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that x is strongly equivalent to fi @ eiyk * XL = x". For equivalent product vectors we 
k=l 

establish the notion of scalar product in fi 8 hk by (x, x’) = k@l &, xi). With respect 
k=l 

to this scalar product n @ hit is a closure of the set of finite linear combinations of product 
1 

vectors. This Hilbert space is nonseparable and can be decomposed into a direct sum of 
incomplete direct product spaces (IDPS) generated by inequivalent product vectors, which 

we write as IDPS(x) = ,fi: 8 hk. El ements of a given IDPS(x) differ from x in a finite 

number of & only. Each IDPS is separable and for x, x’ taken from different IDPS, we 
have (5, x’) = 0 (see [l], [4]), IDPS are the underlying Hilbert spaces, from which we 
take domains for representations of the CCR algebra. Appropriate representations are 
called direct product representations. If a representation space is generated by the product 
vector x, we say about x-generated representation of the CCR algebra. Assume (Hn},,o,l... 
to be an orthonormal complete set in L2(R3) consisting of Hermite functions H,. Any 
direct product representation of the CCR algebra is called discrete if and only if it is 

generated by the vector x = fi @ H,, where Hn, is the nkth Hermite function. If we 
k=l 

assume nk = 0 independently on k, we obtain a Fock representation of the CCR algebra: 

1 
H,,(s) = H,,(s) = F exp( -s2/2), 

I;’ Tc 

and a corresponding (Fock) representation space is IDPS (-Q), Q = fi @ (Ho),. 

3. Canonical transformations 

The following statement holds: Two irreducible direct product representations of the 

CCR algebra x and x’ generated respectively, are unitarily equivalent if and only if x and 

x’ are weakly equivalent (the proof can be found in [I], [31). 
We see at once that different discrete representations are unitarily inequivalent. Our 

main task is to find a certain class of unitarily inequivalent representations of the CCR 
algebra, emerging from a Fock representation through any canonical transformation 
which is able to break the weak equivalence of generating vectors. Let us restrict consider- 
ations to linear inhomogeneous canonical transformations of generators u*, 4; see [I]-[3], 

M, m Ull, t131. 
Consider the triple (a*, CI, Q} generating a Fock representation U&Y) of the CCR 

algebra over K = L2(R3) and acting irreducibly in D c IDPS(Q) being a Fock represen- 

tation space. Taking orthocomplete set {ej}i=o,l,... in K, let us write ~j = u(ej>. The most 

general ([2], [5]) one-particle canonical map of U,(K) into CJ#) is given by a sequence 

of unitary operations (Vi = ,~1)i1,,~2),~3),~4)>j_o.1.... implemented by 
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V!” 
I = eXp(%jU,* - iij#j), 

vy = eXp(iEjUj*Uj), 

,;3, = exp 
[ 

%(UTUT-UjUj) 1 , Vj4) = eXp(i/VjC$CZj) 

with a, #?, v real, 3, complex conjugate to 1. 

These maps result in 

aj _) cj = ei(aJ+BJ)chajj . aj + &‘J-~J) shllj . a; + Aj, 

~j* + 6; = ,-+J+@J)&vj * aj* +e-“=J-&hv,. aj+ ;“li. 

75 

(3.1) 

(3.2) 

In this connection we have the following statement: 

Let there be given U,(K), a Fock representdtion of the CCR algebra over K in 

D c IDPS(Q), and an infinite sequence (Vj}j=O,l,... of unitary maps defined by (3.1)-(3.2). 

A sufficient and necessary condition for {~}j=o,l, .., to realize a unitary transformation of 

UB(K) is the simultaneous fuljilment of: c I%j/’ < 03, $ lVjlz < CC. 

j 

For the proof see [2], [3], [6]. 

4. Representations of the CAR generated by representations of 
the CCR algebra in Fock case 

Given K = LZ(R3), write 9 = t K@, 

9 := (F = {F,},=,,,,..., F,, E K@“, lIFI12 = c IIF,liz = >7(F,, FJ < =+ (4.1) 
n n 

Given the triple {a*. a, Q> generating a Fock representation of the CCR algebra over K, 

the representation space IDPS(Q) is spanned by a sequence of n-particle vectors: 

{ln)B).,O,l,..., In>B(x,) = a*&,) . . . a*(k,)Q. (4.2) 

Let us denote by gB the subspace of IDPS(Q) consisting of functional vectors 

F = 
c 

II -& (F,, I#) = c& 1 d~,F&) In>” &) 

= 
c 

--!- (Ff, MB) 
” 1/x 

(4.3) 

with the property {F,L,,... E 9, Ff denoting the totally symmetric part of F, for each 

n. The nonsymmetric part of F. is annihilated by the bilinear form (F,, IPZ>~). 

If completed with respect to the .%rr-topology: (F, F) = c llFij/2 = J!F/12, 9’~ becomes 

the underlying Hilbert space from which we take doma& for representations of the 
CCR algebra. 
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Any functional (4.3) is of course not a c-number, but a product vector again (one 
deals with c-valued functionals in the theory of functional representations of the CCR 
[17], [18] and CAR [14] algebras). The whole CCR algebra acting in D c FB is spanned 
by functional polynomials in creation and annihilation operators: 

= c 1 - --- (iFnm, iv), 
n,nr 1/n! m! 

(4.4) 

Acting on the Fock vacuum Q, these polynomials generate a linear manifold U&f_2 E D 

consisting of vectors of the form (4.3): F = P(u*, u)Q, so that da is the closure of D 

in the T-topology. It was shown in [15] that it is possible to induce in U,(K) a Fermi 

triple (b*, b, -Q}k, generating in a proper subspace &, of 9s a Fock representation of 
the CAR algebra over K with the same vacuum Q. This result is a consequence of the 
isomorphism [14]: P,, = KW, &-symmetrizing, A,-antysymmetrizing operators in 9”, 

p‘;I’ = A,Fn, 9: = S,,g,, E,,: .& ‘+ 9: realized by the square root of a certain pro- 

jector E,f : Ei.9: = L&, .& = 6 &. 
0 

Denote x,, = (k, , . . . , k,), Z;,, = (PI, . . . , p,), k, p 

E R3, dx,, = dk, . . . dk, and assume E,,(&, pm) to be an integral kernel of E,, . The an- 
nihilation generator for induced Fermi algebra can be introduced as follows: 

.feK (a*, a) = dku*(k) u(k), s 

b(f)=. .exp{-(u*,u)}C -!-- ~d~n~@mfnm(~,,nr5Jx 
nm J.h! In! 

x u*(k,) . . . u*(kn)uh) .a. u(pm), (4.7) 

with 

fnm(Liim) = I/n+ l&*1+” {d$, jdfE,(kt.,ij.)f(r)E,+,(r, %in, ?I+.) (4.8) 

and bcf>* given by the *-operation applied to bcf), keeping in mind the property E,* = E,, 

for the square root of E,’ (see [14], [15]). Generators of induced CAR algebras, if restricted 
to a proper domain D c TB, can be considered as polynomials (4.5) and can thus be 
embedded into the CCR algebra. Any domain for U,(K) consists of vectors of the form 

where E,’ denotes the transposition of En: 
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with : 
(Ea2/nB) := $QB, E,T$z)~ = IPI)~, (4.10) 

in)’ = b*(k,) . . . b*(k”)Q = i dp’,E:qc,,p’,) a*(pl) . . . a*(pp, (4.11) 

(4.12) 

what shows that in the Fock construction a representation space for uF(K) iS really &a. 

In 4, the triple {b*, b, LijK acts irreducibly. 
The above considerations can be summarized in the following conclusion: 

u,(K) = uF~%d~+fd 3 (4.13) 

what is the mentioned embedding of the CAR algebra in the CCR algebra, universally 
valid in the Fock case. Let us add that the above exposition of main ideas differs slightly, 
compared with [15]. We make here a significant distinction between 9 and 9tB, while 
in [15] (taking into account its topological properties) FB was identified with the notion 
9’ of the present paper. No direct reference to the Fock construction was made there 
(see, however, the proof of Lemma 3 in 1151). A Fock construction allows to avoid 
completely the use of any set of totally antisymmetric functions, conventionally under- 
stood as necessary to describe Fermi statistics. In this ‘connection see also [14], [19]. 

5. Truncation procedure 
(4.13) suggests an extension of the theory of canonical transformations for bosons 

to the Fermi case. However, except for the unitary map, operators realizing a global 
CanOnid transformation of any element (4.5) of us(K) (and if specialized to domains, 
of U,(K)) in general may not exist. Therefore we shall perform a certain trmcution 

program to avoid this disadvantage. Given the triple (a*, 4, Ln>, where K = L2(R3) is 
spanned by the orthocomplete, real set (ej},e,, 4, = 4(ej), let us divide I into the enumer- 
able i&rite family of nonintersecting finite sequences of indices: (nl, . . . , ni> = (j), 

0’) Z W * o’)G) = (0). Any set {ej}j,,jj P s ans a linear manifold Ku’. In virtue of 
O’)n(k) = (0) f or I d’ff erent sequences, we have in fact K = @ Ku). Given enumerable 

U) 
infinite set of generators for UB(a, {aj}jsr and certain (j) E 1, let us define the G)-truncated 

annihilation operator by Q,(P) = g ajcj(p). I n connection with this notion let us in- 

troduce Sr 3 P(j) = 6 (K”))Bm. The triple 
0 

{Q$ , uoj, Q),(n we call the (j)-truncated 

rriple. It generates in D c 9j/) a (j)-truncated Fock representation of the CCR algebra 
over @I. Here 

[%,(P), a:&)]- = x ej(P) ek(d [uj, a:]- 

0’). (k) 

= s W. (k) c ej(p) ej(q) ’ b = d(j)(k) ’ p(j)(p, q) * lB, (5.1) 
ci) 
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where Pcj, is a unit operator in K”’ and S(j)(k) = 0 if (j) # (k) and 1 if (‘j) = (k). Neglect- 

ing (j)-index, with fE K”‘, we have ]oU’), a(g)*]- = s g) 1s = (.?, P,j,g)ls = G &,I 1~. 
The (J-truncated representation of the CCR algebra over K(j) let us denote by @(K). 
Its general element is, of course. a polynomial in {Qj, aT}j.cj,. Assume dim(j) 2 2, i.e. 
the number of indices appearing in (j) to be not less than 2. Now, following consider- 
ations of Section 4, we can introduce a * -representation of the CAR algebra, induced in 
the (j)-truncated Bose one. Formulas for bcf),j, are of the form (4.7), (4.8) with the 
only difference that a(j), a$, appear in the place of a, u*,foJ in the place off and E,(j) 
= Prj,En P;j,, providing a restriction of En to 9$) in the place of E,,. The CAR for bCf),j,, 

b(g)& obviously hold in .&) due to the * -equivalence relation between a(j), d$, and 
a, a*. Because the original proof [15] of the CAR for bu), b(g)* reproduces the Wick 
theorem, we do not repeat it for truncated generators, referring only to the mentioned 
*-equivalence. Let us remark that contrary to Ug)(K), the new unit operator appears 
in @)(K): 

l(F) = :exp { - (U*, U)(j)} \T -$ (U:i;Eij’, EAj’a;i,) 1 , 

n 

l$)~~ = $0, B . 
(5.4) 

Analogously to (4.13) we have UC”(K) ZI (I$)(K)I,,.@+a. 

Let us add that the requirement dim(j) 2 2 insures the appearance of many particle 
terms in the expansion (4.7), (4.8). Due to commutativity of a(j), u& in the case (j) # (k), 
we have a remarkable property of truncated Fermi generators induced in the (_j)-truncated 
representation of the CCR algebra: 

(5.4) 

allowing to employ these representations in the theory of spin WUV~S (H&e&erg chains) 
where Fermi statistics is needed inside any chain centre, while Bose statistics must appear if 
distinct centres are to be considered ([21]). 

6. Non-Fock extension for truncated representations 

Given the sequence of (j)-truncated representations of the CCR algebra, each trun- 
cated representation is generated by a finite (equal to dim(j)) number of generators 
aj = U(Pj), ~7. Therefore transformations (3.1)-(3.2) can be realized in any U?)(K) by 
a unitary operator V,j, = Vk . . . Vk, with Vk defined by (3.1) 

au, - = V(j) U,j,Vz,’ = Vj fZjJ<:l * ej, 
(j) 

t@‘(K) = Vcj, Ug’(K) V,;-; . 
(6.1) 
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A sequence of unitary maps V’(j) in 9s allows us to consider a corresponding sequence 

(fi~‘(K)l(j>EI of transformed truncated representations. Each Vci, provides here an 
example of the canonical transformation. With reference to the statement at the end of 

Section 3, we assume 1 and Y not to obey the asumptions c 11r12 < co, c )Vil* < co. 
I I 

Hence, a sequence {Vcj,}cj,c, cannot represent any unitary canonical transformation of 
U,(K) proving thus that in Fa, and (if specialized) in any of 9;’ we cannot find any 
vector annihilated by iicj,cf) independently of the choice of (j) and f~ K. This result 
applies at once in the Fermi case. We have here a relation (5.4) and therefore if restricted 

to domains D&g’ z 0 we have &o,(f) = Vtj,bu,Cf)V;ii which, together with its Her- 

mitean conjugate, generates @j(K). Looking at the expansion (4.7) for b(f), we find 

that a necessary condition for %jsjcf) to annihilate any vector F from the domain is the 
property B,j,(f)F = 0 because do,(f) is the only first order term in this expansion and 
cannot be cancelled in any other way. For certain (j) this effect can surely appear, however 

it cannot be valid independently of (j) E I. Hence scj,cf) F = 0 cannot appear inde- 
pendently of 0’) E I and fc K, despite of the choice of FE Srts, unless simultaneously 

If it is not so, no vacuum vector for the whole sequence {t$)(K)}y,.land inconsef 

quence of (5.4) for { fi&!‘(K)}(IJ =I can exist in Fa. This fact proves that a sequence o- 

truncated representations of the CAR algebras {@(K)} c,jcI is unitarily inequivalent to . 

the sequence ( U$‘(ZC)>cj, C t emerging in the Fock representation of the CCR algebra U,(K). 

Summarizing let us add that we cannot rather expect the existence of Fermi algebras 
in non-Fock representation of the CCR, in a global sense analogous to the Fock case. 
Lack of convergence criteria for series of the form (4.7) seems to exclude such a possi- 

bility. In the case of unitary canonical transformations the whole theory for bosons 

([ll-[I 11, [13]) can be immediately adopted for induced Fermi algebras, removing separate 

Fermi counterpart ([lo], [Ill, [13]) as superfluous in the theory of canonical transform- 

a tions of basic physical systems. 
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