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An idea to construct a representation of the CAR algebra in a representation of the
CCR algebra, which succeeded in the Fock case, is verified for the simplest non-Fock
extensions of the formalism.

1. Introduction

It was shown in [15], referred to as the paper I of the present series, that one is able
to construct a Fock representation of the CAR algebra in a given Fock representation
of the CCR algebra. The construction was further generalized in [20] referred to as II,
to join pairs of (Fock) representations describing different numbers of degrees of freedom.
A growing interest in non-Fock representations of the canonical relations, motivates the
attempt to establish a possible non-Fock: extension of the above-mentioned construction.
In this place an intriguing idea emerges of possible application of the whole theory de-
veloped for bosons, to the induced Fermi algebras. For this purpose, we extensively use
the theory of canonical transformations for representations of the CCR algebra, developed
in {1}-[11}, [13).

2. Direct product representations of the CCR

Given an enumerable infinite sequence of Hilbert spaces {/}x_1,2,.. With an invol-
ution “~" and bilinear form (-, *) implementing in each A a scalar product (7, *), let
us choose in {hx}i-,..... an (infinite) sequence {X;}x.1.2...,Xx €k with the property

ac - -}
H llxkl]?> < o0. Such sequence is assumed to constitute a product vector x = H Xg
k=1 k=1

@« o
€ H ® hy. Two different vectors x, x” are said to be equivalent if H (xx, x3) converges,
k=1 k=1

o0 W

ie. 2. |G, xp)—1] < oo, and weakly equivalent if 3" [{(X, xp)|— 1] < 0. If x and x’
k=1 k=1

are weakly equivalent, there always exists such a sequence {y}i_;,,,.. of real numbers

{73)
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a0
that x is strongly equivalent to [ ® €”¢- x; = x"". For equivalent product vectors we
k=1

o0 a0
establish the notion of scalar product in [] ® & by (x, x') = [] (%, xx). With respect
k=1 k=1

@
to this scalar product [ | ® / is a closure of the set of finite linear combinations of product
1

vectors. This Hilbert space is nonseparable and can be decomposed into a direct sum of
incomplete direct product spaces (IDPS) generated by inequivalent product vectors, which

we write as IDPS(x) = H" ® hi. Elements of a given IDPS(x) differ from x in a finite
k=1

number of x; only. Each IDPS is separable and for x, x’ taken from different IDPS, we
have (%, x") = 0 (see [1}, [4]). IDPS are the underlying Hilbert spaces, from which we
take domains for representations of the CCR algebra. Appropriate representations are
called direct product representations. If a representation space is generated by the product
vector x, we say about x-generated representation of the CCR algebra. Assume {H,}, 0.1...
to be an orthonormal complete set in L2(R?) consisting of Hermite functions H,. Any
direct product representation of the CCR algebra is called discrete if and only if it is

a

generated by the vector x = H ® H, where H, is the mth Hermite function. If we
k=1

assume n; = 0 independently on k, we obtain a Fock representation of the CCR algebra:

1
Hnt(s) = HO(S) = T:BXP(—SZ/Z)’
Ve
and a corresponding (Fock) representation space is IDPS (2), 2 = [] ® (Ho».
n=1

3. Canonical transformations

The following statement holds: Two irreducible direct product representations of the
CCR algebra x and x' generated respectively, are unitarily equivalent if and only if x and
x' are weakly equivalent (the proof can be found in [1], [3]).

We see at once that different discrete representations are unitarily inequivalent. Our
main task is to find a certain class of unitarily inequivalent representations of the CCR
algebra, emerging from a Fock representation through any canonical transformation
which is able to break the weak equivalence of generating vectors. Let us restrict consider-
ations to linear inhomogeneous canonical transformations of generators a*, a; see [1]-[3],
[51, i6]. [11], [13}.

Consider the triple {a*, a, £} generating a Fock representation Uz(K) of the CCR
algebra over K = L2(R®) and acting irreducibly in D < IDPS({) being a Fock represen-
tation space. Taking orthocomplete set {e;};—o.1,... in K, let us write a; = a(e;). The most

general ([2}, [5]) one-particle canonical map of Uy(X) into 03(1() is given by a sequence
of unitary operations {V; = V{PVPVDY L _, | .. implemented by
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ViV = exp(4;af - A;ay), Vi? = exp(iz;atay),
3.1
P; o
Ve = exp[—ii (a}“a}"—ajaj)], Vi® = exp(if;a}a;)
with a, 8, real, 4 complex conjugate to 4.
These maps result in
a; — @; = e““*Pchy; - aj+ €%~ EDshy; - af + 4;, (32)

* ~k __ ,-ia;+B) ™ —i(a;—Bp . =
af — a; = e "*Pchy; - af + e FPshy; - a;+ 4;.

In this connection we have the following statement:

Let there be given Ug(K), a Fock representation of the CCR algebra over K in
D < IDPS({2), and an infinite sequence {V;};j_o.1... of unitary maps defined by (3.1)-(3.2).
A sufficient and necessary condition for {V;};_o.1,... 1o realize a unitary transformation of

Up(K) is the simultaneous fulfilment of: Z 1412 < oo, Zlvjlz < .
j J
For the proof ses [2], [3], [6].

4. Representations of the CAR generated by representations of
the CCR algebra in Fock case

Given K = L*(R®), write & = %K@,
F = |{F= {Flroon... e KO IIFI? = > IR = > (F, F) < o). (@D

Given the triple {a*, a, 2} generating a Fock representation of the CCR algebra over X,
the representation space IDPS(£2) is spanned by a sequence of n-particle vectors:

(m P non,.s  ImBG) = a*(ky) ... a*(kn) Q. “.2)
Let us denote by &5 the subspace of IDPS(L2) consisting of functional vectors

_ 1 _ 1 P T BT
F= }: o Bl = Z—VET { o Fu @) 12 e

- 2717'— (S, InY®) @3)

with the property {F,},_o.1... € %, FS denoting the totally symmetric part of F, for each
n. The nonsymmetric part of F, is annihilated by the bilinear form (F,, n)B).

If completed with respect to the #-topology: (F, F) = Z |LFS|12 = ||F||%, # p becomes
n

the underlying Hilbert space from which we take domains for representations of the
CCR algebra.
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Any functional (4.3) is of course not a c-number, but a product vector again (one
deals with c-valued functionals in the theory of functional representations of the CCR
[17], [18] and CAR [14] algebras). The whole CCR algebra acting in D = & is spanned
by functional polynomials in creation and annihilation operators:

1 —» =
F(a*,a) = Z 7’” — (o \ n F o Cera ) 0 (1) .. 0% a(p1) . an)

- Z l/mm' (F ms ), (4.4)

Acting on the Fock vacuum $2, these polynomials generate a linear manifold Up(K)R < D
consisting of vectors of the form (4.3): F = F(a*, a)R2, so that F; is the closure of D
in the #-topology. It was shown in [15] that it is possible to induce in Up(X) a Fermi

1
triple {b*, b, 2},, generating in a proper subspace # of 5 a Fock representation of
the CAR algebra over K with the same vacuum £2. This result is a consequence of the
isomorphism [14]: #, = K®", §,-symmetrizing, 4,-antysymmetrizing operators in #,,

1
Fr=A,F,, Fr=S.Fn, E,: F3 > F} realized by the square root of a certain pro-
jector E?: E3FS = #5, 95 = @ F5. Denote K, = (ky, e, k), Bo = (B1r s Pa)s Ko P

e R3, dk, = dk, ... dk, and assume E,(k,, P,) to be an integral kernel of E,. The an-
nihilation generator for induced Fermi algebra can be introduced as follows:

fek, (a*a) = {dka* (k) akh),

b(f) =: exp{— (a*, a)} V’ —— Sdk Sdﬁmﬁ:m(l?n’ﬁm)x
xa*(k,) ... a*(ky)a(py) ... a(pm), @4.7)

with
SomGens Br) = VF 10m, 100\ 880 \ dr EyKas @) APV Evan(rs Gos Bran)  (48)

and b(f)* given by the s-operation applied to &(f), keeping in mind the property £} = E,
for the square root of E? (see [14], [15]). Generators of induced CAR algebras, if restricted
to a proper domain D < %, can be considered as polynomials (4.5) and can thus be
embedded into the CCR algebra. Any domain for U;(K) consists of vectors of the form

S B

F= E l/— —(F, IM)®) = E l/“ —= (&1, In> )
= § L = E L F 4.9
= i V;z_!_ (F,,,EI[")B) _ l/;!— (Fu9 [n> )9 ( )

where ET denotes the transposition of E,:
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(ED2n®y := |mp®,  ETInd® = |mpF, (4.10)
with;

InyF () = b*(Ky) .. ()R = 4P, EXCens ) a*(p)) .. (PR, (411)
IEme = ST = ST uEsE = 1F)e @.12)

1
what shows that in the Fock construction a representation space for Up(K) is really Fp.

1
In %5 the triple {b*, b, 2}« acts irreducibly.
The above considerations can be summarized in the following conclusion:

Up(K) > Up(K)|g~#5x0> 4.13)
what is the mentioned embedding of the CAR algebra in the CCR algebra, universally .
valid in the Fock case. Let us add that the above exposition of main ideas differs slightly,
compared with [15]. We make here a significant distinction between # and Fp, while
in [15] (taking into account its topological properties) &, was identified with the notion
F% of the present paper. No direct reference to the Fock construction was made there
(see, however, the proof of Lemma 3 in [15]). A Fock construction allows to avoid
completely the use of any set of totally antisymmetric functions, conventionally under-
stood as necessary to describe Fermi statistics. In this connection see also [14], [19].

S. Truncation procedure

(4.13) suggests an extension of the theory of canonical transformations for bosons
to the Fermi case. However, except for the unitary map, operators realizing a global
canonical transformation of any element (4.5) of Up(K) (and if specialized to domains,
of Ur(K)) in general may not exist. Therefore we shall perform a certain truncation
program to avoid this disadvantage. Given the triple {a*, a, Q}x where K = L*(R®) is
spanned by the orthocomplete, real set {e;};;, a; = a(e;), let us divide [/ into the enumer-
able infinite family of nonintersecting finite sequences of indices: {n,, ..., n;} = (),
() # (B) = (Dn(k) = (D). Any set {e;}je;, spans a linear manifold K¥. In virtue of

(In(k) = (D) for different sequences, we have in fact K = @ KY. Given enumerable
L
infinite set of generators for Up(K), {a;}ie; and certain () € 1, let us define the (j)-truncated

annihilation operator by a;(p) = Zaje,-(p). In connection with this notion let us in-
[0)]

troduce &F o> FW = ® (K9)®". The triple {a¥),, a,, Q}x®» we call the (j)-truncated

triple. It generates in D = F§ a (j)-truncated Fock representation of the CCR algebra
over K9, Here

[ (@), af@l- = " e(p) el [a, afl-
[ (3)

= 0, oy Zej(l’) ei(@) 15 = Sy Ppy(p, ) 15, ¢.1
vy
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where P;, is a unit operator in K% and 64, = 0if (j) # (k) and 1 if (j) = (k). Neglect-
ing (j)-index, with f € K, we have [a(f), a(8)*]- = (f, )15 = (f, P, 15 = (f; £y 1.
The (j)-truncated representation of the CCR algebra over K let us denote by UF(K).
Its general element is, of course, a polynomial in {a;, af };ej. Assume dim(j) > 2, i.e.
the number of indices appearing in (j) to be not less than 2. Now, following consider-
ations of Section 4, we can introduce a *-representation of the CAR algebra, induced in
the (j)-truncated Bose one. Formulas for &(f), are of the form (4.7), (4.8) with the
only difference that aj,, af;, appear in the place of a, a*, /¥ in the place of f and E¢’
= P E,Py,, providing a restriction of E, to F¢ in the place of E,. The CAR for b(f),,
b(g)¢;, obviously hold in 9'1'5,” due to the *-equivalence relation between a;,, af;, and
a, a*. Because thz original proof [15] of the CAR for 5(f), b(g)* reproduces the Wick
theorem, we do not repeat it for truncated generators, referring only to the mentioned
*.equivalence. Let us remark that contrary to U§’(K), the new unit operator appears
in UP(K):

. "Y1 . .
19’ =exp {— (a*, a)n} }_J T (aHED, EQaly):
, L ' (5.4)
19 Fg = F.

Analogously to (4.13) we have U§’(K) > U (K)lp~39x 0.

Let us add that the requirement dim(;) > 2 insures the appearance of many particle
terms in the expansion (4.7), (4.8). Due to commutativity of a,j,, a, in the case (/) # (k),
we have a remarkable property of truncated Fermi generators induced in the (j)-truncated
representation of the CCR algebra:

b b(g)?j;]— =0,
[b(f)(j)a b(g):j)]-i- = (f, g)(j)lg),
allowing to employ these representations in the theory of spin waves (Heisenberg chains)

where Fermi statistics is needed inside any chain centre, while Bose statistics must appear if
distinct centres are to be considered ([21]).

(5.4)

6. Non-Fock extension for truncated representations

Given the sequence of (j)-truncated representations of the CCR algebra, each trun-
cated representation is generated by a finite (equal to dim(j)) number of generators
a; = a(e;), af. Therefore transformations (3.1)-(3.2) can be realized in any U§’(K) by
a unitary operator V; = Vi ... Vi, with V) defined by (3.1)

ag =VpapVs = Z V,a;Vit-e,
N ©.1)
U9(K) = Vi, UP(KVGE
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A sequence of unitary maps Vy;, in Fp allows us to consider a corresponding sequence
{U§(K)}jer of transformed truncated representations. Each ¥, provides here an
example of the canonical transformation. With reference to the statement at the end of

Section 3, we assume A and » not to obey the asumptions Z [4]2 < oo, E [ml? < o0.
i 7

Hence, a sequence {¥;,};,<; cannot represent any unitary canonical transformation of
Us(K) proving thus that in %, and (if specialized) in any of #§’ we cannot find any
vector annihilated by d;(f) independently of the choice of (j) and fe K. This result
applies at once in the Fermi case. We have here a relation (5.4) and therefore if restricted

to domains DnF ¢ % & we have bi,(f) = Vipb(f) VG which, together with its Her-
mitean conjugate, generates U(K). Looking at the expansion (4.7) for b(f), we find
that a necessary condition for ‘bj(f ) to annihilate any vector F from the domain is the
property dg,(f)F = 0 because d(;(f) is the only first order term in this expansion and
cannot be cancelled in any other way. For certain () this effect can surely appear, however

it cannot be valid independently of (j) el Hence 3(j,U)F = 0 cannot appear inde-
pendently of (j) el and fe K, despite of the choice of Fe %, unless simultaneously

Sk < o0, Ol < .
7 7

If it is not so, no vacuum vector for the whole sequence {U§’(K)};,<,and inconsef
quence of (5.4) for {ﬁ?’(K)}U): 1 can exist in F . This fact proves that a sequence o-

truncated representations of the CAR algebras {UP(K)}y<: is unitarily inequivalent 1o
the sequence {UY(K)} (<1 emerging in the Fock representation of the CCR algebra Ug(K).

Summarizing let us add that we cannot rather expect the existence of Fermi algebras
in non-Fock representation of the CCR, in a global sense analogous to the Fock case.
Lack of convergence criteria for series of the form (4.7) seems to exclude such a possi-
bility. In the case of unitary canonical transformations the whole theory for bosons
([13-[11], {13]) can be immediately adopted for induced Fermi algebras, removing separate
Fermi counterpart ([10], [11], [13]) as superfluous in the theory of canonical transform-
ations of basic physical systems.
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