é 1074 (36)
20

so that the contribution from the third term is at least by the

factor 10_4 smaller than the remaining two.

(V} As long as the spreading effects are negligible it is
not meaningless to to exploit the classical concepts in the des-
cription of the quantum phenomena. OQur previous analysis shows
that the spreading does not matter for the final outcome of the
experiment.,

Accordingly the application of the Ehrenfest theorem should imply
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d
I <X> = — <p>
(37)
d - - WV -4
ac <p> = < % > %5 V{(<x>)

Because the spin part of the Hamiltonian is matrix-valued, the
situation is slightly more involved, than (37) would suggest.
To evaluate the expectation value (at t=0) we should use spinor
wave functions, where the ;—dependence comes through the cohe-
rent (minimum uncertainty) state.

Accordingly we have:

~ N uiB A
vV = spin = usB 5 (zoz - xox) = V(r)
A A uiB
E'z = - VV = 5 (OXIOI_OZ) (38)
- s > 3 UMBO ~ >
Jo(r,0)ve(r,0)d’r = 5— (<z>0, - <x>g ) = V(<r>)
j$(¥,0)§¢(§,0)d3r = <r>
and thus:
Fo- _ 23 Tl<Ts) = = 2 gz ‘=
F] = 3<rj> Vi<r>) = N7 V(r) jZx,y,2 (39)
~ uKB
_ o
<Fx> = 3 <Ox>
uKB
e, _ - o 5
<Fz> = 5 <oz

In particular:
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- /06> 5
<g. > (a,B)oj\B

J
<§x> = B Re(op) (40)
~ LMB
=== al® - g

to be compared with the actual force exerted on the centroids

of the wave packets (26) :

uB K 2
_ _ O - nT
Fx = Mn = 2 > 4= 2
ub 1 2
= & =10 = & nh
Fz = Mn 5 > A 5 (41)
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