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We construct functionsl Fock represeatations of the CAR aigebra. The S-operator
quantumn theory of interacting Fermi flelds is formulated. 1t is found that the fanctional
version of this theory does not require the use of functionals taking values from a Grassmann
algebra. All [unctionals used are C-valued quantities,

1. Inftrodnction

The LSZ reduction formulas for the S-matrix elements suggest that the scattering
operator S, in the case of spin —1/2 Fermi fields can be expressed by the functiona} series
over normal prodoncts of field operators (see [15], [3]. [4D.

--Q(S?o- Po): -2 T = (ol A ) - 2, i % > idx, ... §dxfdy, ... {dy,x

,’*“"-“"-"(Xh coss Xis V1s =2 J1)° Pouy(X1) --e Po-;(xx)'ﬁo:,(y‘) s For, (7, (LI)

where o, Py are the free operator-valued sofutions of the Dirac squations, : - : dcuot:s
a normal ordering of the creation and anaihilation operators (in the sequence a*, 3%,

a-, a@*). Introducing a forma! functicnal representation of the CAR algebra, whers
funcnonzls take values from G (G is a Grassmana algebra), one may obtain (for details
see Section 4):

:Q(Fo, Fo): (2, @, B, §) = e‘"’"‘;‘”ﬂ(w. o)
= eidn Z T & @8 v b, 2

where yo, Po are the classical G-valued solutions of the free Dirac equations expressed
by linear forms in 2, g ard 2, 4, respectively, where z, 4, 2, § € G. It provides the reduc-
tion of an operator problem to a G-number problem. The series 2(y,, Po) in (1.2) is the
basic object of the quantum field theory for spin —1/2 Fermi fields, given in [15]. One
obtains there interacting Fermi field operators. However, the disadvantage of this theory
is the fact that quantities used are not ordinary C-valued functionals, but elements of G.
This was the reason for investigations performed in [7], where an example of C-valued
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anticommuting functional operators was constructed. Here we continue’ these investiga-
tions following (a preliminary) formuiation of the probiem given in {91 .

In Section 2 we odtain C-valued functional Fock representations of the CAR algebra
Ue(X). The case of G-vaiued representation Ug(K) is also discussed. ’

In Section 3 we introduce 2 functional representation of the LSZ reduction formuias
in the case of spin —~1/2 Fermi Seids,

In Sectivn 4 a multiplication formula for operators of the form (1.1) is found. It is
expressed with the help of functional derivatives with respect to Fermi operators ordered
in normal products.

In Section 5 we formulate the S-operator quantum theory of interacting Fermi fields
motivated by the theory given in [15]. Interacting Fermi fields are expressed by infinite,
series over normal products of creation and anihilation operators of the free fields. The
functional version of the theory is shown to be expressed in terms of C-valued functicaals
and oot elements of the Grassmann algebra G, as in [195].

2. Functional representations of the CAR algebra and the free spin ~1/2 Fermi field
Let X be a separable complex Hilbert space with an involution *. Let U{X) be an
algebra of the canonical anticommutation relations (the CAR algebra) over K. U(X) is
a C*-algebra with the propersty that there exists a linear map U: § — 5(§) of Kinto U(X),
whose range generutes U(X) . '
B(&*, b(mls = (£, 1), @
B(®, bl = [5(5*, b(n*)s =0,
where (-, ) is a bilinear form in X, /is a unit in U(X), &, n€ X It is 2 well known fact
that if U(X)and U'(X)are the CAR algebras over X generated by 5(¥) and 5°(£) respectively,
£ € K, then these algebras are *-isomorphic (see {5}, {11}, (12D
If there exists a vacuum vector fo, 5(8)fo = 0 we will call U(K) = {b, b*, fo} 3 Fock
representation of the CAR algebra.

»
Let K= ‘?"’ where K is a separable compiex Hilbert space.
N . N
Kobon &= {Ehes_w [P = 3 G0 &) = 361

i}

and (-, -) is a bilinear form in X Aa induced bilinear form in K is given by (5.. n)

N L d
- ,.2( & n0-

Now, we will construct a C-valued functional Fock representation ULK) of the CAR
algebra. .

In [7] an operator E, was introducad, bounded in H, = élz with the properties:

]

E'=E, E=E, PaEi=—EPa. 22)
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A is a separable Hilbert space, P, denotes the permutation of ith and kth Hilbert

spaces in the teasor product H,. Let us denote: w—the space of all real sequences, V(n)
—some Euclidean vector space, dim V() = n.

DerINmTION L A.;é(wGV)a &1 opy—iane —generalized Levi-Civita tensor,

PRO‘)PE(D"@—&-—"I*‘* - -zﬁﬁt"";ﬁr‘"m-l‘.o (u)
Pa(p) Py (i) = Py,
where 4, is an antisymmetrizing operator in the nth teasor product.
Leth = LY{R%)and &3 {&:}iu1.2._ be an orthonormal set in &; * denotes the complex

conjugation in A.
Lowa 1. The integrol kernel:
H(xl' }’-) - E"—yl_..(xlr msx'tyls -«-J’.)

- ;Zj:e‘,(xo e €1 (XDt epy e tana B, o Otasa sy - €1, (1) - €10 (24)

I N
defines an operator E,, bounded in H, = .?h' = ié(?h) with the properties (2.2). Here

N
K 3uw ljuj]* = ,g lHudi®.
Proof: A straightforward calculation gives:
Pa(x) Pa(u) EV(Xey Fo) = = EV(Xs, ¥ Pa(y) Pal?).
Similarly,
B (%0 72 = EP(res 30 = E2(%a0 30
From

; § (&, .. Sz E2¥(xa, 2 E7(200 72

. - L ]
= %el.(xl) ven fi.(xn)‘iz.;.—l.n 6!,1, e S140 6;-.:. oo 6:-&-‘1.0’1) e €500
and

pimine = LIRSy A
we obtain

El’”(xlo }'-) = ﬂ'(xlv J’-)-
It is seen that the E, defined by (2.4) satisfies conditicas (2.2).
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N
DEFINITION 2. Let &' = @4 be a real separable Hilbert space, £ 3 u, 0
1

N
K'@k, KBE.'I. ks k,

b0, 8: = 3 5 1T @t 2, ET2e, @9

N o« 1
b(’v’:ﬂ- zz’_!

2 (i} *Er:, LEVoD,
e 4
where we have used the symbolic notation:

(5.8'2'. 1007'*.) del Sk-S#g "-Sd’lﬁcsal -“S¢-th
% £3(Q) 8, (x1) oo U (X EM AP =%0(xy, ey Xgy 245 ees Z) X

X EWt=tse"0(g, 2y, ceey Zas P15 oo F14+0)00(F1) - Ons 014)-
Now we turn to the proof of

TueokeM 1. The set {b, b*, /o), where fo € C and b, b* are defined above, generates
@ Fock represemtation of the CAR algebra over K.

Proof: According to the rules of functional calculus (see [15], [7D, we have

N
b g )00, . Dlums = . DB 1= T o5 T (00 BV, .8 Ebrel,
where ”

N
¢.n)= .g;(e" 1)

Eu,0) = 3 3 a2, E>o).
= n! -
One may obtain also:

Gt @n) = Top T (e, e
(5 8 @, 9) -;%g(u:

n
(e, G 9) @, 0) = T 21 5 T (i Ezss, f25] i),

Here ~ denotes a reversed order of the indices. From these equalities we get at once
[5(5), 5(n)*)4 (u, ©) = (£, n) E*(u, ©),
[5(5), 5(m))4 (1, ©) = [B(5)*, 5(n)*].(u, ) = 0.

ERLAEY
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These rdan‘ons are valid in the Hilbert space spanned by functional vectors of the form
V() = ’,.. T (5, Erid) and for foeC, bi&lfo = b(u. .e)f,x.-. = 0. This

complc:s the pmo(.

Let as r~mark that tzking into account X = k we reduce the above results to the case
discussed in detail in [7). Now we shall give a formal construction which provides the
basis for considerations usually performed in functiopal theories of fermions (see for

example [15L 2D
Let G be 2 Grassmann algebra with a bilinear form (-, -); for details see [15], [2 ISL
the most deizlled sdy is givea in [2]: ‘
Ga - 29 ﬁ- < = {’,}3—2-&_-.0
(@, 5) = —(ﬁv ).

Ga‘sﬁ: KaE.'I-
(=, B, 5" = £~9(a, §), (29)
b(ﬁ’ﬁ-s) - ém(ﬂa 50

»

Her_:,e“”az-:—!(z,ﬂ)‘ and (z,8) = 3. (24, £ is a bilinear form in G, (z, £) denotes
s o=}

the smearing of 2 € G with the help of £e X

TEEOREM 2. The sez {b, b*, [}, where fo ¢ Cg (see [2]) and b, b* are defined in Defini-
tion 3, generates a Fock representation of the CAR algebra over K.

Proof: An immediate calculation wiih use of rules of functional calculus (151, [2D
yields

(4- B)(a, ﬂ) = A (19 %) 8(79 ﬂ)l,-o.

e‘s%)d(ﬁ) = A(x+p),
Ao ) = alere )
where

A=, ) = Z

,Z(a:'.. 267

- 3 alm
We use here the symbolic potation again. According to these rules, we obtain:
[2(8), 6(m)*L. (=, B = (&, n)e=P,
[6(8), (M. (=, B) = [B{H* b(n)*]. (=, f) = 0.
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These relations are valid in the Hilbert space spanned by {unctional vectors of the form
V(z) = 2}/__(0' %, &), #*P is 3 unit operator in {5,5% fo} = Ua(K). Now we

will prove & useful lemma.
4
LevmA 2. Consider U(K), K m ?k. The operators:,
g _L[bf'bm - __L_[bx‘l"'b:

- ., a
V2 b3+ V2 |ba+ide |’
L _l__ [b‘-l‘b‘] - 1 [b,-ib,] @D
vZ lbg~m2f V2 |bs-o. |’
Sulfil the relations:
la* (@, (D = &, DI = [a~(D, 3*(Ds. @39
the other anticommunators vanisking. Here ¥ = {f,}pus.3s 4 = {1}par2s
2
LreX=@k (L= 3 un-
I is @ unit operator in U(K).
Proof: 1t suﬁcs to remark that
c*-—’-—(c-l-.:,) r--—L- ! +ick
,/-z- 1 » }/i (C;+l¢;).
. - -l :
.¢ =(¢y—icy), a 7z (cy—ica),
where the operators ¢,, ¢;, ¢1, ¢z ful@
[cl w' CZ\/')L =0 = [01(1)- ‘3(1)]4-0 (2.9)

e (D). D)y = 8.(x, DL
This is a straightforward consequence of the CAR relations. Applying (2.9) in (2.3) we

complete the proof of the lemma, !;ioreovet. @*)* = ; (@) = ;*
The operators (2.7) are creation and annihilation operators of charged spin -1;2
Fermi field ([1}, [3]. Therefore, we my write

DEFINITION 4. Ler f¢ S, the set of bispinor test finctions. The operctor ralued free
spin =12 Fermi field is given by:

vo(f) = 2 §dk lZSir{f.(xx* (k, x)at @) +F, (xyo7° (&, x)as R},
Vo(f) ('PCU)). Gﬂ’n'

(210
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Here f denotes the Dirac conjugation of f, 02* are defined in [3], x € M,—the Minkowski
space, These operators fulfil the reiations

o, $elle = T s § ) - Smlz—1)e O, @1

which are a straightforward consequence of Lemma 1.
The other anticommutators vanish, §,.(x~y) is the fermion anticommutator function,

(f, v) is 2n invariant in the bispinor space.

3. Functional represeatation of the LSZ reduction formula for the S-umtrix elements in
the spin 1/2 Fermi case
Let :Q(yo, ¥o): be the S-operator. We have the following
STATEMENT 1. Given ULKX). Then

9o, F: @.9) = T —,,1’? : (SZ., BEilies) = S(u, o),
where ”
b - - . K t\/nyim 2 - -
smbein=Z 2V (,)(,)(,)(,)" %‘. a7, dgs..,x

x Sd;;rs d;;-t 6)‘!":1 l";) 6:—.‘.“]?’ r+ 2;') Suas X
x 88 (uk, 7p) 8, (0", P) &y (7 + 23, 7) x

—'—'——‘—l Z "(IM Ll £ S P -
l/p'u-p;.r'(:-r)' &’ Z( )( Yx

x 2( o )(-i)l';;de.de.mz:;.,..(x..:.)x

-\ =, o o’}
x ”:.' Xi» 4:) aee v::' (x5, 9;)0::2(1” i q:.) one e..'.:_':"(x,, q...) x
- . - - - ’ -,
X Uqy '(}'l [ ll,) wee 7:’."0"- ll,)ﬂ."" (}'M'l ’ ux) eee 7!:_. (Jn 3‘:.')- (3-1)

Proof: Let us start from the series (1.1). From the definition of the normal ordering
we obtain:

:Q(po, Po): = 2

o Rim!

1 2 . .
AT & (R e ety
~

§ (WS, © Ve Por)

.
=M



328 P. GARBACZEWSKI

Taking into account relations (2.7), (2.9), we obtain:

1 2
: (o, Fo): = Z = 2 (ne2 » :‘ufzv‘;:"z'q: M
1 171
= Ynimikl) »

where

¢ = b, Cie = by,

€ = blia, Clambya, pv,0,7=1,2,
and therefore,

- 1
(o, Fo):(u, 0) = 3 m (n2y , B2t b, by bhea) (4, 0)

1 2+ +Mb P 2y
'% ;7n’un’="uc=u”z’ Z VB %;,('4 e
By Ope 83 (y, Q) ERTS 245 47),

where ~ denotes a reversed order of variables in the grour {k,/}, #(y, o) is a symbolic
expression for

l - - - -
5 2 (17001~ kp) brrey, - 8(Pr=Kp) Srpmy. -
* puwA
Let us introduce the new expansion coefficient:

e 2«9. ', ) Ouitt’s 7+ DT S B2, FY (0, P +2.7),  (3.4).
H

where, for example 4,{u’,u) and 4.(y’,»+2) are the symbolic expressions for
8py =k) 8,50, e 8(pa=KDdrie 20d 8(Pass =21} dninsiris2 e S Purm— o) Splmrasr T
spectively. )
Summations over vestor indices represent also integrations over corresponding vari-
ables.
Now we obtain (see also formula (2.55) in [15)D

4

Q(vo, ¥o):(u, 0) = Z ——-__.-—._-.——‘!_.._.——— Z (Bt e aers ﬂ;:‘;b E:‘:J-n”;“")
= ¥ almkUipiet

g l/n.m' r:io :Eo (;)(:)(:)(’:) 8

K
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This completes the proof.

G3)

The formula (3.1) provides a functional representation of the LSZ reduction formula

for the S-matrix elements in the case cf spin — 1/2 Fermi fields.

The Statement | permits us to apply the apparatus developed in [16], [17] to the func-

tionals of the form: :Q(y,, wo):(u, ). Let us remark that

Sw,o) = T ]/n—'l.;t-' T (£ B o).
T

This implies for example (il ||S]| does exist):

|:Q(wo, Po):(u, )| < lISHlexp {31l +31Icil*}
and for a unitary S-functional:

[S(u, v)f = |:Q(po, Po):(u, o) € exp{llul® + {lici3}),
where

4
)2 = @, u) -3 (1t 2,).

4. Multiplication formula for operators of the form (L.I)
4
Let us take into account Ug(K) with X = @k. We have
1
LEMMA 3. Functional operators:

a* (E) - e""."d'”(z, 5, ;'(E) - ,(dm}-n(j, E).

a(5) = E=DED@ B 34 (@) = e dn(L, B,

z = --l-i-(ali-izz), - )—2- (B -if*),
i - ,}z (al=ia?), f= ;,‘—i @ +if?)

Sulfil the relations (2.8).

3.6)

£

(3.3)

“4.1)

42)
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s = 2
(2, @)+ (B, B) = (&, f)+(a%, %) = ,z_: {(a, BHY+(22, BD)).

Proof: We have

Putting:
ai _ Bt
’ ‘i L4 pi
a = Gf - [G,L-l.z..‘l.u ﬁ' ] ﬂi - W;L.x.z.z.u
a3 I-H

4
andforK-e;k defining

b()* = £~ (e, §),
b(E) = £, 8),

we may apply Lemma 2 and this proves Lemma 3.
Now, we have:

$o(D) (@, B, 2, ) = em+Gh ()
| = a8 T dk [oefix) {0+ K, 2B+~ DAE) @)
and similarly, ‘
Fol) (=, 4, 2, DD+ 3N Go ()]
= cxbiedon T dk{defin) (7 + &, DaB)+o- &, DB.E). 4.9
This implies (cee also [15]:

:Q(Po. Fo):(2, B, 2, f) m e=D+EH0(,, B), 4.5
where

O(po, F0) = T g (@hems PEFD)-

From the rules of the functional caiculus for elements of Grassmann algebras (see Theorem

2, [15], 2D, we obtain:
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4
LA 4. For given Ug(K), K = @k the following relations hold:
l .

2, (or fio):(z. 3:,,‘-. % 7‘:.-):.'2,(%. F: 8, 3 Daiee

- :0,2(v0, Fo) =, B, @, H)
- e dnQ (p, 1exp{: —s* —i‘— i s- }o,(v, Plgame - @)
dy dp dy b
The proof may be found in [15], Chapter 5. There is, however, a difference between
the case discussed here and in [1], which must be kept in mind: in [l]z,ﬁ,;,ﬁ'mG-valued
bispinor functions and not G-valued vector functions as in {4.18).
Lookirg at [1], [3], [4], we conclude that the Grassmann u!Jebra techniques were pri-
marily motivated by operations over normal products of Fermi operalors..
Let us take into account arbitrars Fermi field operators expressed by linear forms
in creation and annihilation operatnzs, and therefore satisfying

. 5@ =, Fe)l,
. @l = FU). $@hes
J. 2 € S—the space of bispinor test"functions, J is the unit operator in U(X). For free

fields we have F = S, see (2.11).
Let us formulate the following

DerINtniON 5. Left-hand-side funcuanal demarive

@n

d 1 —m.
:( ’d—w)g(% P = X ooy @S

- \ _ 4.3
{7 & )29 = T oy @ Fov 7).

Right-hand-side functional derivative
: O 7(‘?‘ f)"'Z——-—-l ( AL
NG T ZEmnyim @t YYD @9

n’(m

39(‘#’» W(‘E%’ n—): 2 O e (Wh e 120 -V?-‘

Looking into (1], Chapter 11l and into {13], [14] for properties of these derivatives,
we can formuiate:
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4
THEOREM 3. Given U(K), K = ?k. Then
: 2: (v, Po):: 2:(v0, Po): = :2,2(¥o, o) = :2,(s)Q;:
= 2,( ‘)exp{i-—Z—S‘ d :—2-5 -—}.Q( ¥):! 4.10)
s (P Y. P ﬁ & &y p18 2 -x . .
Proof: The computation can be performed ia the same way as in the proof of Lemma 4.
The resuit can be written as:

:23(p, P ;1';-9- = :2,2(Po, ¥o):-

Taking into account the Ug(X), we obtain evidently

.le\?v —) é‘”""‘”gxz(!’- jn
with 2,,(y, ¥) given by (4.6). .
Thus the theorem is fulfilled for UG(K).K-?k.

But (4.10) is independent on the choics of the (*-isomorphic) representations of the
CAR algebra. Therefore the validity of (4.10) for Ug(X) implies the same for each U(X).

4
K = &% This proves the theorem.
1
An essentially functional version of equation (4.10) is provided by
STATRMENT 2. Given UL(K), K = ek Then

:2,3(0, Po): (4, T) = 2,(s)2;: (z, ) = sz(ﬂ. o) = ($;- Sx)(u,0). (4.11)
Proof: The statcment is a trivial consequence of (3.1) and (4.10).

5. The S-operator formulation of the quantum field theory for spin —1/2 Fermi fields

Our starting poini is the S-functional theory formulated in [15], Chapter V, with
the belp of Grassmann algebra tools. Relations between formal (taking values from G)
functional power series provide scme relations between their expansion coefficients.
Our 2im is to express these relations in the operator language. It will give us a theory
independent of the choice of (*-isomorphic) representations of the CAR algebra.

The essentially S-functional theory (in terms of functionals taking values from C)

4
is thus a trivial corollary obtained by a proper choice of ULK), K = k.
1

Let S = :Q(y,, ¥,): be the on-mass-shell scattering operator. One may apparently
coaclude that juch an operator belongs to the set of operstors fulfilling the following
conditions:
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() afgebraic structure:
Sy* Sy = S;; = 1 2,(e)2;2,
(@) wnitarity:
. S*-Sm=1l,
Qi) relatizistic invariance:
: 2(Porwss Para): = “2(po, Fo):s
where
Pralx) = (S¢¥) (L-'x=L-ta),
{L.a} are the 10 parameters of the inhomogeneous Lorentz group.
Let us introdace subsidiary Fermi operators:
Derovinon &
g = = § ST (x=p)yan(),
3@) = ~ [ y70)7.S O~ 2),
where
1. i@l = (L Fe), fozeS.
Thke other amticommutators vanish.
This implies of course -

9. 5. = (. Fg).
Let us formulate further

Deristnion 7.
Sy = 1 2(q+ 9o, §+Fo):-

333

(s.1)

(52

53)

G9

(53)

(3.6)

(5.0

The operators S, are the basic objects of our theory. Its contents lies in the five postulates
which limit the arbitrariness in the cheoice of S,, preserving at the same time relations
between expansion coefficients of the operator series (5.7) resulting {from the theory given

in {I1S]
(i) Algebraic structure

Sg ¢S = 53311 03 («)027:]

- |.d . d .d__d -
= :Q,(q-l-'p, q-l-p)exp{l—a,;S‘E—-37;8'7,;}93(9+!p. q+§):!!-!.. (5.8)

(i1) Unitarity
Sy eS, =1
(iti) Causality. Let us introduce

T =5*s5,

B ]

(5-9)
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and define
Ti=mS*te S‘.‘t,
where (see aiso {15
71 () = 6H(x)n(x).
Now, the causality condition reads

T = T3 T3 (5.10)
(iv) Relativistic invariance
Sere = Se- (5-11)
(v) Internal structure. On may write T = :7(q, §, Yo, o). The condifion reads
:9(H) 7(g. T You Fo) : = : T(q, » Vo, Pa)P():- (s12)

From the theory result definitions of interacting Fermi field operators expressed as th=
infinite series over normal products of creation and annihilation operators

)

o= {r{£4))
(5.13)
() = -i((-f.,-'.f)- r).
o= (1)1
They fulfil the condition of locality (see [15))
(s 2@ = &, ke = B, Helle = 0, (5.14)

with f, g taking supports from space-like separated regions suppf/ ~ suppg.

Taking into account the Uc(K) representation of the CAR algebra, we obtain the
essentiaily functional version of the theory under comsideration. Thus, for example, we
have

- . 1
20 . 0) = 3 Vo (2 () EatEuo™), (5.15)

i.e. interacting Fermi field operators may be scrutinized with the help of methods developed
in [16}, 17].

We have constructed above 2 quantum theory of interacting Fermi fields based entirely
on representations of the CAR (for problems connected with that matter see [11], 112},
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ISD. In this coastruction we assume that there exists a nontrivial S-operator fulflling
(5.8)~(5.12). Taking into account the Uc(X), we reduce the formal theory {15] to a theory
in which caly ordinary functionals appear. It is proved that the apparatus developed in
[16], [17] for such functionals can be employed in the case of functional theories of fermions.
This seemsed to be impossible up to now (see however, in this connection [9]).
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