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1. INTRODUCTION

Recent developments on the connection between
Thirring and Sine-Gordon systems in two space-time di-
mensions resulted in a couple of papers on the question
of Fermion-Boson correspondence in quantum field theory
(mysterious metamorphosis of Fermions into Bosons, as
S. Coleman said), see e.ag. [3]. The mentioned corres-
pondence is not a particular feature of g.f.t.only. For
example, under the name of the method of Boson expansions,
it was employed to build a contemporary theory of spin
waves in the low-temperature description of Heisenberg
ferromagnet. In this last case, there was known for

long time that the ideal magnon gas, in the weak ex-
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citation limit, perfectly simulates the behaviour of the
Heisenbera crystal itself, desmite of the spin value
assigned to the sites of the lattice.

A similar situation appears in the study of the
weak excitation limit of the atomic nuclei, in the
microscopic model, where the spectra of low lying ex-
cited states are similar to these of the weakly excited
system of gquadrupole Bosons. All that allows to expect
that each guantum Boson in the weak excitation limit
(not true for isolated systems, one needs any regulation
mechanism establishina the needed excitation level), can
exhibit Fermion pronerties, which then prevail the
original Boson ones (Fermion-like behaviour). Here, the
weak excitation (low temperature) limit of the Boson
theory can be also considered as its strong coupling limit
provided the stronag coupling potential (large distance
phenomena in case of Heisenberg ferromagnet) prevents the
Boson system from occupyving more than a few, low lying,

eneray levels.

Nuite conversely, if the hicher excitations (weak
coupling limit) are admitted, then starting from the
Fermion system, we can expect that Boson properties will
prevail the original Fermion ones (Boson-like behaviour

of the Fermion).

Above conjectures have an unrestricted validity in
the nonrelativistic quantum theory, or if the number of
space-time dimensions is less than 4. In either case,

the spin-statistics theorem must be taken into account.
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2. ¢g JUSTIFICATION: WHAT CAN BE DRAWN FROM THE
BOSON SYSTEM

To support our thesis that, in a few cases at least,
Bosons can be treated as more fundamental than Fermions,
let us discuss the ¢§ example, following [l]. The ¢g

Hamiltonian is given by:
H = [dx {%nz + %(m)2 + x(¢2—f2)2} . (Z.1)

This continuous model can be approximated by its lattice
version (linear lattice, with the inverse spacing constant
A and the number of 2N+1 sites). Due to the finite volume,
the allowed momenta are

k=2n, n=0, £l,...,4N, L = 2
A
and
1y 12 1 2 2 2.2
H=Kg{'2'ﬂs+§(\7¢s) + A5~ £) %)Y (2.2)

where s enumerates lattice sites, and the gradient term
should be still properly defined (in case of Bosons

Vo, = A(¢s+l = ¢S) can be introduced). In the rescaled
form:

[m_, d)t]_ = —lAGSt > [psl xt]_ ==14

s st’

we have
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There is useful to note here, that the gradient term

carries an interaction between lattice sites:

- (s) (s)
i = g {Hself * Hint} y

(s)
self
problem of a particle in an anharmonic potential.

while the single site term H describes a Schrddinger
Neglection of the gradient leaves us with the chain
of noninteracting anharmonic solutions, for which a

Fock construction exists, resulting in the single site

basis
> =1 |v,>
»S S
o n
ol .8
<lj’slu’t> - Gst’ H’s> - E S R g = @rﬁﬂa )
s &

where |Os> is the s-th site vacuum.

Taking the expectation value <y|H|y> of (2.3) in
the single site trial state |y>, through minimization
procedures one can calculate the ground state energy of
the interacting system (2.3).

Let us now consider the lattice version of ¢g
system with the nearest neighbor coupling (periodic
boundary conditions),

2
) 2
_ =8 p+2 2 4_
H = A{g 5 % =X, & AR_R

sxs+1} s (2.4)

The single site terms describe anharmonic oscillators

at each site, so that the single site basis can be



introduced at once: g]ns>, 0 < n, < =, and further the

matrix form of the Hamiltonian (2.4):

=3 (& = x%e 2™ ; (2.5)

]

(H =z H/A), E = {En} is a diagonal matrix with single
site eigenvalues on the diagonal, X = {<n|x|m>} its
elements do not vanish between even and cdd parity
states.

Truncation of the single site base: 0 < Ry £ s-1
to a finite number S of lowest energy levels corresponds
to the approximation of the lattice system (2.4) by the
coupled spin system (2s+l1 = S, the finite spin approxi-

mation of (2.4) is achieved).

In special case of spin 1/2 approximation, the

Hamiltonian matrix (2.5) reads:

_ & B geh s, b =
H = const + g {2 o A(os+os)(cs+l+os+l)} (2.6)w
with
e = (E,-E_), & =|<0|x|1>|%, o... =0
1o Tl 7 N+1 -~ =N’

o's are Pauli matrices. This is the case, when the
vacuum and single excitation levels of the starting
system (2.4) are mostly important (higher excitations
appear with a negligible probability).

When Pauli matrices are involved, by the use of
so-called Jordan-Wigner trick one can rewrite (2.6)
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in the equivalent form, where Fermi operators only

appear (Fermion approximation of (2.4)):

N * N E3 %
H=LE +e¢ ] bbb - A} (b-b)(b_ ,+b_ ) +
s==N s==N
+ miE¥ by * 46 ) lexp(isn) + 1) (8.7}
N~Px NPy exp(imn .
where
£
n = g R n.=5bb. .

In this place one can obviously state the question
whether there exists any continuous Fermion theory,
whose lattice approximation is (2.7).

Let us emphasize that in the above approximations
of the starting Boson system (2.1) we did not bother
what were exactly the mechanisms, whose influence could
justify the choice of a concrete approximation. The
question of interest was rather to identify the physical
situations in which the starting Boson system like-
transforms (in the approximate sense) into the finite

spin or pure Fermion system.

If in addition to introduce into consideration
the question of classical basis behind the gquantum
concepts (as e.g. the kind of correspondence principle
realized via coherent state methods), then the diagram
of current problems can be completed.
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DIAGRAM OF PROBLEMS
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In the above, majority of steps can be realized by

the use of Boson expansion methods, whose basic

aim is to start from the given Boson system (g.f.t.
or a corresponding classical level eventually), and
generate further as many as possible from the in-

dicated relations.
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3. FERMION-BOSON CORRESPONDENCE IN THE FOCK CONSTRUCTION

Let us assume to have given the triple {a*,a,QB}K,
generating a Fock representation of the CCR (canonical
commutation relations) algebra over the separable Hilbert

space K 3 Ko
¥
fa(f) ,a(g) "1_ = (£,9) 14

a(f)QB =0 . (13 +:1)

If to choose a sequence {f, }, _ of basis vectors in
k'k=1;2;¢05

K, then a: = a(fk)¥, allows to define Fock space basis

vectors:

. *
|kl,...,kn>B = akl...ak QB §
n

so that the Fock space vector is given in the form:

Fod [P, =11 F2 |k
' B, piE) %piias

= S
g v oy k % = E(Fn'|n>3)‘3'2)

QrEEey

In the same way one can proceed in the Fermi case:

* i 3
{b ,b,QF}K is given by

*
[b(£),b()*1, = (£,9) 1

b(f)szF =0 , (3.3)
so that b; = b(fk)* implies

R *
|kyreeerk >p = by .uuby Qp



and further

a a
lg F ook [Kpreeeikpop = LFL, [nop)

Fp 3 |F>g = ]
F < B
n } L n n (3.4)

{

In the above superscripts s,a denote symmetric and anti-

symmetric tensors respectively, while F F. the Boson

B’ 'F

and Fermion Fock spaces respectively.

If to introduce now a discrete version Ek K
(Levi-Civitta tensor in n-dimensions) of the 1 2

continuous Friedrichs-Klauder sign function On(kl,..,kn),

see e.g. [2], then one easily notices that in the Fock
construction there is no essential difference between
vectors of the form (3.2) and (3.4). For example one can

. a : s
consider Fk ...k Iin the form Fk ol ek sl so that:
1 n 1 n 1 n

ceok o >pl

F

l;>_ =3 I F3 {e |k
¥R s Rk, Ryeed 1 (3.5)

s i n

suggesting that |F>F can be as well the element of F
and F

N
B’ provided suitable restrictions on representaiioﬂs
of the CCR and CAR algebra are given.

This is exactly the case, when "schizons" (see
Schroer's lectures [3]) are needed. There are the Boson
and Fermion representations, whose vacuum and one-
particle sectors coincide. In case of K = L2(Rn), one
can even get a very simple example of Boson constructed

Fermions:

x € B", b(k) = exp(-in[ a*(p)a(p)dp) x a(k) .
k



454

This representation can be always closed on EF to a
more sophisticated example, constructed in [5] (we
prefer here a discrete language, but the transition to

a continuous one is nearly immediate if in the place

of ) i to put o,(kj...k ) and in the place of
l--- n n
summations with respect to k's to consider respective
integrations) :
*
b(f) = texp(-] atay) -] —2— ] ] -
s n,m Vn!m! {r} t

. /n+l § € £, ¢ A wadBl o

m,l+n rl...rn & trl...rn rl -
©oaa ...a . : (3.6)

i n
One can easily check that
a(f)SlB - b(f)QB

* -
a(f) QB = b(£f) N
*

[b(£f),b(g) 1, = (f,9) L (3.7)
where

1. * * 2
1., = Z _— E elds, Wl € a. eweed .
F = n! £y} r, r, rl...r T, rn

*

. exp (- E a_a_): (3.8)

is a projection in FB’ so that
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1. F . (3+:9)

If one wishes to deal with a finite number of annihilation
and creation generators a:, &y and b:, bs respectively,
there is enough to restrict summations with respect to
ir},t in (3.6), (3.8) to a finite number N, say. The most

general element of the CAR algebra (3.6)-(3.9) is of the

form
L
:F(b ,b): =] (£ ,bTp) =] ] 7§ .
nm nm {r} {s}
> *
- £ « B" sde B wesly '3 (3.10)
rl...r Sl...S rl rn Sl Sm

where fnm is the n+m-antisymmetric tensor. One can
easily check that

* - - C *n m _:C * .
:F(b ,b):ny = (£ ,a a)ag =:F(a,a):ng {8:11)
nm
3
where
C
£ r S S = fr 2 S S 'Er 5 ES S
rl... n B o sk it AR n e Aeeey .
(3.12)

Furthermore, if to take into account a few symmetry
arguments, concerning especially the decomposition of
n-point tensors into irreducible parts with respect to
the symmetry group, one can prove [5] the following

projection theorem:
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c
:F(b*,b):FF = lF:F(a*,a):F (3.13)

P

being the identitv on F If specialized, we find that

Fe
on FF, the projected Boson generators are in fact

Fermion generators:

lF a(f) lF = b (f)

* _ *
lF a(f) lF = b(f) . (3.14)
Formulas (3.13), (3.14) provide an elegant way of

changing the symmetry properties of any theory under
consideration, where expansions into series of normal-

ordered products of Fock generators are admitted.

We see thus at once that,if physics in any way
makes reasonable the reduction of interests concerning
the Boson system to FF = lF FB’
of it by the corresponding (associated) Fermion system

then the approximation

is justified.

4. SELECTED APPLICATION: ISOTROPIC HEISENBERG LATTICE

As a special example of the projection theorem (3.13)
one can study a Boson theory, whose weakly excited (low
temperature) limit well approximates properties of the

Heisenberg ferromagnet in low temperatures.

Namely, if to reenumerate the set of generators:
(k) » (ka), k=1,...,N, o = 1,...,n, we can start from
the Hamiltonian
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N N
e - u)] %8 -(2) Y o, 8 & , (4.1)
" = % L k -
where
n n
- + % -
Se = (sgrsiisg)y and By = apgr B = I8,
o a
- e
s, = {-(n/2) + g Ay Aot -
By applying the projector
N
* k
P =czexp(-Ja a ):+ J P (4.2)
o g ka “ka k=1 ©
with

B o T u® )
P:; b l‘.F‘ sexp( g a aka)"

where 1; is given bv (3.8) if specialized to the total * -

mumber n of Boson generators belonging to the k-th from
& ¥ * 3

N different collections of them (ar - a:a, summation

with respect to a), we get

B Fp = F (4.3)

i.e. the Hilbert space of the spin states (finite spin
approximation), and further

Fo¥g By -

where H = H(gk > §k) is the Heisenberg ferromagnet
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Hamiltonian, and §k the spin operator at the s-th site
of the lattice: §

-> .
k= PO Sy Po. For n = 1 we get spin

1/2 lattice, while in other cases Fo can be decomposed
into subspaces corresponding to the irreducible re-
presentations of the SU(2): for n = 2, we get snin 1 and

spin O examples.

From the physical point of view the above procedure
is based on the assumption that the ground state and the
first excited level of each sinale degree of freedom of
the Boson system are of importance (spin 1/2 approximation
behind the received finallv finite spin approximation of
the Boson theory). In case when a« = 1,...,n one can inter-
pret (4.4) as a kind of a condensation of Bosonic degrees
~of freedom around the lattice sites, so that in the
original Heisenberg lattice, one more lattice (of the

condensed magnon gas) appears.

5. THE CORRESPONDENCE PRINCIPLE IN Q.F.T.:
QUANTIZATION OF SPINOR FIELDS
WITH NO USE OF ANTICOMMUTING C-NUMBERS

Under the Haag-LSZ assumptions, the most general
element of the scalar Boson field algebra can be written
in the form (compare Klauder's lecture)

sF(¢): = § (£_,:67:) , (5.1)

where brackets denote integrations with respect to
Minkowski space-time variables, :¢n: is a shorthand

notation for a normal-ordered product of free (asymptotic)
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fields taken at different space-time points. Let a(k),

=fk), k ¢ R3, denote Fourier amplitudes of the classical
scalar field g(x). On the basis of coherent state technigues,
one can employ so-called functional representation of the
CC® alcgebra [4],what we symbolize by

- Crn =
sF(8):(a,a) = § (£, ¢) exp(a,a) , (5%2)
n

and on the r.h.s. of (5.2) the classical free fields E(x)
=ppear. In the functional representation, exp(o,a) =
IB(;,a), and is the operator unit (the Fock space trans-
forms in that case into the Bargman. space). Obviously
?(S) - g (fn, En) can appear here as a coherent state
expectation value <:F(¢):> of the operator expression,
however the use of functional representation has a great
a2dvantace of providing the 1-1 map between the classical
2nd guantum level of a given Boson theory, with no poly-

momial limitations.

Using the functional representations [4,5] of the
canonical relations (CCR and CAR) algebras one can prove
the Zollowing correspondence rule: Let us extend the )
==29-LSZ expansion theorem onto the case of Dirac fields:

z2(9.9): =) (o, ¢ ¥72) . (5.3)

nm

Then:

{1} the subsidiary Boson level of the startina Fermion
theory is given, where

):lF = 2Q(v,0) 3 (5.4)
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B B

is an identitv in FF (the spinor w,@ as obeying the

commutation rules should violate assumptions of spin-

statistics theorem);

(ii) the unrestricted (bv projections lF) Boson level

C BB
:Q(Y,¥): admits a straichtforward classical map

c BB cc ¢
<:Q(y, ) > = Q(y,y) , (5.5)
c &
where ¢,y are classical spinor fields (commuting
ring).

The converse procedure can stand for a quantization rule

of a given classical spinor system.

More details, as well as considerations concerning

the map of the algebraic structure, can be found in [5].
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