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An isomorphism between certain subspaces of the Hilbert spaces of symmetric and
antisymmetric z-point functions (or, more generally, symmetric and antisymmetric
tensor products of a Hilbert space) is described. It permits a construction of generating
functionals for sets of antisymmetric functions. In this way the theory of Hilbert
spaces of functional power series as described in [7] and [8] can be extended to the
case of antisymmetric coefficients. As an application, the functional representation for
the anticommutation relations is derived. It enables to obtain a functional formulation
of quantum field theory also in the antisymmetric case without the use of Grassman
algebras.

Introduction

The aim of the present paper is to discuss, once again, the construction of generating
ctionals for sets of antisymmetric functions and the corresponding applications to
intum field theory. The difficulty in the antisymmetric case arises from the fact that
t-linear forms of the type

Fp)=[dx, ... §dx,fi(x(, ..., x) 0(x1) ... p(x,) (1.DH

y the symmetric part of the function f,(x,, ..., x,) contributes to the integral due to
symmetry of the tensor product ¢(x,) ... ¢(x,). Thus, there exists no straightforward
y to extend the method of generating functionals (functional power series), which are
entially sums of terms of the type (1.1), to n-point functions f,(x,, ..., x,) of any other
nmetry type.
Due to the fact that the functional method (the method of generating functionals)
»ves very useful for the understanding of theories containing sets { £}, . 5 of symmetric
roint functions, various attempts have been made to extend this method to sets of anti-
nmetric functions {£*},
There are two standard methods to overcome, or rather circumvent, the difficulty.
e first one (cf. e.g. [1], [5], [6]) consists in replacing the functions ¢(x) in'the tensor product

[431}
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o(x;) ... p(x,) in (1.1) by anticommuting functions. Since the simplest realization of such
objects can be found in the framework of Grassman algebras, in this case the generating func-
tionals themselves are elements of such an algebra and not ¢-numbers as in the symmetric
case. The second one (cf. ¢.g. [2], [3]) uses an ordering sign function o(x,, ..., X,) antisym-
metric in the variables x,, ..., x,, vanishing whenever two of the variables are equal and
assuming the absolute value 1 otherwise. With the help of this function one obtains
a mapping

A %
FAX L, o X)=0(X s X)Xy e s X0) s

IS0y, o, x)=0(xy, oo, X)L X, ooy Xy)

(1.2)

between the spaces of symmetric and antisymmetric functions, thus relating problems of
Fermi and Bose statistics. :

In this paper we wish to investigate mappings of the type (1.2) in some greater detail
and describe representations of such mappings in terms of operators. For this purpose
the operators connecting the various symmetry types are defined in an abstract way by
a set of algebraic relations (Section 2).

The domains and ranges of these operators are determined as well as their properties
with respect to unitary transformations of the underlying Hilbert space. Examples and
realizations follow in Section 3. Section 4 is devoted to the construction of generating
functionals for antisymmetric functions and to the generalization of the theory of Hilbert
spaces of functional power series to these functionals. In Section 5 we derive the functional
representation of the creation and annihilation operators in the anticommuting case and
obtain a functional formulation of quantum field theory on mass shell in the antisymmetric
case (Fermi statistics).

Off-mass-shell generalizations of the functional method are derived in Section 6 for
the case of one real scalar anticommutating field. In particular, the functional form for
the reduction formulae which connect the on and off mass shell functionals is derived
for the antisymmetric case.

2. Certain representations of square roots of projectors in tensor products
Let #,= éh be the nth tensor product of the Hilbert space h and E, a bounded operator
in 5, satisfying the relations
El=E,, E)=E,. 2.1)
it follows from (2.1) that E? is a projector. Conversely, any square root of a projector

satisfies (2.1). ) )
The corresponding decomposition of #, is #,=H#,DH,, where

H,=<ElH,, H.=(—-EDH,. (2.2)
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On account of (2.1) we have
E,#,—#,, E,#,=0. 2.3)
Proof of (2.3):
() Eyoa—E,(1—E2) #,=0;
(i) (I—E)E,#,=0 = E,#,c#,;
(i) Hy=E2 = EfE, ) = o Ey K,

E, is, therefore, an automorphism of 5, (a homomorphism 3#,— #, with the kernel

2 1
ker E,=#, or a monomorphism 3, 3#,).
Let us introduce inversion operators Py in #, interchanging the indices of the ith and

the kth element of the tensor product ®A. We shall impose now an additional set of con-

ditions on the representation E,, determining its symmetry character:
PyE,=—-E P, "(i,k=1,2,...,n). .4

To explain the notation in (2.4) we note that E,, as well as P, , are bounded operators
in #, and, therefore, can be considered as elements of the algebraic tensor product J, R,
completed in the norm ||-|| of bounded operators in #,. P, acting on the left (right)
interchanges indices in the left (right) factor of this tensor product.

An arbitrary element f, of #,= ®h can be represented as the sum of irreducible
1

representations of the S, with the help of Young’s idempotent operators Y,
fo= 2 Nt (2.5)
Y

From among the various Y,’s we shall be particularly interested in the symmetrizing and
antisymmetrizing operators

1 1 ,
Si=— Ll A=—Y(-D'P,, (2.6)

where the sums are extended over all permutations P, of n elements. Young’s operators
have their duals ¥} among themselves, e.g.: S,=4%, 4,=S¢.

The symmetry properties of the operator E, defined by equations (2.4) are reexpressed
in terms of Yoting’s operators by the following

THEOREM.

PyE,=—E,Py < Y,E,=E, Ynd' 27
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Proof: (=) Each permutation P, can be written as the sum P,=P;+ P’ of a term P;
containing only products of an even number of inversions P, and a term P? containing
only products of an odd number of inversions.

Thus, the Young operator Y,=Y (— N2 Q, Y P, can be written in the form
) P
Y= (=D%Q+00 Y (Pi+Py)=Y (Qi—00) Y. (Pr+P7).

Q P Q P

Here ) , ) denote the sums over all permutations in the lines and in the columns respec-
P 9

tively of the corresponding Young scheme. Applying Y, to E, we obtain, because of (2.4),

Y. E,=E,} (0 +Q0 Y. (P,—P)=E, Y},

Q P

where Y is the operator corresponding to the dual Young scheme, i.e. the scheme with
interchanged lines and columns.

(<) Y,E,=E,Y! for all Y,
= Y (0:—00) Y (Pi+P)E,=E, Y (05 +00) Y (Pi—P5) for all ¥,
Q P Q P
= PikEn:-EnPik'

Relations (2.1), as well as any algebraic relation, remain invariant with respect to the
group G,(U) of all unitary transformations A4,=U, A, U," in #,, where U, € G,(U) and
A, is an arbitrary bounded operator in 4, . Relations (2.4) which determine the symmetry
properties of E, are, of course, not invariant with respect to the whole group G,(U) because
anticommutation relations with U, P, U,” may not be equivalent to anticommutation
relations with P, . One can show, however, that relations (2.4), and therefore, the symmetry
properties of E,, remain invariant under the transformations of the subgroup G3(U) of
those transformations U, € G5(U) which satisfy relations

U,P,Uf=P, forall P,. (2.8)
ntik™~n

Indeed, in this case Py E,+ E, Py=U, {Py E,+E, P4} U =0 and E,=U, E, U, shares
the property (2.4) with E,,.

The group G5 (U) does not exhaust all transformations which leave properties (2.1)
and (2.4) invariant. Take, e.g., the group of all transformations consisting of products
P, P P, . . of inversions. Since P, is unitary, these products are unitary and,
therefore, leave (2.1) invariant. They also leave property (2.4) invariant because E,=
Py E,Py=—E,.

One easily checks up, however, that they do not satisfy the relations (2.8).

A subgroup of Gy(U) is the group G, (U™ < GS(U) of all those unitary transformations
u" in #, which are induced by an arbitrary unitary transformation u in . (By an induced

transformation «" in s, we understand here the tensor product of the transformations
uin h.)

izky o
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After these preparations let us decompose ®h=9f,1 into the irreducible parts with

respect to the symmetry group S, : #, Z Y, o#,, and represent each of these subspaces
in the form of an orthogonal sum

LA, =Y, H,®Y,H,,
where
Y,#,=Y,El#, and Y, #,=Y(1-E}H#,.

This decomposition

fﬁ;Yn%’n@;Yn?ﬁ (2.9)

is independent of the order of projections, due to the fact that E’¥,=Y,E?, which is a
consequence of (2.7). The decomposition (2.9) clearly exposes the action of the operator
E, on the various subspaces. Indeed, in virtue of (2.3) and (2.7), we have

E, Y, #,=Y #, (2.10)

1 1
which shows that E, is an automorphism of 3, consisting of the isomorphisms Y #, <>

Y, Jf
Letf ey, ,}f (l—— 1, 2). Due to the structure of the automorphism E, (2.10) and to the

fact that E? acts in Jf,, as the unit operator, we have the relations
E flt =", ELfI=f1 (2.11)

3. Examples

In this section we wish to describe examples of operators satisfying the conditions
(2.1) and (2.4). For this purpose we assume that 4 is separable and introduce the orthonor-
mal set {e; ®e;,® ... ®e, } in #, corresponding to the orthonormal set {e;}in h.

The operator

E,= Z 2 e,®...®e,8, . 1,6,0..0¢, 3.1
defined by the eigenfunctions {¢;, ® ... ®e¢; } and the eigenvalues g _, satisfies condi-
tions (2.1)and (2.4)if ¢;, _, is the totally antisymmetric Levi-Civitta tensor with e =1
for i, #i (r,s=1, 2, ..., n; r#s) and &, ..;, =0 otherwise. The simple proof of this state-
ment is left to the reader.

Due to invariance of the properties (2.1) and (2.4) with respect to G3(U) we obtain from
(3.1) a class of operators satisfying the conditions (2.1) and (2.4) by applying to (3.1)
an arbitrary unitary transformation U, € G3(U): E(U)=U,E,U;.



436 P. GARBACZEWSKI and J. RZEWUSKI

For this class it is easy to prove the important property
Eq A, H,=A, H,,
where 4, is the totally antisymmetric Young operator with the dual A3=S, (cf. (2.6)).

Proof: The proof is based on the symmetry property of the orthonormal system e¢; ®
®e;,® ... ®e;, consisting in invariance of the product with respect to a simultaneous
permutation of the Hilbert spaces and the indices {iy, ..., i,}. Due to this symmetry prop-
erty, the Fourier coefficient f;) ; in the expansion f° “=Z Z inf, ® ... Qe of

1y in
an antisymmetric function f;} € 4,5, is antisymmetric in the indices {i g wney i,,} and, there-
fore, vanishes if any two of the indices coincide. The relation f* = E? £* reads, in terms of
Fourier coefficients, f; ;. =&’ ; f2 .. =f .., the last equation resulting from the fact
that the zeros of eizl Li,and ), coincide. It follows that for all f;' € 4,5, £, = EXfr=f>,

and, therefore, E} 4,5, = A,5,< #,. We have used in the expansion of f* the same ortho-
normal system which is used in the definition of E, in (3.1). Since the symmetry properties
of the orthonormal system are not changed by transformations of G3(U), the property
EZ A, ,= A, #, occurs for all E,(U).

For illustration we write down the kernel of the operator E,, in the case where A=L*(R"):

EfX(soois X3 V1o oens yn)zz Zei,(xl) ei,.(xn)eil...i,._e-il(yl) '*'zi"(yn) (3.2)

where x;, v;e R", i=1,2, ..., n.

Another example is provided by the function o(x,, ..., x,) discussed, for example,
by Friedrichs [4] and Klauder [5]} and mentioned briefly in the introduction to this paper.
This function is defined as an antisymmetric real valued function of the points x, .... X,
possessing the value 0 whenever any two of the points coincide and the absolute value 1

otherwise. It is easily seen that the operator E, with the kernel
En(xl s Xt Vis oens yn)zo-(xl 5 rer xn)é(xl —yl)"'a(xn—yn) (3'3)
1
satisfies conditions (2.1) and (2.4) and, in addition, that A, ,= A, p.

Proof: The proof of (2.1) and (2.4) is trivial. The last property (4,3, = A, ,) follows
from o%(xy, ..., x) f2(x1, ..., X)=Ff(xy, ..., x,) for all 7 € 4,5¢, and is a consequence

of the fact that an antisymmetric element f;(x,, ..., x,) of #,= ® L*(R") is zero whenever
1

two of the points x,, ..., x, coincide and, therefore, the zeros of fi(x,, ..., X,) coincide
with the zeros of o%(xy, ..., X,).

The Fourier transform of (3.3) is a tensor

€y i jron= ) AX1... [ dx, e (x)). g (x)0(Xy, ..., X,)e;,(%y)...e;(%,) (3.4)
with the properties

Prvﬁi;...i.,:j,...j,,= Ty it J1ein P, (3.5)
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Equations (3.4) and (3.5) show that the relation between the two representations (3.3) and
(3.1) is of dual nature and can be considered as an interchange of the discrete and the
continuous indices. '

The examples discussed here show that there are many realizations of the relations
(2.1), (2.4). One source of this abundance is the indetermination of the definition of the
antisymmetric tensor ¢;, ;.. We can reduce this indetermination to some degree by defining
&, ...;, in terms of a single second order antisymmetric tensor & (6% =1 for i £k, &, = —&).

Indeed, one easily shows that

n s=—1
Sifin ™ H &g (3.6)
5=2 1
possesses all the required properties.

One can rewrite this expression in terms of E, if one considers E, as an operator in
X, with m>n, according to formulas of the type

r=

Ef(X15 s Xpus Vi oees Ym)=E (X, ooy Xg5 Yigs oo .yi,.)é(xi,,q.l——yi,..'.;)"'é(xim_yim)‘
3.7

Defining the various n-dimensional extensions of the second order operator E,(x,, X,
¥1,¥2) as

Ers(xl s enes Xy Vi vees .Yn): H”(r, S)é(xi—'yi)Ez(xri Xes Vrs ys)
i=1

= Z Z €, (xy)...€,(x,) ai,.is_éil(yl)'“.éi,.(yn) > (3.8)
where .H”(r, 5) denotes the omission of the factors r and s in the product, we obtain for
(3.6) =1

n s—1
E,=T] T1E.. (3.9)
s=2r=1
One easily shows this representation of E, is invariant with respect to G,(") in the sense
n s-1
that E(u")=[] []E,.(u") and E,(u") is again of type (3.8) with E, replaced by E,(u?).
s=2r=1

3. Generating functionals for antisymmetric functions

In this section we shall construct generating functionals for antisymmetric functions
which permit to apply the theory of Hilbert spaces of functional power series to series
containing antisymmetric coefficients. We shall also derive some estimates for these series.

Let {x, y) be the scalar product defining 4 and let us assume that there exists an in-
volution x—X in 4 satisfying X=x and (x, y)=(x, J>.

We can define in this case a bilinear form in 4 as (x, y) :=<{x, }). The scalar product,
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bilinear form and involution in 4 induce the corresponding notions in #,= @ h:
1

<.f;n gn> » (f;xa gn) = <f;|’ §n>a f;:—)f_;l
(f?x:fn’ <fna gn>:<j;v9 En>; /;15 gne°#n)'

Consider now the space & of sequences {f,},cn (fo € #u, n=0, 1, ...; # = C) satis-
fying the condition

A :=\/§Ilfn1|2<oo,
where ||fill =V {fos £
F={f={filnen: freH,, ||fl|<wo}= ® H,. (4.1)

Decomposing each s, according to (2.9), we obtain the corresponding decomposition
of #. We shall be interested, however, in this paper, only in those parts of J#, which corre-
spond to the symmetric and antisymmetric Young’s idempotents:

[e's} o 1 2 1 L
F= @ SH,= @ (SH,08#,} =F 0F>.
B "o (4.2)
o o 1 2 1 2
Fo= @ AH,= @ {(AH,DAKX,} =F 0F*,
n=0 n=0

where

FS= @ SH,, F'=@A¥, (i-1,2).

=0
Let us consider now the corresponding Hilbert spaces of functional power series {(genet-
ating functionals) which are defined as mappings f: 3 x—f(x) € C in the following way:
S S S < 1

H = fmi‘f (x)== }: —=
n=0+/p!

& 1
yff‘:{f": A=Y ——=(E.f}, x", Hf"”<oo},

U n=0 \/ n!

(5,3, ||fS||<oo},

where
1P e= TSR and QA= SIIAP. @«

The first definition is the conventional one in the symmetric case, the second definition
is the generalization to the antisymmetric case. Due to the occurrence of E, and to the prop-

1 1
erty E,f,? =0 (cf. (2.3)), only antisymmetric functions from 3#, : f'e 4,5, occur in (4.3.)
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This is not a serious restriction since we can always choose E, in such a way (Section 3)

that A,#,= A, ,. In this case the index ““1”’ can be omitted in the second formula 4.3).
Due to the fact that /*(x) has the same form as f3(x) with f3 replaced by E,f*, we can
generalize immediately the results of [7] and [8], concerning symmetric functionals, to the
antisymmetric case.
We shall discuss here, briefly, only the questions of analyticity and estimates of the
power series (4.3).

Given a series f (x)=z\%( Jfu» X"), we construct the series
nn!
!
Gn> SN (x):=Y \/(—n;:i) (fmtnsGmX") (4.4)

obtained from f(x) by differentiating each term in this series m times according to the
formula

d
(g . g*)f (x)=lime™ { f(x +eg)—f ()}, (4.5)
X =0

where x,geh,ceR.
Applying Schwarz’s inequality several times to (4.4), one obtains the estimate

m—1
(@<l UAAP = 3, AP VLT et ‘
i=0 (4.6)

1t is seen from (4.6) that the series (4.4) represents entire functionals (in the sense of [6])
of growth p<2 and type o(p=2)<} if only g,,€ #,, and fe #°. Due to this property,
the sum in (4.4) is equal to the mth derivative of f(x) so that we can interchange summation
and differentiation

dx™

dm
(gm, —)f () =(gum /") (x). 4.7

Conversely, it can be shown that if | f(x)| < 4e*14”, where A is a Hilbert-Schmidt operator
with norm ||4]| <1, then fe #°. .
Due to the isomorphisms (2.11), we have the isomorphism of #* and #°, where

o]

1 1
«%"S={f‘“i )= Zo \7:'(1’"51, x"),”f51||<°°}' (4.8)
n=0+/n!

Thus 5#4 = #° and we can specialize the above results to the antisymmetric case by putting
everywhere f5' = E, A,

The operator E, can be omitted in all scalar products due to the properties (2.11) which
make {f,, g, invariant with respect to E, if at least one of the elements in {f,, g,» belongs

1 1
to '#"‘ Indeed’ f;t’=Enf;u gr’n=Engm f;,G ';fn=> <f;;ygr,|>=@m E,,z_f;,)=<f;,, gn>°
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Applying this result to symmetric and antisymmetric functions, we obtain
CESMEngd D= gy, (B S E gy =5, g5ty (4.9

1 1
for all fA', it € 4,5¢, and for all f5%, gS'e S,5,. In particular, if A,#,=E2A #, (cf.
Section 3), one can omit the upper jndex 1 in the first equation (4.9).

This shows that the theory of Hilbert spaces of functional power series, as developed
in [7] and [8], can be applied to the antisymmetric case, all scalar products containing
symmetric functions being replaced by the corresponding scalar products of antisymmetric
functions.

It must be noted here that in applications to quantum field theory the coefficients f,, are,
in general, not elements of 5, but belong to a larger space of linear continuous functionals
on some linear subspace of #,, dense in J#,,.

The extension of the operators E, to such dual systems is straightforward. One can use
here dual systems of the type introduced in [7] and [8]. One has to keep in mind, however,
that, in the case where f, ¢ #,, the proof of Section 3 concerning the equalities E24,f,
=A,fo, 1—E}A,f,=0 does not hold any more. These and related problems will be dis-
cussed separately.

S. Functional representation of the anticommutation relations

Having thus introduced the Hilbert spaces of functional power series in the symmetric
as well as in the antisymmetric cases, we can consider double series as operators acting
on these spaces according to the rule

d
F'(x)=(Af)(x)=4 (x , a—)f )
y

or, in terms of coefficients,

= f A, D (e PPd(y/m) (5.1

y=0

Ja= Y @um f) s (5.2)
where " |
A, 1)=3 3 ==y, x"y™), (5.3)
nmntm!

x,yeh, ay,€ #,@#,, and the differential and integral representations of multiplication
in (5.1) are discussed in more detail in [7] and [8] (cf. also [6], Chapter 2).
It is well known that the functional representation of creation and annihilation opera-

tors in terms of functional double power series is given in the symmetric case (commutators)
by the formulae (cf. [7], [8])

a’(x,y;0)=e"Mx,8),  a(x,y;O)=e"NE,y), (Eeh). (5.4)
Taking into account the multiplication prescription

(5.5)

(AB)(x,y)=A(x,;;)B(Z,Y)

z=0
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which is a consequence of (5.1), we easily verify the relations

[a(9),a"(]-=(,m1 and  a(&)f,=0, (5.6)

where 1(x, y)=e™ is the unit operator in #° and f,e C (fo|=1) is the vacuum vector
in o5,

We shall prove now that in the antisymmetric case (anticommutators) the functional
representation of creation and annihilation operators has the form of the following double
series:

1 croom . 1 . n
b+(x9y;6):Z'n—'(xl-'—"El-HngEny)7 b(X,y;C)=Z;(éxEmE1+nyl+)a (5'7)
where E, is assumed to satisfy the relation E} A, #,= A, for all n.
Proof: For the proof it is convenient to write the double series (5.7) as bilinear forms

b¥(x,y;0)=(b"(x,y),8) and  b(x,y;&)=(¢,b(x,y))
where

1 1 o,
b+(xsy)=Z;l*'(xl+nE1+naEnyn)’ b(xay):Z;;(x"En’E1+ny1+")a (57)

are elements of 4 in contradistinction to (5.7) where b*(x, y; &) and b(x, y; &) are elements
of C. To prove the anticommutation relation we need only to calculate the products bb,
b*b*, bb* and b*b. However, for further applications, we shall proceed more generally.

Applying k times (5.5), one obtains

1
(f;ca bk)(X,)’)z z;(f’l:ann’Ek+nyk+")a
1
(fk,b“‘)(x,y)=Z;(x“"EH”,ka,,y"), (58)
. 1 .
((fk > b+k) (g:5 b'))(x y)= Zr?(anEkﬂ fg7 Ei+nyl+n) )

where g7 denotes the element g; with inversed order of indices. It remains to calculate
bb*. We have

d
b X, —, b* z 5
(\ e )b (z,y;m)

1 n L 1 1+m m
:Zn:;( xEn,E1+ndZT,}>§n7(z E1+m”1Emy )z=o
n+1 n+1

= Z n! (éannAl +n’E%+n”Enyn)= ZT(&annAl+na 'TEn)’")

3

1 1
=(é,n)Z;(X",E3y")—Z;(x“"EH,.,néEu..y“")- (5.9
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Specializing the third formula (5.8) for i=k =1, we obtain

d . 1 n . .
b (x,—:n b(za.1’§§)1;=o= Z — (X" TE s EE 1 YY) (5.10)
dz v n!

From (5.9), (5.10) and the first two equations (5.8) specialized for k=2 we obtain immedi-
ately

(679, b* (], =[b(®), b]. =0,  [b(&), b" (] = ME’ (5.10%)

where
2 1 n 2 .n
E(x,y)=2;’~,(x,E,.y) (5.11)

: 1
is the projector on #°. For f3(x)= Y. —/:' (f3, x") we have namely
n !

1 1
SIx———EZSx-—— —-::_EZS,"= == s = —E , X" 5.12
f()(f)();\/n!(nfnx)}n:\/n! )Z\/(f,)()
According to the property E> = E,, E? acts like a unit operator in #*.
Vacuum is represented as in the symmetric case by foe C (] fo|= 13}
b (&) fo=0. (5.13)

A formulation of quantum field theory on mass shell in terms of functionals can be
obtained in the symmetric case (cf. e.g. [6]) by first expressing all operators as series of nor-
mal products of creation and annihilation operators and then using the functional rep-
resentation (5.4). We proceed similarly in the antisymmetric case. We obtain in this way
for an arbitrary operator (use (5.7) and third formula (5.8))

EACANIHENOE -ZZ\/- —v(a,.m,b”b"')(x )

1 m
- z Z \/ tm! Z ( n+kEn+k > Qum Em+ky +k) (514)
n:m:

where # indicates that the order of the corresponding indices has been inversed.

6. Generating functionals off mass shell in the antisymmetric case

To describe the functional formulation of quantum field theory off mass shell in the
antisymmetric case we shall have to go over from the general considerations of Sections
2, 4, 5 to a particular representation. Here we shall carry out.the considerations for the
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(unrealistic) case of scalar real fields obeying Fermi statistics. (An application to 4-spin
representations will be described elsewhere.) We have thus creation and annihilation
operators being functions of momentum k € E; only.

Let us note that every operator can be expressed as a single power series of normal
products of the free fields

Qaolb™, D) = £ (A a” 03, )
where
go(b™, b3 x)= [ dk {f(k, x)b* (k) +/(k, 0) b (K}, (62)
and
1 (exp(ikx —io (k) xo)
e ek
(x eM,) is the orthogonal set of solutions of the Klein—-Gordon equation. Introducing in

(6.2) the functional representation (5.7) (5.7') and replacing the abstract vectors x, yeh

of (5.7) by the functions a(k), (k) («, B € L*(Es)), we obtain the functional representation
of the free field

Sk, x)=

w(R)=viE+m?, (6.3)

qob™, b3 x) (2, B)= [ dic{ f(k,x)b™(x, B3 K)+S(k, X)b(x, B K)}
= f dl z nl, (""" Ey 4> OV E, B +(f(X)LE,, Ey 4 ! A
To obtain the functional representation of (6.1), we first rearrange the sum
Qgo(b", b)) =X Y —n—,l;, (A £, BF70™) (6.5)

and then use formula (5.14) with

1 m
A = —7=== (fna+m 9fnf )'

vntm!
The final result is
1
Q(qo(b™, B)): (o, f)=3. 0 (S o, B)), (6.6)
where
1 _ -~
¢"(C(, ﬁ):An Z _IT z (:1) ((anﬁ'n+lEn—m+l9fn —m)’ (fm’ Em+l m+l)). (67)
! +m=0

For illustration and to explain the notation used throughout this paper we write down
formula (6.7) also in the explicit form in the representation considered in this section:
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(0,,(0(, ﬁ > xl 3ty xn)
n
=A, Z

1 . ) ) . i} .
e ZO(,’;) [dkl ...-[dk"_,,,ﬂfdp,...fdp,,_,,,jdr,,_,,,“... fdr,,x

X fd-.pn—m+1"‘ ijn—m+l j ‘—isl jJsm+1x

n—m

X “(kl) a(kn—m-*-l)En—rn'f-l(kl 3 ey kn-—m+l 5 i;l 5 vty _I;n—m-f-l)l—[ f(l_;i’ xi) X
" ) i=1
X H 1f(ri 5 xi)Em+l(rn—m+1, s Py Dyt 15 oees pn—m+l 381 eees Sm+l))<
i=n—m+
XB(51) - B(Smed), (6.8)
where r; indicates that the sequence 7,_,.{, ..., I, is taken in the reversed order

-

Tus +-s T'y—m+y and corresponds to the reversed order in f° ™ in formula (6.7). The Young
antisymmetrizer A4 acts on the variables x,, ..., x,. ‘

It is seen from (6.6) that transition to the mass shell corresponds in the antisymmetric
case to replacing in the generating functional

1 S R
X@)= L~ ESh a)= L= () Eg") (6.9)
the function E,q" by ¢,(x, §). This is the analogue of the transition g"—e®Pgo(«, §) in the

1
symmetric case Q%(q)= Y —( 5, 4" and provides a functional formulation of the so-
n R.

called reduction formula [4].

The formulae derived in this and the preceding section enable to express, step by step,
the content of quantum field theory in the case of Fermi statistics in terms of generating
functionals. We shall carry out the corresponding programm for the more realistic case of
4-spin representation in a subsequent paper.
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