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0. Introduction

Within lasttwentyyears,the methodof Bosonexpansionshasprovedusefulin the quantumtheory
of many-Fermionsystems.For exampleit allowedto build a contemporarytheory of spin wavesin
the low temperaturedescriptionof the Heisenbergferromagnet[1—9,15], wherefor long time it was
knownthat the ideal magnongasperfectly simulatesthe behaviourof the Heisenbergcrystal itself. A
similar situationappearsin the studyof the weakexcitationlimit of atomicnuclei in the microscopic
model, where the spectraof low lying excited statesare similar to theseof the excitedsystemof
weaklycoupledquadrupoleBosons[7, 18—26].

On the otherhand recentdevelopmentson the connectionbetweenthe Thirring andSine—Gordon
systemsin the two space-timedimensions,resultedin acouple of papersconnectedwith the Boson
expansionmethodsin quantumfield theory,see e.g. [38,44—46, 105—128], but also [16, 17,27—35,40—
42, 76].

All the approachesmentionedabovewere developedindependentlyand as applicationsto quite
differentphysicalphenomena.Therefore,thereappearsthe fascinatingproblemof consideringBoson
expansionmethodsin the quantumtheory of Fermion systemsfrom a unified point of view, i.e., to
establishwhetherthereexistanyglobal physicalconditionsunder which this methodadmitsconcrete
applications,governingall Fermionsystems,independentof the numberof degreesof freedomin the
theory.Herethereappearsalso the questionof the mutualrelationsbetweenthe differentapproaches
proposedso far.

We includeherethe new resultsfollowing from the constructionof representationsof thecanonical
anticommutationrelationsalgebrain the Fock representationof the canonicalcommutationrelations
algebra.(Throughoutthe paperwe usea shorthandnotationCAR and CCR respectivelywhile using
theserepresentations.)

We claim that thephysicalessenceof the Boson expansionmethodsreads:
Any quantumBosonin the weakexcitationlimit canexhibit Fermionproperties,which thenprevail

the original Boson ones.We call it a Fermion-like behaviour.This is the reasonfor which Boson
systemscanbe in sufficiently low temperaturesusedto approximatepropertiesof Fermion systems.
Quite conversely,if the higherexcitations,as,e.g.,theweakcouplinglimit of the theory,areadmitted,
thenthe startingFermionsystemcanexhibit the Bosonproperties.We call it a Boson-likebehaviour.

The abovestatementis obviously not true for isolatedsystems,but if the contactwith a suitable
environmentis takeninto account,then in quantummechanics,many-bodytheoryandquantumfield
theory one has justified quite serioustreatmentof the questionof metamorphosisof Fermionsinto
Bosons,andconversely,seee.g. [44].

Obviouslysuchametamorphosiscannot alwaysappearfor the casewhenboth the startingBoson
and the final Fermionare physicalobjects.It may happen(especiallyin quantumfield theory where
the spin-statisticstheorem should be takeninto account if the numberof space-timedimensionsis
equalto four) thatthe startingpoint is an ideal nonphysical,ghostBoson,whoseweakexcitationlimit
acquiresthe propertiesof a physicalFermion.

From the mathematicalpoint of view, the majority of essentialresults is basedon the Boson
expansiontheorydevelopedby the presentauthor[16,17, 27—35,76],but in the courseof thepaperwe
give a review of the relatedtopicswhich seemessentialfor better understandingof the method.Our
statementon the Fermion—Bosonreciprocityis formulatedon the basisof the equivalencetheorems
proved in [17] for the example of Heisenbergferromagnet,and in whatfollows for the microscopic
modelof the atomic nuclei.They result from the projectiontheoremsprovedin [76],and collectedin
the Appendix.
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In the caseof the Heisenberglattice it meansthat its HamiltonianH canbe receivedas a reduction
POHBPO= H to the Hilbert spaceof spin statesof a suitable pureBoson (magnongas) Hamiltonian,
whereP0 projectsonto the spin spacein the Boson Fock space~ : P0MB = ~ A similar situation
appearsin the caseof the atomicnuclei.

In application to quantumfield theory,we were able to_prove that with each normal ordered
operatorseries :fl(*, di): of free asymptoticDirac fields 4!i, ~/i one can associatethe corresponding
functional power seriesfl~~(~frC,~frc) of the classical(commutingring of functions) spinor fields. The
transition from Fermionsto classical spinors is realized through the subsidiary(but unphysicalas
involving the spinorfields which obeyBose statistics)Boson level: ~, ~ The Bosonspinorssatisfy
thefreeDiracequation,and1F:fV(~,’~,*B):1F~F = :fl(~r,~/‘):.~F whatis theequivalencerelationbetween
the BosonsandFermionson the FermionFock space.On the Bosonlevel onehasthe conceptof the
coherentstate expectationvalue of the operatorwhat realizesa correspondenceprinciple: to the
mediatingBosonswe haveassignedtheir classicalimages:(:fI~,B, ~jB):) = flC(*C ~frC)
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1. Bosonexpansionsof spinoperators

Let H denotea finite dimensionalHubertspace:dim H = 2s+ 1 with s = 0, ~, 1,~ Assumeto
have given in H an irreducible unitary representationof the SU(2) group whose infinitesimal
generatorsobeythe relation: a, b, c = 1, 2, 3; S =

[Sa, SbI_ = i�abcSc, S±= (11V2)(S1 ±iS2)~[S+,S~]_= S3. [S3. S±]_= ±S±; (1.1)

S
2=>~S~=S+S+SS++S~=s(s+l)1. (1.2)

Given further an infinite dimensional Hilbert space ~ and a Fock representationof the CCR

(canonicalcommutationrelationsalgebra)in it, realizedby the triple {a*, a, fl} with:

[a,a*]=1, afl=0. (1.3)

We state the following question: find the representationof (1.1) in a certain finite-dimensional
subspaceof 3~.By virtue of the irreducibility of the pair {a*, a} we can expectthe operatorS to be
fully expressedin termsof Boson generators.



P. Garbaczewski, The method of Boson expansions in quantum theory 69

Let usbeginfrom Holstein—Primakoff[1] solution:

SH: V~s÷=S~+iS,~=V2sa*V1_a*aI2s

\/2S_=S~—iS~=V2s\/l_a*a/2s a (1.4)

S~= s — a*a.

The squareroots are understoodformally as infinite serieswith respectto a*aI2s.
The Hubert space ~ consistshere of functions of the occupation number parametern (the

eigenvalueof the operator,i = a*a).
One can easily checkthat the operatorsS~,S~,S~obey the commutationrelations (1.1). However

the conditionof mutual adjointnessfor S+, S_ and the selfadjointnessfor S~,as well as (1.2) do not
hold on the whole of ~.

The operators(1.4) leave invariantsubspacesof ~ consistingof functionswhich dependeither on
the occupationnumberparametern = 0, 1,. . . , 2s or n ~ 2s+ 1. The first, 2s+ 1 dimensional,sub-
spacewe denoteH. The orthogonalcomplementof H in ~ is called a nonphysicalspace,as it
involvesspin valuesgreaterthan s.

In practicalapplicationsonemustrestrictconsiderationsto H only, wherethe functionalargument
n doesnot exceed2s. However this subsidiaryconditionis not easyto realizedirectly. One can use
here an indirect method[2]. Namely, let us in the place of Boson operatorsconsiderquasi-Boson
ones,obeyingthe relations:

[a, a*]_ = (i — a~~sa~s)

a2~= a*ss~= 0. (1.5)

Then,by virtue of the relation:
2s—i 2s—i

a*21a2s41= fl (a*a — 1) = [I (ii —p) (1.6)
p=0 p=O

and:

iIf(n)=nf(n) (1.7)

weget:
2s—i 2s—I

fl(fl—p)f(n)fl(n—p)f(n) , (1.8)
p=0 p=0

which implies that for n ~ 2s— 1, one of factorsappearingon the right-handside of (1.6),necessarily
vanishes.

In consequence,the actionof (1.5) onto anyfunction from ~ givesa non-zeroresultonly if f~H.
In that case,the quasi-Bosonoperatorsdiffer from BosonoperatorsoutsideH only. This is the case,
when the higher excitationsof the quantum system {a*, a, can appear with a considerable
probability.

The approximationof spin operatorsby quasi-Bosonsbecomesbetter with increasingspin values.
Onecanalsomakeuseof the powerseriesexpansionsof (1.4), (compare[3]):



70 P. Garbaczewski, The method of Boson expansions in quantum theory

i— j/ 1.. 1 ~2
v2S+= v2s~a—~--na—~--~na+~

(1.9)
~

and neglectingall termsexcepta few.
The approximateformulasfor the spin operatorsobtainedin this way becomegood for s ~ 1, and

are surelynot exactfor s =

In connectionwith Dyson’stheoryof spinwavesin a Heisenbergferromagnet[48,49],thesocalled
Dyson—Maleevslution[4] was introduced:

SD: \/2S+=\/2sa*

V2S_=V2s(1_~a*a).a (1.10)

S~= s — a*a.

The operatorsS+, S are here never mutually adjoint inside ~ (hence the operatorS cannot be
Hermitean)thoughthe commutationrelations(1.1) obviously hold in ~. Moreover,the eigenvaluesof

S~are equal to — s, — s + 1,... and are not boundedfrom above,while for a real spin operatorwe
would havethe upperboundequalto s.

The difficulties with adjointnessandthe spectrumof S. canbe removed[5—7],by a suitablechoice
of the metric in ,~ Namely, ~ is a Hilbert spacewith respectto a scalarproduct:

~Bf,g~(f,g)EC, fn
40*t’Il (1.11)

(In, fin) = ônrn.

Let usconsiderin ~ a sesquilinearform:

(f,g)F=(f,Fg) (1.12)

where F is a Hermiteanoperator.We imposeon F the additionalrestriction:

(f, ~ = (S’3f, g)~ (1.13)

where
5D is the Dyson—Maleevspin operator.

By virtue of (1.13) we havesatisfiedin ~ the two identities:

FS+=S~F, FS~=SF (1.14)

which, by taking into accountthe Bosonexpansions(1.10), lead to:

a*(1_ a*aI2s)F= Fa*

a*aF=Fa*a (1.15)

proving thatF can be diagonalizedin ~ togetherwith /1 = a*a. Hence:

(1 1i/2S)Fna*fn = Fn÷ia*fn (1.16)
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where:

Fn(In,FIn) (1.17)
= (1— n/2s)F~

F~ 1 .(l—1/2s)~’~(1—(n—1)/2s)

It is obvious that for non-physicalspin values,namely for n ~ 2s+ 1, the matrix elementF,, of F

vanishes,because,by virtue of (1.11), (1.12),we have:
(fn,fm)F = F,,ô,,~. (1.18)

The metric defined by the scalar product (f, g),~’ is indefinite: (f,,, fn)F vanishesfor n > 2s. It
distinguisheshoweverin ~ a 2s+ 1 dimensional,proper subspaceH of physical states,on which
(I, g),~definesa Hilbert spacetopology.

The two discussedsolutions5” and 5” arenot fully independent,andaconnectionbetweenthem
can be found. Namely[5—9],the squareroot F”2 of F inducesthe following identitieson H:

S±H= F”~S±~F”2
= ~D = Fi/2SDF_i/s (1.19)

More detailedconsiderationsof this subjectcanbe found in [7—9].Togetherwith 5” and
5D, onecan

imaginethe moregeneralCooke—Lolysolution, given in [10,11]:
Sc: \/2S~= \/2sa*(1—

V2S_ = \/i~(1— ,112s)x (1.20)

S~= s

where0 ~ x ~ 1, and 5c = 5D for x = 0 or x = 1, while for x = we get Sc=

One can developa few more approaches,such as, e.g., Schwinger’smethod of paired Bosons
[12,13], the use of two sets of Bosons,being responsiblefor the dynamics and the kinematics,
respectivelyof the spinningsystem[14], as well as the introductionof two setsof Fermions [15].
Howeverall theseapproachesmeetdifficulties analogousto theseexposedin connectionwith 5” and

A concretealgebraicrealizationof the infinitesimal generatorsof the SU(2) group, doesstill not
guaranteephysically correctresults,andsubsidiaryconditions(including a properdefinition of the
statespaceandthe scalarproductin it) are unavoidable.

Recently,in refs. [16,17], anotherBoson expansionfor spinoperatorswas suggested,giving exact
resultsfor spin ~, and which is free of all disadvantagesdiscussedabove.We have

5G: \/25÷= a*: exp(— a*a):

= : exp(— a*a):a

= — ~1F+a*.exp(— a*a):a (1.21)

where : . : symbolizesthe normal orderingof generatorsa~, a, and one canequivalentlyintroduce

S~= 2 ‘F~~a*: exp(—a*a):a.

Here:

‘F :exp(_a*a):+a*:exp(_a*a):a (1.22)
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so that:

= —~[: exp(— a*a): — a*: exp(— a*a):a]. (1.23)

Becausethe operator : exp(—a*a): projects onto the ground stateIi = f,, in ~ the spin operator
components(1.20)makeinvariantatwo-dimensionalsubspaceH = 1F~of ~, whichis spannedby the
two basisvectors10 andI, = a~ In this basis,the matrix realizationof theoperators(1.21) is exactly
given by Pauli matrices.

By virtue of
5G1 = 0 for f~H, and(5G)2 = ~ ‘F the spin values is equal ~.

The expansions(1.21) canbe written in the form:

= a* — a*
2a +~a*sas_.~

‘ñs_ = a — a*aS+ ~ a’~a3~ (1.24)

= _~+ a*a — a*SaS+.~

If comparedwith (1.10),wefind atoncethat the solution5’’ in cases = ~is aparticularform of (1.21).
To check it, it is enoughto neglecthigher order terms in the expansions(1.24). In addition onemust
take — S~,in the placeof S~.Hence,it is not surprisingthatS’~cannotbe anexactBosonexpansionfor
spin ~, andthe subsidiaryconditionsarenecessaryin that case.

Let us furthernoticethatH is two-dimensionaland is spannedby the basis(.10, f,}. If to remember
that correctspin ~commutationrelationsareprovidedby (1.21),whereH is invariantunderthe action
of spin operatorcomponents,it is convenientto usethe simplified formulas:

V2S+~a*, V2S a, S
2 ~ a*a (l.25a)

beingthe finite versionof the correct,infinite expansions:

= lFa*1F, \/~S_= iFaiF

S~= 1F{~+a*a}1F. (1.25b)

Obviously one can equally well use — S. in the place of S~.(l.25b) is a projectedset of operators
(l.25a).

The questionof higher spinswill be consideredin below, in connectionwith Boson expansionsof
Fermionoperators.

All aboveconsiderationswerepure quantummechanicalin spirit. The transition to the description
of the infinite assemblyof spinsis hereimmediate.If to consideraFock representationof the CCR,
generatedby the triple {a7, a,,

1 *1 —Ci
tak, a, ~——

0ki1B

[ak, a,]_ = 0 = [ar, a7]_. (1.26)

akflB = 0 for all k= 1, 2,..., and repeatingargumentsgiven previouslyfor eachsingle I = 1, 2,.

we get a correspondingsequenceof bosonizedspinoperators{S,},.
1,2,...,a, b, c = 1, 2, 3

[Ska, Sib]— = Sk~ ~

5ki ‘Eabc~ (1.27)

This sequenceis, in fact, usedin practicalapplications.
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2. Boson expansionsof bifermion operators

Let the triple {b7, b,, flF},=I.2.... generatea Fock representationof the CAR (canonicalanticom-
mutationrelationsalgebra):

ri. ~ v — —
LVk, ~-‘I i+ — oki ‘F’ Uk F — ~ora — , , .

[bk,b,]÷= 0 = [b~’,b7]+. (2.1)

1F denotesherean operatorunit in the algebra.Eachelementof therepresentation,beingquadraticin
b~,b, we call a bifermion operator. Following papers [18—25], we restrict our considerationsto
operatorsb~b’andbb,, which togetherwith their adjointssatisfythe commutationrelations:

ri,*i.. j~*5~ —~ L.*i.. ~
L’-’k ~ “r L/~J_ — t’lr”k U~ 0sk~’r~‘i’

FL.*l. j,*~*~ — C l~*L.* C~Uk ~‘i, ~ (1$ J~— (JirL/k V~ — UtsUk ~

[bb,, bib,] = 8irb~’bs— ôkrbl b, + (6is6rk — 6ks5ir)lF~ôk,bt b~— 3isbbr, (2.2)

[bb7, br*bfl = 0 = [bkb,, brbsl.

We are interested not only in concrete b~b,*,b~b,but in the whole class of operators
Ubb7U*, Ubb,U* determinedby (2.2) up to a unitary transformation.

Now, let usassumeto havegiven a Fockrepresentationof the CCRalgebra.We wishto prove that
therereally existsaunitary transformationU suchthatthe Bosonexpansions:

Ubb7U* = ~ p,,(k, I, r
1~,,,s,,)a~...~ . . . a,~, (2.3)

n=0 rJ*n S~

Ub~~~b,U*= ~ ~ q,,(k,l, r~,s,,)a~. . . a!,,a,1 . . . as,,

hold on a suitabledomain.Here: r = (r1,.. .

In the aboveconjecture,wehavecombinedthe original ideaof BelaevandZelevinsky[18,22] with
Marumori [19—21,23—25] approach,giving compact formulas for Boson expansionsof bifermion
operators.This lastapproachallows usto avoida wearisomeuseof the iterationprocedureextensively
applied in [18].

Let (11)1=1,2....constituteacompleteorthonormalsystemin ~
2(R~),R~~p = (Pb. . . , p,~)

= ‘5(p — q), IR~dp,.fk(p)f,(p)= 6k,. (2.4)

It allows us to consider in place of discretely indexed operators a~’,a,, see (1.26), continuously
indexedones:

a*(p) = ~ a7f,(.p), a(p)= ~ aj,(p). (2.5)

LetuswriteR~ =R1®R’,i+j=n,p=(p
1,...,p,,p,+,,...,p~)=(q,,...,q,,r1,...,r,)=(q,r),qE

R’, p ER’.
The basis in ~‘

2(R’)we denote by {g,},=
1,2,... and in ~‘

2(R’)by {h,},,..
1 2 ... respectively.Then, the

basisin 2’
2(R’) ® ~(R’) is givenby: {~k® I~}k,,=

1,2,....

Let usconsiderthe setof antisymmetricbasiselementsin 2
2(R’) 0 .~2(R’)given by: {fkl}k,I=1,2,...
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where

fk,=~(gk0 h,—g,®hk)

f,.~,(q,r) = [gk(q)h,(r)— g,(q)hk(r)]. (2.6)

We have:

f~,(q,r) = fki(P). (2.7)

Hence,the operators(2.5) can be transformedto the form:

J dpa*(p)fk,(p)=

f dpa(p)j~,(p)= a,~, (2.8)

and, by virtue of:

(1k,,L) = J dq f drfk,(r, q)f~,(r,q) = t5kS6,~— SktôIs (2.9)

the operators(2.8) satisfy:

[ak,,a~,]_= (ôk,&, — ôktöis)lB

[ak,, a
51] = 0 = [az, a,,].. (2.10)

ak,C
1B=O forallk,l=1,2,...

andalso: akk = 0 = a~.

We denotethe Boson Fock spacegeneratedby (2.10) ,#~. Its mostgeneralelementcanbe written in
the form:

F~(Fm,Im)u) (2.11)

where:

= (a~’,,)~’. . . ~ (2.12)

and:

(Fm,Im)B) ~ F,~’~m)
8, n=(n1

a. LI

Here F,~is a tensor,totally symmetricin the variablesn, k, 1. Let us restrictour considerationsto a
subspaceH of ~B distinguishedby the requirement1 = . = ~m for all m.

Thenif tensorsF,~’which aretotally antisymmetricwith respectto k, 1 areusedto be multiplied by
basis vectorsand summedoverk, 1, we canintroduceinto considerationthe following antisymmetric
basis systemin H:

Im)H = (l/V’(2m — 1)!!) ~ (— ~ . . . aka4,,,,flB. (2.13)
perm
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This definition makessenseonly under the sign of the bilinear form:

\ \ ‘V E’~ \
m, m,H, — ~j Fm m,H.

ki

Let usfurtherdenoteby ~ aFermionFockspacefor the representation(2.1). Thebasisvectorsin .~

aretotally antisymmetricandby analogyto (2.13)canbe definedin the form:
\ ~ L.*L.*

m,F—Uk,V,
1 .. ~ F

Now, we take into considerationthe tensorproductspaceS~0 d’F, the vacuumin which is denoted:
~B 0 flFI0)B10)F.

Furthermore,we restrict ~‘B 0 ~F to HO S’F.

HereHO ~F is spannedby vectorsIm)HI0)F, and~ 0 ~F by l0)BIm)F.
Let usdefinethe operatorUM:

UM= 0)FF(01 ~0(2n)!! (2n i 1)!! (~aZbkbl)”IO)BB(OI (2.15)

which,if actingin HO ~F hasthe remarkablepropertyto realizethe map:

UM: IIB 0 ~F—’HO [IF. (2.16)

In this connectioncompare [7, 19,20]:

UMIO)BIm)F = lm)HI0)F (2.17)

F(0IH(mIUM = F(mIH(0I
F(mIB(0IU,~UMI0)BIm~)= F(OIB(m I m’)BIO)F = 6mm’

which provesthat U~UMplays the role of the unit operatoron ~8 0 ~F’ An arbitraryoperatorT
actingin fl~0 ~‘F hasits imageT in HO [IF:

F(mIB(OITIO)BIm)F= F(OIB(mIUMTUMIm )BI0)F= F(OIB(mklm)BI0)F. (2.18)

Let us noticethata projectiononto fl~0 J~F:

UMU~= ~ I0)flIm)FF(mIB(0I (2.19)

hasan obviousimage:

UM(UMU,~)U,~= ~ Im)BI0)FF(OIB(mI = P (2.20)

which is a projectionontoHO ~F.

Becauseof:

U~~P=U~, PUM= UM, PS=P*=P (2.21)

we get:

= PUMTUI~P = P’rP (2.22)

which provesthat r possessesnonzeromatrix elementsbetweenphysicalstatesin d’B 0 s~Fonly, i.e.
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betweenelementsof HO ~F. Following [7], we shallgive an explicit formula for the Bosonimage r

of the operatorT:

= ~ m)BF(mITIm’)FB(m’I= F(0ITIO)FIO)BB(0I

+ ~ 1 ~ F(0I’)lj’km~b,Ibk,TI0)F 1 ~ ~— iya~,. . . a~,,,pmI0)nn(OI
in=I (2m). (k,i) \/‘(m — 1)!!

N (223)

+ ~ ‘2 “ ~ F(OITbkIb,l. . . b~b~JO)FIO)BB(Ol ~ ( 1)”a~,~. . . ~rn—I ~ m,. (k.i) \/(2m — 1)!!

~~2n)!(2rn)! ~ ~ F(0~1~’i,,t’k,,.. . b,1bk1Tb~b~... b~,b~I0),2~21)!!

x ~ (— 1Ya~,,.. . a~,,I0)BB(0I(2m 1)” ~ ~ l)°a~s,,.. . a~,1.
perm perm

This lengthy formula for a special case of bifermion operators reads:

UMb~*~b7U~= a~’,— ~ (1 — l/V’3)a~’,~ ~ — ~ a,,,a,~,,a,,,,,+‘~ . (2.24)

In [22]therewere derivedformal, but compactformulasfor bifermion operatorsof interest:

U~b~b~U~= (a~_~ a:ma,*,,am,,) j~ P(a*Vfj)k,, (2.25)

U ~ ~ *Milk U, M —

n

where:

Pk, = a,,,ak,,, N = Pia.. (2.26)

We have thus found the Hilbert space in which operators UMbb7UM, UMb~’b,U~satisfy the
commutationrelations(2.2) andmoreoveradmit the Boson expansions(2.23)—(2.26),which by virtue
of (2.5)—(2.8)provesour startingconjecture.In this waywe haveadditionallydisclosedthe conditions
under which Belaev—Zelevinskyand Marumori Boson expansionsfor bifermion operators,can
coincide.In this last connectioncomparealso[7, section5].

Theinfinite Boson expansions(2.25)—(2.26)arenot convenientfor practicalapplications,especially
becausethe convergenceof these series is not sufficiently quick. Therefore, one usually either
neglectsall expansiontermsexcepta few, or one tries to developa separatetheoryof finite Boson
expansions,seee.g. [26].

Let usconsiderin the placeof UM the operatorU:

U = I0)FF(OI exp(~~ aZbkbi)I0)BB(0f. (2.27)



P. Garbaczewski, The method of Boson expansions in quantum theory 77

Thisoperator,thoughmapping~B 0 ~F onto HO ~F, spoilsthe normalizabilityof the basisvectors:

Im)BI0)F= 1 UI0)BIm)F

(2.28)

F(mIB(OI = \/(2m—l)!!F(01B(mIU.

To improve this defect, let us define an operator U:

U = 0)~(0~,~~(2~)!(~b~’b7ak!)I0)FF(0I (2.29)

(noticethat U is a slight modification of U), satisfying:

I0)BIm)F= \/(2m — l)!!UIm)BI0)F, (2.30)
F(OIB(mI = \1(2m— 1)!!F(mJB(OIU.

One caneasily checkthat the operatorUU is aunit operatorin ~B 0 SrF while P = UU in HO F

respectively.By analogyto previousconsiderations,for an arbitraryoperatorT.actingin ~B 0 ~F’

we caneasilyget its Bosonimage i- acting in H® [IF:

r = UTU. (2.31)

By virtue of the relation U* � U, T* = T does not here imply r~= r. By making a few, not too

difficult calculations,onecanderivefinite Boson expansionsfor bifermion operators:

U’,*~—f * * *UkU, ~ akna,manm1r,
am I

Ub,bkU = ak,P, Ub~b,U= ~ a~a,,.P, (2.32)

implying obviouslythe commutationrelations(2.2).
In connectionwith both infinite andfinite Marumori expansionsonecanexpressafew objections,

beingin closeanalogywith theseappearingin the discussionof Boson expansionsof spin operators.
A practical use of the infinite case, meets essentialdifficulties, though it gives a Hermitean

Hamiltonian. Usually one takes into account the two first terms of the expansions,as e.g. in
[18,20,23,24], not worrying whetherthis assumptionis mathematicallyandphysically correct.On the
other hand, even the application of full infinite expansions can appear to be doubtful, because there is
no rigorousproof of their convergence.

In case of finite expansions, it is not possil~je to get a Hermitean Hamiltonian, by virtue of the fact
that for example Ubkb,Ucannot be transformed into Ub7bU by the use of the * operation;compare
also a discussion of the Dyson—Maleev expansion, where an analogous question appeared.

3. Boson expansions of Fermion operators

To explain the leading idea motivating approaches to the questionof Boson expansionsfor
Fermions, let us make a citation from [38]: “It has been taken for granted that a fundamental theory
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of elementaryparticles must involve Fermion fields in the basic formalism, but neednot involve
Bosons.The spinor theory of Heisenberg[36] is the most developedexample of this philosophy
(comparealsoconsiderationson the two-neutrinotheoryof photons[93]).Morerecently the opposite
point of view has been proposed:that is, a theory in which only observablefields, necessarily
unchargedBosons,occurring in the basic formalism, might be capableof describingFermions,or
unchargedBosons. An early paper of Skyrme [37] goes so far as to give explicit formulas for the
Fermionfield in termsof the Bosonone in a two-dimensionalfield theory”.

3.1. Representationsof theCARgeneratedby representationsof the CCR

Now, weshall collecta few resultsof the Bosonexpansiontheory,developedin theseriesof papers
[27—34,16, 17,76]. As its extremely exciting feature there appears the fact that we deal with a kind of
universal Boson expansionsfor Fermion operators,involving applicationsin quantumtheory as a
whole,beginningfrom quantummechanicsthroughmany-bodyproblemsand endingin quantumfield
theory.From a physicalpoint of view this theorygovernsthe behaviourof systemswhoseexcitation
level is so loweredthata probability of occupyingotherthan the 0th and 1st energylevels of each
single degreeof freedom(normalmode) is very small.

Let us begin from the caseof the infinitely many degreesof freedom.We denoteK acomplex
Hilbert space.By ~l1F(K)we denotea Fock representationof the CAR (canonicalanticommutation
relationsalgebra)over K, actingon the representationspace~F’ anddefinedby the triple:

{b*,b,[IF}K, f,gEK
[b(f), b(g)*]÷= (J, g)1~
[b(f), b(g)]÷= 0 = [b(f)*, b(g)*]÷
b(f)[IF=0 forallfEK. (3.1)

By ~l1B(K)we denote a Fock representation of the CCR(canonical commutation relations algebra)
over K, generatedby the triple {a*, a, flB}K

[a(f), a(g)*] = (I,g)i~
[a(f), a(g)] = 0 = [a(J)*, a(g)*]
a(f)fI~ = 0 for all 1 E K. (3.2)

The representation space we denote by ~

Let furtherE,, be a boundedoperatoractingon the nth tensorproductK®n = k’,,, with properties:

E~= E~, E,,~= E,,, P,kE,, = — E~P,k, (3.3)

where Fik is anoperatorof permutationof the ith andkthK inK®n comparealso[27,29] whereexamples
for E~aregiven.

By virtue of (3.3) E~,,is a projector:~ = E~’,,,~t’~= (1 — E~)7C,,.Let usdenoteby. A,,~,,andS,,~,,
respectivelythe totally antisymmetricand symmetricsubspacesof ~ E~realizesan isomorphism:

A,,~ ~ (3.4)

which under an additional restriction on E,,:

A,,~= 0 (3.5)
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extendsto:

A,,~/C,,( ‘ ~ (3.6)

In connection with E,, comparealsoargumentsfollowing (2.12). Let uschooseK = ~‘2(R~),E,,(k,,,p,,)
is then an integral kernel of E,,, k,, = (k

1,. . . , k,,), k, p E R~.
The Fock representation d11~(K)of the CCRalgebra acts in the domain ~ C ~B. We denote

(a*, a) = fR~dka*(k)a(k). Then the operators b(f), b(g)* with:

b(f) = : exp{— (a*, a)}~ _~___ fdknJdpmfnm(kn,p,,)a*(ki) . . . a*(k,,)a(p,). .. a(pm): (3.7)
nmVt~m!

where:

fnm(kn,pm) = V’n+l ôm. i+n fdi, f drE,,(k,,,q,,)f(r)E,±,,(r,q,,, p,÷,,) (3.8)

dk,,=dk1...dk,,

generate a Fock representation ~I1F(K) of the CAR algebra acting on the following subspace of
3~B•

= ~ where: 3~=

‘F :exp(_(a*,a)}. ~~jfdkn~dpnJdrn

x E,,(k,,,r,,)E,,(r,,,p,,)a*(k,) . .. a’~(k,,)a(p,).. . a(p,,): (3.9)

The canonical anticommutation relations for b(f), b(g)* are proved in [29].
In the above ~F appears as a physical space H employedin the previousconsiderations.
The Boson expansions of Fermion operators (3.7)—(3.9) can be applied in quantum field theory.

Nowlet us studyatransitionto afinite numberof degreesof freedom.
We have proved in [32,16, 17] that the Boson expansions (3.7)—(3.9) can be reduced to a finite

number of degrees also. Namely, let K = ~ °..~K,where dim K, <~ for each I. Then we can construct
what we call the truncated representation of the CAR, consisting of mutually commuting segments,
insidewhich the usualCAR hold. The lth segmentis generatedby the triple {b*, b, fl~},given by:

b(f,) = : exp(_~ a:aa). (1/V’n!m!)

N Nj (3.10)
x ~ fnm(an,Pm)a~i...a~,,a~,...a

8a:
at. .. a,,~=O$j.. . $,,,

with:
N, N,

fnm(~n,13m)Vti16m,i+n ~ ~ E,,(a,,,y,J~, - E,~,,(o,7~,$1+,,) (3.11)
y1...y,,

000

and
N

1

K 3f, =~ FJ,,,,, ~ N1 being the basis systemin K,

a~= a(f,a)* = f dkf,a(k)a*(k), dim K, = 1 + N,.
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Furthermore:

E~(a~,v,~)= Eat .. . a,,
6atyl ~ (3.12)

where Eat .. . a,, is the generalized Levi—Civitta tensor vanishing if any two indices coincide and taking
the value ±1 depending on the odd or even permutation of indices.

Wethen get:

[b(f,), b(g,)*]+ = (f,, g,)i~

b(f,)f1~=0 forallf,EK, (3.13)

where 1,~is a unit operator in the lth segment of the truncated representation of the CAR, projecting
onto the subspace: 3~= ‘FiB of ~B with:

i~=:exp(_~a~aa). ~(1In!)

x ~ En(an,~n)En(’yn,13n)a~,...a~,,ap,.. . a,,,,:. (3.14)
aj .. . a,, 0 ~ .. ~5,=0 ~‘j ... ~‘,, =0

In the above we have assumed the vacuum ~B to be common for all segmentsfrom the sequence
1=1,2

However preservingformulas (3.l0)—(3.13) we can without any difficulty consider for each I a
separatevacuum[It,. In that case, in the place of a truncatedrepresentationof the CAR wedealwith a
sequenceof finite-dimensional Fock representationsof the CAR, generatedby the appropriate
sequence of triples {b*, b, 1l~}K.In this connectioncompare[17].

Restrictingour considerationsto ~aconcretelth segment,we achievethe requiredfinitely dimen-
sionalcase,namely the quantummechanicsof the many-particlesystem,generatedby dim K, = 1 + N,
number of different Bosons.

The simplest example is here dim K = 1. If fI’B = fl~ for all I = 1,2,... we get:

b7 = a7: exp(—a7a,):, b, = : exp(— a7a,):a,, (3.15)

= : exp(— a7a,).[1 + a7a,]:

and in ~ there obviously holds:

[bk,b,*],=0 fork�I

[b,,b7]±~~i~, b~=0=b72, b,[I~=0 foralll=l,2 (3.16)

If with each lth segment to associate a particular Ith vacuum II’,, and then to restrict considerations to
a concretesingle segment,we deal with aone-dimensionalquantummechanicalsystem.Omitting the
now superfluousindex I, we get the following identities for b, b*:

[b,b*]÷=1F, b*2=0=b2, b11
8=0,

= : exp(— a*a): + a*: exp(— a*a):a (3.17)

whichthusdefineanirreduciblerepresentationof the CAR in thetwo-dimensionalsubspace~F of the
original Hilbert space~ generatedby {a*, a, [I~}. ~ is spannedby the ground state[I~ and the
one-particlestate.For moredetailssee also[16,17]: a*[In = b*[I~ (3.17) is the casewhenthe correct
Bosonexpansionsfor spin ~ can be proposed.
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In case of dim K = 2 there is possible to find the correct Boson expansions for spin 0 and 1
operators.We dealherewith a two-particlequantumsystem,whereby (3.l0)—(3.14) a Boson with two
internal degreesof freedom{a~,aa,~ generatesa correspondingFermion {b~,ba,~B}a’1,2

with:

be = : exp(_ ~ a~aa).[aa + ~ a~E2(a,y, ~,, $2)a~ia~2]: (3.18)

which by virtue of (3.12) gives:

b1= : exp(_~ae*aa) .[a,+a~’a1a21: (3.19)

b2= :exp(_~aa*aa)~[a2—a~’a1a2]:

and:

1F= :exp(_~aa*aa) [1+a’a
1+a~’a2+a~’a~’a1a2]:. (3.20)

Here, the anticommutation relations can be easily checked through an immediate calculation, by
taking into accountthat : exp(—~aa~aa):projectsonto ~

1B.

The representationspace~F is now four-dimensional.The basis vectorsin 3~F = 1F~B canbe here
chosenin the form:

Ii, 1)= a’a~TIB=flOfO

I1,0)=(1/V2)[a~’+aflflB=(1/V’2)[f,OfO+fOOf,]
Il,—1)=[l~=f~Of~ (3.21)

0,0) = (1/V2)[a~”— aflhIB = (l/V2)[f
1 Of~—f~Of~]

while in the Hilbert space of a singleBoson,we would have:

= f~, In = (1/Vn!)a*lhfo.

In (3.21) we have indicated spin properties of the quantum system (3.l8)—(3.20). Namely, by [17], we
have defined in ~F the representationof the SU(2)group,whose infinitesimal generatorS is given by:

V2S±= ~ a: exp(— (a*, a)):

V2S.,, = : exp(— (a*, a)):a,, (3.22)

= — ~ la +: exp(— (a*, a)) . (a*, a):

where (a*, a) = ~aa~aaand:

la = : exp(—(a*, a)). [1+ a~ae]:. (3.23)

One can check that the first of the numberson the left-handsideof (3.21) indicates the eigenvalue of
~2, while the secondnumberindicatesthatof S~respectively.
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Hence the representation S naturally splits into the two irreducible components corresponding to
spin 1 and spin 0 respectively. Let us notice that the formula(3.22) was presentedin the way allowing
an apparent extensiononto an arbitrarymanyBoson,dim K = n, case.Now let us consider the case of
Boson expansionsof multi-Fermion operators.We assumethat a finite, dim K = 1 + N, numberof
Bosonsis involved.Then,we can apply expansions(3.10)—(3.l4)to find the correspondingexpansions
for bifermionsbb,,,babp with a,/3 = 0, 1,. . . , N.

To make an explicit calculationis not difficult, but rathertedious andthereforelet us mention a
useful method of functional representations of the CARand CCR, developedin [27—28,76],see also
the Appendix. In [28], in the proof of Theorem1, we have listed formulas needinga few minor
modificationsto solve the problemunderconsideration.Namely,we have:

ak = (a1, . . . , ak), 1

2k+n = ~ . . . ,

b,. . . b~=: exp(_(a*,a)). [~-~-~~ at,... ~
,,~

x Ek+n(lzk±n,ak,pn) E,,(p~, ~ . . . ar,:, (3.24)

bal...bek=:exp(_(a*,a)).[~‘_~-~ ~ ~
n=0

X En(~un,Pn)Ek+n(ak,Pn,vn÷k)ar, . . . ~ (3.25)
b~.. . b~

5b,,,.. . b,,= :exp(_(a*,a)). ~ a~... a~,

n=Ofl. ~~.r.p=0

X Ek±n(I.Lk±n,Uk, Pn)Ei±n(1
3i,Pa, v,±~) a~,. . . a ~ (3.26)

= (ak, aI,~, . . . , a,).

Identities make senseonly under the sign of the bilinear form, where after multiplying by the
antisymmetrictensors,summationsoverindices areperformed.

The restrictionof (3.24)—(3.26)to bb,,*,babe,b~b,,is obvious.By taking into account(3.12) we can
easily get expansionsin termsof Boson operatorsfor concretevalues of a,/3 = 1, 2,. .. , N where
tensorsEk+~,E,÷~involve suitablesignfactors.

Let us notice that the expansions,though infinite, are well defined as operatorsin ~ No
convergencequestionsappearherein contrastto the Marumori or Belaev—Zelevinskyapproach.

The original Bosonexpansionsof Fermionoperatorsconstitute,of course,infinite series.However,
for practicalpurposes,thereis usefulto know that one can alwaysrestrict considerationsto a few
lowesttermsonly. If to rememberthat full operatorsmakeinvariant the representationspace~, and
to take care of not getting vectors from beyond ~ no explicit use of the infinite expansionsis
needed.Let us for example notice that under the sign of the bilinear form, the following identity
holds:

£.* j.,* — * * — —

‘~‘a,’”1’ak B—aal...aakee,...ak B a,..akaI,~.’ak)B aI,...,ak,F. .

It suggeststhatpureBosonoperatorscan be sometimesusedin the place of pure Fermionoperators.
In fact (3.27) is a specialexampleof the quite generalcorrespondencerelation betweenFermionand
Boson algebras.
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Let usconsideran arbitraryoperator:

:F(b*, b): = ~ ~fnm, b*”brn)
~

= ~ —~—— fdli,, f dpjnm(kn, pm)13*(ki) .. . b*(k~)b(p1)... b(Pm) (3.28)nm Vn!m!
dk~= dk, . . . dk~, k~= (k1,. . . , kr), k ER

3

whose generatingtriple {b*, b, [1~} is associatedwith the starting Boson triple {a*, a, [Ill) usedto
perform the constructionof the Fock representationof the CAR in this of the CCR. Here fnm 15 a
totally antisymmetricn + m point function (distribution in general).We havesatisfied the following
identity:

F(b*, b): = : exp(_(a*,a))~~ ~ _!_(On±JnmO~m±i,a*h1’~’na~~+m): (3.29)
nmVt~m!k k!

where 0n(hmn) is the n-point Friedrichs—Klaudersign (alternating) function, being a continuous
generalizationof the Levi—Civitta tensor:

En(kn,pn) = iT,,(k~)6(k
1 p,)... o(kn pn) (3.30)

and rn denotesthatthe order of variablesis reversed:

fnrn(kn, Pm) = lam(ks,.. . , k,,, pm,Prn-I,. . . ,J~).

One moreidentity canbefurtherderived:

:F(b*, b): = : exp(— (a*, a))~Fc(a*, a): = ~ a*fl, :Fc(a*, a):a~),

:F(b*, b):[IB = ~ .~__ (0nfnrn0~m, a*”arn )flB = :Fc(a*, a):fl~ (3.31)
nmVti!m!

where f~m= ~ iT,,, f~,,,is a function symmetric with respectto permutationsof variablesinside
groups(n) and(m) respectively,but antisymmetricwith respectto permutationsfrom (n) into (m) and
conversely.(3.31) is the generalizationof (3.27) andallows to prove that if

1F is the unit operatorin
{b*, b, fiB) so that ~F = 1F~B, thenthe following identity:

1F:F(a,a):1F~F= :F(b*, b):~F (3.32)

holds for all operators:F(b*, b): and :Fc(a*, a): relatedby (3.31). As a specializationof this result,
one finds at once that the canonical anticommutations relations hold on SrF for operatorsiFa(f)*1F

and iFa(J)iF. The corresponding representation of the CAR is called a projectedrepresentation.
Notice here that the formal operator expressions for lFa(f)*1F, lFa(f)lF respectively,are quite
different from these for b(f)*, b(J) and the action of them on vectorsfrom the domainis essential.

In general, if the number of N Bosons{a, aa}a,.~oi N-i ~ involved, Boson expansions of
multifermion operators (3.24)—(3.26)canbe,by the useof (3.12), rewrittenin the form:
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h~ . . . b~~ : exp(— (a*, a))’ ~ ~ a~,. . . a~5f~. . . akp! , ~ . . . a~a~,: (3.33)

be,. . . b,,~ ~: exp(— (a*, a)) ~ ~ ~ . .

X E9, - ,,,,E,,, - akp! .. . . . a,,,,,:

b,,~b,3. . . b,, ~ : exp(—(a*, a)) a,,~. . .

X . . . a,a~,,tin!... akp! ~ . , , - ~ . . . a~~:

where �,, = -. .a!pl ,~,,and: i.r,,(kn) = s,,, �,,,... ,,,f,,(k,) ... f,,,(k,,) with {f~}~t2 being
thebasisin ~

2(R3).The symbol ~ means the validity of identitiesunderthesign of thebilinearform only
(afterthe integrationswith test functions).

By the useof (3.31),we get:

L.* I.*o~ .~ 1 * *1 a;;’
Vai . . . i/ak..7F — fin! -. . ,,klFa,,! . .

~ a,,klF�a!-,,k~frF,

b~,. . . b~kb,,, . . . b~ lFa,~!. . . ~ . . . a,
31

1FE.,,.. ak~f3l .~. ~!~‘~F’ (3.34)

In the above, the complete formulas 1F:F(a,a):lF are called the infinite Boson expansions
equivalenton ~F to :F(b*, b):, while operators:Fc(a*, a): are called the finite Boson expansions
correspondingto :F(b*, b):.

Notice that in general :Fc(a*, a): can appearas the infinite operatorseries,and the word finite
informs us that finite partsonly of Boson expansionsfor b* andb wereusedto construct:Fc(a*, a):.

3.2. Jordan—Wignerrepresentation

In the many-body problems,people frequently employ the Jordan—Wignerconstruction of the
representationof the CAR algebra,which is basedon the useof an infinite family:

[o~,o~fl.,,=0 for k�I (3.35)
± — +2 —2

[O~k, iTk ]+ = ‘F’ (Uk) = 0 = (Uk)

of spin ~raisingand lowering operators,see e.g. [100—105].

In practicalapplications,abovepart-Boson,part-Fermionnatureof operatorstandsfor a difficulty
in the theory, becauseno simple linear transformationbetweenUk’5 and Uk’5 such as would be
requiredto diagonalizea quadraticform (the Hamiltonian),leavestheserules invariant.

However,thereis not difficult to transformrules (3.35) into acompletesetof the CAR. The famous
Jordan—Wignertrick is here in order,where the Fermioncreationand annihilationoperatorsappear
accordingto:

k—I
I. ± —

ck=exp(11r U
10, ~iYk

\ j=i

c: = exp(i1T~crT~~~). o-’ (3.36)
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where:

C,~’Ck= iT~’Uk (3.37)

andthe inversetransformationreads:

Uk = exp(iir~c7cj). Ck

(3.38)

o~’=exp(i1r~c7cj).c~*.
j=1

The abovemethodwas inventedmanytimessincethe basicpaper[100]appeared.It hasbeenusedto
changespin operatorsinto Fermionsin [102],to changeelectronsinto Bosonswith a “hard core”
[103],and to changethe hard core Bosons into Fermions[104].Seealso [119,120, 123—130]. Above
considerationsarecloselyconnectedwith the applicationof Bosonexpansionmethodsof the previous
sectionto socalledJordan—Wignerrepresentationof the CAR algebra[100,43,74, 83]. Namelyby the
useof operators(3.35),we can introducethe following Fermionoperators:

i—I i—I
± — — * ± — ±b, (l—2Ukok)~o-,, b. = (l—2ukok)’o, (3.39)

k=I k=I

It, I,’~i ,— C 1 11, 1.1 —A_ rI..* s.*’i
t~”k, U

1 J±~ °ki

1F’ Luk, U~J.j.— Ii LUk ‘ ~~1 1±.

This is a Fock representationif iTkfI = 0 for all k = 1,2 If to consider spin operators o~’as
constructedin the Fock representationof the CCR algebra,we have:

iTk = : exp(— aak):ak, o~= a~:exp(— akak): (3.40)

where a,,, =fdpa(p)f,,,(p) and (1k}k.12 is the basis systemin ..~2(R’).If to notice that in caseof
dimK=2forall k= 1,2,...:

1~= : exp(— akak) -(1 + a~’ak):, (3.41)

1~—2a~’:exp(— a~ak):ak= : exp(— a~’a&):— a~:exp(— a~ak):ak,

we get at once:

= fl [1~— 2a~’:exp(— a~’ak):ak] : exp(— a7a,):a,= : exp(_±a:a&). [1(1 —

j—I (3.42)
b7 = a7: exp(_ ~ akak)~[I (1— a:ak):

which gives one more exampleof the CAR inducedby the CCR, and is a complete“bosonization”
formula for the Jordan—Wignerrepresentation[23].

3.3. Kàlnaysolution

Let us now presentanotherapproachto the questionof Bosonexpansionsof Fermi operatorsin
which, in addition to the Bosonsof interest, one introducesa finite number of subsidiaryFermion
operators.Original considerationscanbe found in [40—43,34] as well as in referenceslisted in these
papers.
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Let therebe given a Fock representationof the CAR algebrarealized by an infinite sequence
{F~},=,,2,,,,of matrices

([F,, Fj*]±)rt = ~ (F,)~~(~j*)~1+ ~ (~*)(F,) = (F,F,*),5 + (F,*F,),.~= öii6m = öijlrt,

[F,,13k. = 0 = [F,*, E*]+ = 0, (3.43)

= 0~(Fi0)r = ~(F,L,0~ = 0 for all r, i = 1, 2,...

where0 is thevacuumve~’torfor therepresentation.Let uswrite K = 0 ~..~
2(R3).ThenK is spanned

by a completeorthogonalsystem~ .N

g~,~(p)g,m(q)= i5~
mi

5(p— q)

~J g,,m(p)g”(p)dp = 6,.,, p, q E R~. (3.44)

Thenthe following trilinearfunctionscanbe associatedwith matricesF

F,m~(q,p) ~(F,)rs~”(q)g(p)

= ~ (F,*)~,g~~1(q)g(p) = F.~m(p,q)*. (3.45)

They satisfy the identities:

~f dk[F[~(p, k)F,*n~(k,q) + F,*~(p, k)F,~’(k,q)] = 8~,5(p— q)6~,, (3.46)

~Jdk[F,m~(p,k)F,~’(k,q) + F,m~(p,k)F,~’(k,q)] =0.

Let therebe given a Fock representationof the CCR algebra(1.26). By the useof the basis system
(3.44) we can consider in the representationspace ~ a continuouslyindexed set of generators,
accordingto:

a~(p)= ~ a,.~’g,.~’(p), a~(p)= ~ arg,.m(p) (3.47)

where:

[a~(p), a,,*(q)],. = 6(p — q)6~~i~,

[am(p), a,,(q)k. = 0 = [a~(p), a(q)]., (3.48)
a,,,(p )fl~ = 0 for all m,p.

By the useof aboveformulasonecaneasilycheckthat the operators{b,*, b~},~
2 given by:

b, = m,n~II~JFim~~(p,q)a~(p)a,,(q)dp dq

b,* = ~ JfF,”
m”(p, q)a~(p)a,,(q)dpdq (3.49)

m. fl I
R’
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satisfy:

[b,,b7]+ = 6,,1B, [b,,b,]÷= 0 = [b7, b7]±. (3.50)

The identities (3.50) are valid in the one-particle sector B’ of the Boson Fock space~

Moreover,by the useof the vector0 = {8r}r12 we canconstruct

= ~ 0r~”(P) (3.51)

and further:

= f dp ~ 0m(p)a~(p)fl~ (3.52)

the vacuumvector for the representation (3.50), which obviously belongs to B’: b,fIF=O for all
i= 1,2

Hence,we havedefinedthe triple {b7, b,, ~F},=,.2.... which in B’ definesa Fock representationof
the CARalgebra.

In the abovewe havetacitly assumedthat the objects(3.45) are c-numbers.In this connectionlet
usaddthatwe haveshownelsewhere[34],that thereexistsa broadclassof coefficients(3.45) which
are operator-valuedand can be derived through a simple constructionfrom an arbitrary Fock
representationof the CAR algebra: the matrix representationis thenexplicitly constructedfrom the
startingone.

Kalnay’s theory thus admits Fock representationsof the CAR algebra,which are directly Boson
constructed,but indirectly throughtrilinear functionswhichcanappearas operator-valued,depending
on certainstartingFock representationof the algebra,quitedifferent from the derivedone.

4. Fermion—Bosonreciprocity in quantumfield theory

4.1. RelationsbetweenFert’nions and Bosons

Let us start from the two arbitrary families QF and QB of Fermion and Boson quantumfields
respectively.We canconsiderthe following question:do thereexist relationsassigningto oneor more
elementsof QB the one or moreelementsof QF.

Quite popularrecentlysupersymmetryapproach[67,68]seemsto offer an exampleof the a priori
requestedrelation between Fermions and Bosons. The fields are formed into irreducible super-
multiplets, allowing to deducethe conservationlaws, which reflect the mentionedrelation. This is
obviouslya result of the supersymmetryrequirementand not of the intimate structureof QB and QF.

Anotherpossibilityis concernedwith field theoriesof severalquantumfields, obeyingthe abnormal
commutationrelations. In that case one introducesso called Klein transformations[69], changing
commutationpropertiesof fields underconsideration.

The approachesdevelopedin [36,70,71,93]can be summarizedin the notion of the fermionization
of Bosonsprogram, where all appearingin Nature Boson and Fermion fields are believed to be
derivablefrom a single nonlinearspin~ “urfeld”.

In the framework of the conventional quantumfield theory the fermionizationprogram was
realizedin connectionwith the Thirring model, seee.g. [47,116, 117]. Namely,to defineacurrentone
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needs a Fock representationof the CCR algebra over ..~‘2(R’)constructedin terms of the Fock
representationof theCARalgebraover® ~~2(R’),hencewith adoublednumberof theinternaldegrees
of freedomin the theory.Quite the conversetrendis realizedwithin the Bosonizationof Fermions
program,whereonewishesto getFermionfields in thefield algebrasof thegivenBosonfields.This is the
placewherethe Boson expansionmethodsare applied.

Therewas conjecturedin [37] that it is moredifficult to constructhalf-integral representationsof
rotationgroupsout of the integralthan conversely,andit seemsto be patiently impossiblewithin the
limitations of the polynomialexpansion.The authoreventried to derive the explicit formulasfor the
Fermionfield in termsof the Bosonfield, whenthe numberof space-timedimensionswas reducedto
two. This approachwas further analyzedand generalizedin [38] with the useof the C*~algebraic
techniques what allowed to construct a field algebra of the Boson field, which exhibited the
anticommutationrulesfor certainvaluesof the charge.

Another realization of the program is based on the ideaof Bosonexpansionsof Fermionoperators;
the approachesof previoussectionsgive herethe solutionsin the indirect way. Namely,the relations
betweenquantumfields appearon the level of the Fock representationsof the CCR and CAR
algebras,hencefree fields. Throughthe Fourieranalysisone goesfrom the SL(2C) covariantto the
SU(2) covariantobjects.Becausethe Haag expansionsof interactingfields and scatteringoperators
are powerseriesof normalorderedoperatorexpressionswhich includethe “bare” (free) imagesof the
“dressed” (interacting) field only, one can always expressany Fermion field in terms of the
appropriate free Boson fields. See e.g. [30,31,108—120,45,46].Recently,papers[105—107],threw a new
light on the possibility of the Fermion—Bosonmetamorphosisin gauge theorieswith the magnetic
monopole. Namely, in the SU(2) quantum gauge field theory, with the isospin symmetry broken
spontaneouslyby atriplet of scalarmesons,isospinordegreesof freedomareconvertedinto the spin
degreesof freedomunderthe influenceof the magneticmonopole field [105].Thenin the transition
formfactor, spin and isospinform an antisymmetricsinglet,which implies the nonvanishingof matrix
elementsof the spinorfield betweenthe spinlessstates.

On the otherhandin [106]therewas arguedthat as aconsequenceof the spin-statisticstheorem,in
the SU(2) theoryof isospin Bosons,in the field of the magneticmonopole,one canget Fermions.In
the analogousdirection theregoes the investigation[107],wherean objectcomposedof the spinless
electricallychargedparticleandthe spinlessmagneticallychargedparticle may bearnet half-integer
spin, while the two-cluster wave function is symmetric. The study of a relative motion of these
clustersprovesthatthis symmetryconditiondoesnot violate the spin-statisticstheorem.An intuitive
Goldhaber’sexplanationsays: perhapsan objectwhosehalf-integerspin comesfrom the charge-pole
contributionobeysFermi—Dirac statisticsso thata Fermioncanbe madeout of Bosons.

As a solutionto this questionthereis found that the anomalousrelation betweenthe clusterspin
andthe permutationsymmetryof atwo-clusterwavefunctionproducedby the static fields of charge
and pole in a given cluster, is compensatedby the anomalousrelation betweenthe wave-function
symmetryandthe quantumnumberswhich correspondto physicalobservables.All thatfollows from
the long-range interactions of chargeswith poles in the different clusters. So, indeed, the two
anomaliescombinein suchaway that Fermionscanbe madeout of Bosons.

4.2. On field theoriesin the two space-timedimensions

The methodof Bosonexpansionsis not a strangeconceptfor peopleworking in the domainof the
low temperature description of the (anti)ferromagnetic crystals or the atomic nucleus. There is
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howevernot broadly known its closeconnectionwith the so called lattice approximationsof Boson
(quantum) field theories, see e.g. [119—130]as well as its relation to the investigations of the
Fermion—Bosoncorrespondence,especiallyfor the Thirring and Sine—Gordonsystems[44—46,108—
120].

The famous Coleman’s conjecture [44] on the possible metamorphosis of Fermions into Bosons,
results in the statement that for mass zero and the space-time dimension two, the Fock space of a
masslessDirac field, contains masslessBose particles. In the study of equivalencesbetweenthe
appearingFermionsand Bosons,the explicit constructionsof field operatorswereperformed,seee.g.
[45,46,109,114,115,116,118,126,130].An exampleof the Mandelstam’ssolution[45] reads:

‘I’(x) = {“I’,(x)},...,2

= (c~/2~)”
2exp(~/8�): exp [-2~i/3’ J d~(~)- ~

~
2(x) = — i(c~/2~)”

2exp(~/8�):exp[—2~i/3~J d~(~)+ ~i$~(x)]: (4.1)

where41(x) satisfiesthe so calledquantumSine—Gordonequation:

x = (x, t)
2 2

LJ4’(x) = (~_~-~)41(x,t) = (p~2/f3): sin[f341(x, t)]: (4.2)

andthe canonicalcommutationrelations,while ‘P(x) is provedto be a Fermion,which undersuitable
restrictionsbecomesa Fermionof the massiveThirring model.

There is instructiveto know thatthe introducedso Fermion—Bosoncorrespondenceresultsalsoin
the equivalenceof the Thirring andSine—GordonmodelsHamiltonians,seee.g.[46,115]. In [115]it is
shown that any interacting spinor systemin the two space-timedimensionscan be equivalently
describedby the scalarsystem:both theorieshavea common Hamiltonian.The correspondenceof
this kind is further extendedon the caseof the vector-spinorsystemsand the Yukawa interacting
systems,which both canbe relatedto the Sine—Gordonmodel.

The transition from Fermionsto Bosonsin the two-dimensionalquantumfield theory follows from
the fact that the Fock spaceof the free masslessFermionfield containsin everychargesectormass
zero boundstates,so that the two Fermionboundstatesareconnected with the masslessBosonfield.
This result was at the roots of the neutrino theory of light [93]. How to get Bosonsfrom the
two-componentFermionssee also[47].

Let us add that the structureof the Fermion Fock space,with special respectto the Fermion—
Boson reciprocity was studied in detail, in the Uhlenbrock’spapers[116,117]. The transition from
Boson’sto Fermionsis realizedby the useof the exponentiatedfield. Here,we shall only mention an
interestingfeature of this approachresulting in the so called Kronig identity betweenthe Hamil-
toniansof the free masslessFermionandBoson fields:

~ (4.3)

with Q+, Q beingthe suitablydefinedchargeoperators.In caseof the Thirring model theauthorsget
the generalizationof the Kronig identity in which the renormalizedHamiltoniansH and HI appear
in the place of HF and H,,.
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In the massivecase,an analogousidentity can be proved if to usethe conceptof the dressing
transformation.It allows to reformulatethe physicalHubertspaceproblem in the Fock space,by the
useof pure Bosonoperators.Denotingd, the scalingdimension,n to bean index of the chargesector,
and m denotingthe mass,we get:

HF(d, m, n) = HB(d,m, n) +~(Q~ + Q~). (4.4)

Someeffortsareconnectedwith the “choiceof quasi-localFermifields insteadof quasi-localBosefields
sothat theyareinterpolatingfields for the sameone-particlestates,whosecorrespondingmulti-particle
stateswill obeyeitherFermior Bosestatistics”[114].The specialnotion of “schizon” wasintroducedin
this connection.Then,if startingfrom Bosons:

[a(p), a*(q)] = Poö(P — q), [a(p), a(q)] = 0 (4.5)

the authorsdefineFermionsby:

b*(p) = a*(p)exp(_iiTJn(q)dq) (4.6)

n(q) = (l/q)a*(q)a(q).

Note here a closeanalogywith the Jordan—Wignertrick. In addition to pure Boson approachto
Fermions,it is usefulto mention the studyof the Fermion—Bosoncorrespondencewhich is performed
on the level of Lagrangeansfor simplestmodels,but for the priceof introducingthe additional,quite
formal (elements of the Grassmannalgebra) degreesof freedombeing the reminiscent of the
supersymmetryapproach. They make the Boson constructedfields to anticommute, see e.g.
[112,113].

5. Quantum fields on the spatial lattice: towards the Heisenbergcrystal

5.1. Lattice approximationof the Thirring model

The Hamiltonian of the massiveThirring model on a one-dimensionallattice with spacinga and
N = 2r sitesis given by [119,120]:

H = ~ {~V(G) . (4141,,~, - 41~±i41n)~1) ~(41cfr~~,+ &±i41n)

—~(&‘41~~ —~)(41~’+,ø,~±,—~)}—E0. (5.1)

The 4,,,’s are Fermion operators [41,,, 41~]±= 6nm and 41,.±,= 41-r+i G is a renormalized coupling
constant, and the V(G) is the finite renormalization constantneededto makethe speedof light equal
to unity. Upto thefirstorderin G, wehaveV(G)= 1 + (G/~),m0denotesthebaremassandE0 is included
to makethe groundstateenergyvanish:m0 dependson the lattice constanta.

With the helpof the Jordan—Wignertrick we canrelate the abovemodelto the Heisenbergspin-chain
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problem,the XYZ-model with the Hamiltonian

~ = ~k=~±I {J,~U~±,+ J~U~±,+ J~ff~+,} (5.2)

periodic boundaryconditionsareimplied.
The appropriateversionof the Jordan—Wignertrick reads:

= exp{i(i~/4)(N+ l)}. o~’ [~ (iol)

= ~(oS,, + lUk), (5.3)

so that, underthis transformation:

H = ~ + ~ (1 + (— l)T~~~F). { 1x0•rX0~r±I+ JyU:O~r±,} + const. (5.4)

with:

~ ~V m0 JG
x2a 2’

52a 2’ z4a

r r
F z I~ ±(—1) = Uk =explllr 41k4~k (5.5)

k=—r+I I. k=—r±i

Here (
1)F commuteswith ~ and H. It proves that in the sector ( 1)F = (— l)~” we have

H = ~ while if ( 1)F = ( 1)~,H equals to anotherHamiltonian ~ given by the Heisenberg
ferromagnetformula with the anticyclic boundary conditions: O~±i= — ~ ~ = — ~ iTr+i =

cr~,.+,.Unfortunatelyfor J~= 0, which correspondsto the free model, the threeHamiltonians~
~ and H havedifferent spectra,what slightly spoils the receivedequivalence.Here the strong
dependenceof the theory, while formulated in the Heisenberglanguage,on the choice of the
boundaryconditions,should beemphasized.

If to introducethe projectionoperators:

P±= ~(1— (— ly±F), P~= ~ (1+ (— ly+F)

we have

~ P±]-.= ~ P±L= [H, P~]

so that

H = P±H~~~+ + const.

andhence:

a) P~resp.P is the projectionon the subspacewith an evenresp.odd Fermionnumberabovethe
physicalgroundstate,

b) for large N the spectraof P±H~~~and~ arethe same,what partly solvesthe mentioned
spectrumproblem.

5.2. From Bosonsto Heisenbergantiferromagnet

Let us consider again the spatiallatticewith spacinga andthe integerlattice label n. If, with each
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lattice site we have associated a complex scalar field ço,, satisfying the canonical commutati9n relations:

[~, corn],.. = ônm, [ç”,,, ~m]- = 0

= 0 for all n = 1,2,... (5.6)

thenin the correspondingFock spacewe canconstructthe Fermionunit operatorwherein the place
of creation and annihilation operators a*, a weput respectively:p”, ço, 1F(a*, a) ~ 1~(q~’,q,). By the
transformation:‘FWn’F = 41,, we have associatedwith eachlattice site a single componentFermion
field 41,,:

[&~ 41~]±C 6nm1j~, [41,,,, 4’m]±= 0. (5.7)

Let us considerthe Hamiltonian:

1FHB1F = HF = ~ {41~’4’n+i— 41~’±,41n}, . (5.8)

comparein this connection(5.1). We have:

1H ~ ‘ —~ &+~—41~ (59)— — 2a —

sothat thetime dependenceof 41,, ateven(odd) sitesis determinedby the spatialdifferenceof 41,,÷,at
odd (even) sites.Following the prescriptionof [127],let usdefinea two-componentfield If/rn:

~~=(:)~~~:: neven (5.10)

the componentsof i/i,, satisfy:

cho’~41e/Ax, 41e=IX41øI1~X (5.11)

which, at the continuum limit becomesthe masslessDirac equation: (ô/t9t)i/i = (? ~)Thf//öxin the
standardrepresentation:y,, = (~~. By the useof the Jordan—Wignertrick:

TT . 3 —= jj {io, }~(7,,,

‘<a

= fl {— iiT,’} . i7~’ (5.12)
‘<a

the one-dimensionalFermionproblemcanbe rewrittenas the one-dimensionalspin problem: r~ is the
spin matrix at the nth site, 1 = 1, 2, 3... so that:

HF~—~{o~’a~±,+o~’±,a~,,} (5.13)

what describesthe XYantiferromagneticchain.
As we know from previous considerations each of Pauli operators can be bosonized so that one can

once more state the question of the Boson translation of the same (see (5.8)) physicalproblem.

5.3. Variations on 41~

The 41~quantumfield theory is given by the Hamiltonian:

H = f dx{~(341/at)2+ ~ (341/3x)2+ A(412 - f2)2} f2>0. (5.14)
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Its latticeapproximationon the linear lattice with the dimensionL, spacinga = 1/A, L = (2N + 1)/A,
V = L is describedby the Hamiltonian:

H = ~ {~~ (V413)
2+A(41t—f2)2} - (5.15)

where the gradient term is chosenin the form [123,124, 128]:

~(V41
1)

2 =f~k241(k)41(— k) = 41k,’ D(j —j’) (5.16)

with: -

D(j - ~ = 2N+ 1 k~. {~exp[i(j - J’)k/A]}. (5.17)

After rescaling:

x, = A”241
3, p3 = A”

2ir~~‘ [NJ, xk] = —

A
0=AA”

2, f~=f2 (5.18)

we get:

H = A ~ {~p~+ ~ (Vx
1)

2+ A
0(x~_f~)2}. (5.19)

The lattice version of the starting quantummodel is obviously an approximationof the continuous
one.However, furtherapproximationscanbe madewithin the lattice formulation.

Let us noticethat in (5.19) the differentsingle-siteterms:

H~.= A ~ {~p,~+ A0(x~— f
2)2} (5.20)

arecoupledby the gradienttermsonly, which in factcarry interactionsin the model.If to neglectthe
gradients,we receivethe socalled single-siteapproximation,whereat eachsite we havethe identical
Schroedingerproblemof aparticle in an anharmonicpotential.In this approximation,the eigenstates
of the Hamiltonian,areformedby the productof single site eigenstates.The lowestenergyeigenstate
is jIf’,,) = 11, 4t,,)~where IIf’

0)~ is the jth site ground state. The next energylevel is achievedif at most
one of oscillators is in its first excitedstate;hugedegeneracyappearshere.

Introducingthe annihilationandcreationoperatorsat eachsite j:
x,=—

2=(a
3+a7), ip~=

2

[a3,afl, =
6jk (5.20)

we canget the mostgeneral,in the single-siteapproximation,statefunctionof the system:

I*)=[TI~I~)~(IMIf!k)=ôJk

= [I c~
3In,). (5.21)

a) =0
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In the soreceivedsinglesitebasis,onecan approximatelycalculatetheenergyof theoriginal,interacting,
system:

H = A{~ H,,,,(j)+~~ D(j, _j2)xix12} (5.22)
I 3!�32

so that its expectationvaluein the trial stateJ~fi):

(~IHI~)= H~= A{~ (If~HSS(I/JJ) + ~ D(j, — ~ . (5.23)
I jI�52

In case of the translation invariant ground state, needing ~, D(j, — 12) = 0 50 that ~ D(j, ~J2) =

— ~,, D(0) = — LD(0), implies:

E0(çfi) = H,, = A~L{(4IH,,I4’) — ~D(0)(4’IxIt/i)
2}. (5.24)

Another kind of approximation of the starting Boson theory is the finite spin approximation. Let us
discussit for the caseof 41~theorywith the addition of the nearestneighborcoupling term:

H = A ~ {~p~+ ~(x~+ 2)x~+ Axl — x
1x1±,}. (5.25)

The periodic boundaryconditionsare assumed.
In eachsingle site, the correspondingsingle-sitetermdescribesthe anharmonicquantumoscillator,

whosesolutionas the Schroedingerproblem:

(~p
2+ ~~ + 2)x2+ Ax4)In) = E~In) (5.26)

by the use of the basis®,1n
3), 0< ,z3 <c~allowsto write the Hamiltonian (5.25) in thematrix form, H

beingdimensionlessH H/A:

H = ~ (F — X ® X
3~’). (5.27)

HereE is the diagonal matrix {E
3} consistingof the single site energyvalues.X hasthe nonvanishing

matrix elementsbetweenthe evenand oddparity states.
The finite spin approximationis receivedby truncatingthe baseto a finite numberS of levels at

eachsite: OAn,), 0~ n3 ~ S— 1 so that the truncated Hamiltonian represents the coupled spin s system
with 2s+ 1 = S. Notice that the approximationis basedependent.As a particularexample one can
considerthe spin ~ approximation:S= 2 what meansthat the two low lying statesonly of the single
site Schroedingerproblemareretainednow. This approximationis reasonableunderthe existenceof
the externalregulation mechanism(low temperatures,the strongcoupling, eq. the weak excitation
limits) forbidding the occupationof higher energylevels: the probability that the systemis excitedto
higher than the lowest two, energy levels, is negligibly small.

The Hamiltonian matrix acquires the form:

v’ E + — ± -H = const.+ .L 1,,~O’i — . (0, + U~ ~ + 0i±i)J (5.28)

where, see e.g. [123,129] � = (E, — E0), ~ = (OJxJl)1
2,~ o-,, andU’S are theordinaryPaulimatrices.

Sinceonly the two states are consideredfor each oscillator, they can be representedby the
presenceor absenceof a Fermion,what motivatesthe translationof H to the pureFermionlanguage:
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the Jordan—Wigner trick:
‘-I N

= (—l)~’b~’, n, = b”b,, n =

aT=[T(—l)~’b~, ~T~2fl
1—l

allows to derive:

H = LE,, + J=-N b7b~— ~ j=-N — b1)(b~,+ b1+1) + ~(b~—bN)(b~N+bN)(exp(i~n)+1)

(5.30)

what finally enabledus to associatewith the startingBoson systemthe correspondinglatticeFermion.
Onecanhereobviouslystatethe questionwhether(5.30)can befurther connected,in the senseof the
lattice approximation, with some continuous (quantum field theory) Fermion system.

6. Heisenbergferromagnetin the low temperaturelimit

6.1. Spin ~ approximationin quantummechanics

Let us consider an elementary quantum system in one dimension. Such a system is completely
determinedby an irreduciblepair {P, Q}” = A ‘B, A E 01 of the momentumand position operators, which
areselfadjointin the suitableHilbert spacei,,.

We assumethe quantummotion of the systemto be governedby the Hamiltonian H, whose
completeeigenfunctionsystem~ Hf,, = E,,J~spansp,,. We havethengiven the operators
a =(1/V2)(Q+iP), a*=(1/V2)(Q_iP) so that af0=0, and f~=(1/\/n!)a*nfo. Hence, the triple
{a*, a,f~}generatesa Fock representationof the CCR in i,,. In accordancewith considerationsof
sections1,3.1,inatwo-dimensionalsubspace‘~F of ~, whichis spannedby vectorsf~,f,,we have given
a Fock representation of the CAR algebra (b*, b, f~}with:

b=lFalF, b*=lFa*1F (6.1)

and furthermore, an infinitesimal generator S of the irreducible in SrF representationof the SU(2)
group: V~S~= b*, V2S =b, S3=(—1/2)i,, + b*b =1F[— 1/2 + a*a]1Fwhere: ~2 = ~ ~ S,f~= ~
S3f,= ~f,. Notice that S3 = ~ ‘F — b b implies: S3f0= ~f0, S3f,= — ~ f,.
In consequence,the vectors f0, f, are the commoneigenvectorsof the three operators:H, ~2, s3~
Therefore,if the description of our elementary quantum system can be restrictedto ~F only, we can
in principle characterizeit fully by a completefamily (HF, S

2,S~}of the commutingin ~F observables:
HF = 1FH1F. The only thing is to disclose the physical conditions, under which sucha restriction is
possible.It is obviously nonrealizablefor the isolated system.Let us thereforeassumeit to be in
contactwith a suitable,low-temperatureenvironment(reservoir). In suchcase,any pumpingof the
systemto energiesexceedingE, can be madenegligibly probableif comparedwith this to produce
either E

0 or E,. Then,the descriptionof anyelementaryquantumsystem,with the good accuracycan
be reducedto ~F only, where a completefamily of observables{HF, S

2,S3} is given.
Another mechanismof this kind can be the strong coupling potential forbidding the systemto



96 P. Garbaczewski. The method of Boson expansions in quantum theory

occupyhigher energylevels. This phenomenonseemsto be of special importancein the interacting
many-particlesystems.

The aboveconsiderationscan be summarizedin the following conjecture:the quantummotion of a
one-dimensionalspinlesssystem,which is governedby the HamiltonianH, providedthe systemis in
contactwith the low-temperatureenvironment,in the weak excitation limit perfectly simulatesthe
internalspin ~quantummotion of aspinningobject,in its own referencerestframe.

Furthermore,we can treat each spinlesselementaryquantumsystemas a superpositionof the
BosonicandFermionic “phases”.If higherexcitationsareallowed,the Bosoniconeprevails,however
in the weakexcitationlimit the Fermionic onebecomesprevailing.

One caneven try to establishcertain critical temperatureof the reservoir,beginning from which
our Boson canbe with a good accuracyconsideredas the spin ~ Fermion.Thingswould becomestill
more exciting if there would exist a large energygap betweenE, and higher energy levels of the
Hamiltonian. In that casetherewouldbe evenpossibleto get the highly stableFermionic “phase” of
our elementaryquantumsystem,in maybe largerangeof energies.

6.2. Bosonizationof Fermionson the isotropic lattice

We are interestedin the specialclassof the quantumspin systemscalled the isotropicHeisenberg
models,whosespecializedcaseis the famousIsing model.Let the isotropic spin latticeconsistof the
numberN of equivalentsites,eachone occupiedby identical atoms: eachone with spin s and the
magnetic moment ~. With the lth site of the lattice we associatethe lth copy S~of the finite
dimensional Hilbert space ~, dim ~ = 2s+ 1, s = 0, i,... together with an irreducible unitary
representation of the SU(2) group, with the infinitesimal generators {Sk}k=I.2..,. satisfying:

[Ska, Sn,]— = 1�abcSkc 6,,,, (6.2)

where a, b, c = 1,2, 3, (or x, y, z),S~= s(s+ i)lk and ‘k is a unit operatorin ~

We denote ‘ki = 1(1k — Il),
4k = 0, k, I = 1, 2,. . . , N, the exchangeintegral of the lattice, and

= (0,0, ~C)is the magneticfield oriented along the z-axis of the referencerest frame. Then the
general Hamiltonian of the lattice [9], reads:

~ ~ I,C,S~S, (6.3)
k=I k. ~=1

and canbefurtherwritten in the form:

S’ = S~±iS~, (6.4)

H = E
0 + H2 + H4

E0=—N1j,~~s—~Ns
2J(0)

H
2 (~.

3~’+ sJ(0))~ (s — S~)— ~ Ik,Sk4’Si

H
4= ~ 1k,(SSk)(551)

where j(v) = ~k 1(k)exp(ikv). Moreover, to be in agreementwith commonly acceptedin solid state
physicsnotationS~mustbe identified with the notion ‘f2S~,of previous sections.

The description of the Heisenberg ferromagnet in the low temperature limit (Curie point) involves
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Bosons in the basic formalism [48,49]. Namely, in that case,a collection of the ideal spin waves
constituting the free magnon gas, is believed to simulate perfectly a behaviourof the crystal:
transitionprobabilitiesfor the ideal spinwaveprocesseswith a good accuracyapproximatethesefor a
real system.A conventionalcomputationaltool in this placeis the useof formal substitutionsas e.g.
theseof Holstein andPrimakoff or of Dysonand Maleev. They allow to considerin the place of (6.2)
a pure Boson Hamiltonian of the ideal spin waves defined in the appropriate space of spin states.

The useof the Holstein—Primakoffprescriptionfor spin values s ~ 1 allows to considerH in the
form:

H-*H,,=E0+H2+H’+H”, (6.5)

H2 = (j.t
3~’+ sJ(0))~ n,, — ~ slk,aka,,

H’ = — ~

H” = ~ Ik,U + (1/8s))(a,~’2aka,+ aa,”a?)

+ ~ Ik,(l/32s)(ak aka,+ a~’a”2a~)— ~ Ik,U/16s)akalalak + O(s”2)

while by the useof the Dyson—Maleevprescriptionwe get:

S’—~\/2sa~

S~’—p V2s(l — akak/2s)ak (6.6)
s — a~a,,,= S — n,,,.

In both casesH
2 is interpretedto describethe noninteractingspin waves, H’ their dynamical

interaction,H” being responsiblefor the kinematicalcorrections.H’ and H” appearhere as small
perturbationsof H2+ E0.

In the abovethe condition s 8~1 automaticallyexcludesfrom considerationslowest spin lattices,
therefore it seems reasonable to apply herea rigorousapproachof section3.1.

Let the triple (a*, a, flB}K generatea Fock representationof the CCR algebraover the complex
separable Hilbert space K = ~7, K, with dim K, = n for all I, n = 1, 2

The basissystemin K we denote }~‘~“ so thatthe indexation a(f,,,,) = a,,, of modes,induces:

1 *1 —CC Ita,,,, ak,,J... — Uk,O,,,,

[a,,,,ak,,].,, = 0, a,,,flB = 0 for all 1, a. (6.7)

The underlyingFock spacewe denotef,,.
Let usnow assumeto havedefinedthe subsidiaryBosonlatticeconsistingof a finite (large)number

of identicalcells: I = 1, 2,. . . N, eachoneoccupiedby the n-modecluster:a = 1,2,. . . , n enumerating
the componentsof the cluster. We definethe following operators:

= ~ a7,,

=~°~—i,9°1=~a,,,

5~=_(n12)+(a*,a), (6.8)
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with (a*, a), = ~,, a,4,,,,a,,, and introduce the Hamiltonian of our lattice Boson: notationsare taken
from the above,and ‘ks. = 0 for all k,

H,, = G
0 - j~.~ - ~ ‘kD9’kS~. (6.9)

k=1

This operatoris well definedin the suitably chosendomainsin p,,. If to admit acontactof the
subsidiaryBoson lattice with an appropriatethermostat(reservoir), one can imagine the regulation
mechanismfor the excitationlevel of the lattice, throughthe raisingor lowering of the temperature.

Temperaturechangesinfluencethe structureof the set of transitionprobabilitiesbetweenlattice
states:certaintransitionsbecomemoreprobablethanthe others.

Let us choosea discreteset {T,},...0 , of pointsalong the temperature scale, each one with a
correspondingneighbourhoodST,. The separationintervals betweenthe neighbouringpoints are
assumedto be sufficiently largeif comparedwith the correspondingST’s. With eachdiscreteT, let us
associatea projectorP~,.with the property:.

(6.10)
prob[~,,]= 1, prob[fl~]= 0

1 > prob[~~]~ prob[,~,,\~’T]within the intervalL~Twherethe notion prob[~~]denotesa probability
with which the transitionsbetweenlattice statesfrom ~ are realized inside .,~,, on the chosen
temperaturerangeT ±~T/2. To removethe arbitrarinessconnectedwith the relation>~,one can try to
associatetemperaturevalueswith concreteprobability values,as e.g. prob[~,,\~~] ~0.001, say. In
thatcase,the Bosonlattice,with a good accuracycanbe describedin termsof statesfrom ~

1~T andno
necessityto considerthe wholeof ~,, appears.

By virtue of considerationsof section3.1, for certain critical temperatureT
0 (T0~ T~)and a

correspondingtemperaturerange ~T, there exists a projector P0 such that within the interval
T0±~T/2 the following operatoridentity:

.POHBJ
3O= H = G

0 — ~ ~

5k — ~ ‘kt5k5~ (6.11)
k=I k.~=1

holdson the Hibert spaceof spin states~ = P
0~ which is a finite dimensionalsubspaceof ~‘B~

Furthermore,eachof operators:
5k = P0S~kPois an infinitesimal generatorof the reducibleon

representationof the SU(2)group,whoseirreduciblecomponentsinduceacorrespondingsplitting of
~ into a direct sumof suitablespin spaces.They areparametrizedby the spin valuesassociatedwith
eachof the N sitesof the Heisenberglattice.

A few comments are now in order:

The identity (6.11) establishes a connection of the subsidiary Boson lattice with the isotropic lattice
in the weakexcitation limit. It clearlyexhibits the limitations (projectorsP

0) underwhich the useof
Bosonexpansionsin the theory is justified. Formally onecan considera straightforwardequivalence
relation between

1~1B and H. However in that casethe essentialdomain questionsarise. H,, appears
hereas the finite Boson expansionscorrespondingto the infinite expansionfor H.

The cluster structureof the subsidiaryBoson lattice, introduced by us as the limitation of the
theory, plays an essentialrole. Namely, in caseof dim K, = 1 for all I, we get the spin ~ lattice. If
dim K, = 2 for all I, then,~can be reducedandwith eachlattice site onecan associateeither spin 1 or
spin 0 quantumexcitation.
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Our main task now is to construct explicitly the operator P0. Let us notice that fi,, is a common
ground state for all clusters of the subsidiary Boson lattice. Wedenote ~ a Fock space associated
with the kth cluster, andhencedeterminedby the triple:

{a~, ak,,, flB}1n5,,.~n.

From now on we assume to have allowed the spin ~approximation of our quantum system, so that
the two lowest energy states corresponding to each single normal mode of the system (including the
single componentsof the clusters)are essential.Then with eachsingle degreeof freedomwe have
associatedthe Fermion:

b* = a*: exp(— a*a):, b = : exp(—a*a):a, ‘F = :exp(— a*a). [1+ a*a]:,

and furthermore the induced spin ~operator S.
If further to consider the n-modecluster, and repeatabove considerationfor eachsingle com-

ponent,thenthe operator

S=~S,, (6.12)

definedby:

S’~’=~b,,*, S”=>2b,,

5Z = ~ 1+(b*, b) (6.13)

where (b*, b) = ~,, b,,*b,,, is an infinitesimal generatorof the reducible on ‘~F representation of the

SU(2) group. It follows from the fact that for a � /3, the operators b~,b,, do commute:

[b,,,b].,, = 0 = [b,,,ba]. (6.14)

while:

[b,,,bfl±= i;, b~= 0 = b,,~’
2 (6.15)

so that operators 5, obey:

[Sna, Si~~l—= 6~~p~abc5,c

a,b,c=1,2,3, a,f3=1,2,...,n. (6.16)

By the use of the well known addition theorems for the angular momenta in mind, we can add these
generators,gettingthe new infinitesimal generator5k = ).~, S~ of the SU(2) groupbeing assigned to the
kth n-mode cluster under consideration. Obviously, this generator is defined on ~, and decomposes
this Hilbert spaceinto a direct sumof spin subspacescorrespondingto the irreduciblecomponentsof
the representation.

In the spin ~approximation of the Boson system we can apply the Boson expansion formulas to the
aboveoperatorsaccordingto:

= ~ a~’,,,:exp(— akaak,j:,

= : exp(— ak,,ak,):ak,,,,, -
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= — ~ {: exp(— ak,,,,ak,). — ar,,,,: exp(— ak,,ak,):ak,},

[Ska, S,b]_ =
6k1 ~~abc5kc’ (6.17)

The Fermion unit operator 1 ~selects in ~,, a subspace of spin states corresponding to the lth cluster
with dim K, = n.

In the above the operator : exp(— (a*, a)k):, (a*, a),,, = ~,, ak.,ak, is responsiblefor projectingonto
the groundstateof the cluster.A global projectiononto the groundstatefor the whole of the lattice is
then received by the multiplication of all particular cluster projections (by virtue of the direct product
structureof f,,), and reads:

exp(_(a*, a)):, (a*, a) = ~ (a*, a)k.

Let us now define the following operators:

P=1~_:exp(_(a*,a)k):. (6.18)

Eachkth oneprojectsonto the non-zeromode subspaceof ~ Then,the operator:

P
0 = : exp(— (a*, a)): + ~ {P~ : exp(—~(~*,a)~):~ (6.19)

is a projectorand selectsin d’,, a subspaceS~= Po~,,being a closed set-theoreticunion of all
particularspin spaces3~= U ~. ~ and thus being the Hilbert space of spin states for the subsidiary
Boson lattice.

Now thereis quite trivial excerciseto checkthat on ~ the following operatoridentitieshold:

S~PO~ a~’,P0=P0,9°~’1~0

S~=Po~ak,,PO=PO5~PO

S~= Pj—~+ (a*, a)k]PO= P0,~’~i~0 (6.20)

whereP~preventsus from leaving ~ while using Bosonsonly. Moreover, for k� 1 thereobviously
holdson

PO~9°kS~PO= PO&°kPOb~PO= SkS, (6.21)

what follows from the commutativity of the componentsof the operatorsSDk’ .5~,and
5k~S~respec-

tively.
BecauseP

0 is the unit operatorin ~, we getthusthedesiredpropertyHB—* POHBPO= H to hold in
,-, 0•

Let ussummarizethe receivedresults: our starting point was the subsidiaryBoson lattice,whose
descriptionis in the spin ~ approximationreducedto a particular subspace~ of ~,,, so that the
restrictedlattice Hamiltonian HB = POHBPO is in fact the Hamiltonian of the isotropic Heisenberg
lattice.

Thephysicalconditionsunderwhicha restrictionto ~ is possible,areclarifiedby the conceptof the
spin ~approximation. Weneed so low temperature T of the thermostat,thateachsingle modeof the
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subsidiaryBoson lattice is either singly excitedor not excitedat all, so that:

1 > prob[S~0] ~‘ prob[~,,\~0]. (6.22)

Probabilitieswith which transitionsto, and betweenthe higher energylevelsof thesystemparticipate
in (6.22)are thennegligible.

In the pure Boson languagewe deal herewith a kind of the condensationof the magnongas (its
single degreesof freedomin fact) aroundthe lattice sites, so that the magnoncondensateperfectly
imitatesthe structureof spin interactionsinside the crystal.

Moreover, by the use of spin ~ approximationof the Boson systemwe have received,what in
section5 did correspondto the finite spin approximation.

The last step in theseconsiderationsshouldbe now acomparisonof results(HamiltoniansI mean)
receivedby the useof the eitherof the presentedmethods.Calculationsareherestraightforward,and
to have a comparison with the Holstein—Primakoff and Dyson—Maleev expansions, we put ,9°~—*—
what implies

S~—~—S~.9°,~’=a,~’,

~J’k=ak, .

92k=~—akak

andresultsin:

H
2

8 = ~ + ~J(0))~(N — ~ nk) — ~

H~’= — ‘ki + Ik,(nk + n,) — ~ ~ (6.23)

After the reorderingof termswith respectto powersin which the operatorsa, a,,, appear,we get:

E,~’= ~ N,,LL~C+ ~ NJ(0) — ~ ‘ki’

H~’= — (~i~’+~J(0))~‘~k~ Ik,aka,~ Ik,(nk + n,),

H,, = ~ Ikl’~k’h1, H,, = 0. (6.24)

If comparedwith the H—P and D—M expansions,we havemodified E and H~,and no kinematical
term at all.

Obviously, the Hamiltonian H,, = + Hi” + H,~makes senseif employed in the theory of the
Heisenbergferromagnetin the form POHBPOonly.

6.3. Theanisotropiccrystal

Let us consider the generalized Heisenberg model with the diagonal interaction exchange tensor
and the anisotropy with respect to all three crystalographic coordinate axis:

i~f=o,,~i~, a,f3=x,y,z
Tz — ~‘ TX — �1~ TY — 7

1kI — 1k1’ 1k1 — 51k1, 1k1 — ?11k,

where ~, i~ are the anisotropy parameters ~J, ~ ~ 1.
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For the caseof a ferromagneticcrystal,we additionally need ‘kI > 0. Note that ‘k~ <0 implies the
antiferromagnetism.

The externalmagneticfield is againorientedalong the z-axis ~W= (0,0, X). Then the Hamiltonian
of our spin system reads [9]:

H(I, ~, ~) = — ~ S~—~~ Ik,(~S~S,x+ flSk~Si’+ S~S,} (6.26)

wherewe admit — 1 ~ ~ 1.

If to introduce the operators S~= S~±iS~, we get further:
H(I, 4, ~) = — !~C~Sk — ~ ‘k,{~(~+ ~)S~S1+ ~ (~— ‘q)(S~S~+ S~S,~)+ S,~Sf}. (6.27)

Becauseof the translationalinvarianceof the Hamiltonian (6.27), we can makea transition to the

Fourier imagesof the operatorsS~in the momentumspace:

= (1/\/N) ~ S exp(±ikp), S~= (1/VN) ~ S~exp(— ikp)

Iki = I(k — 1) = ~ 1(p)exp{i(k — l)p} (6.28)

getting in the placeof H(I, ~, ~):

H = —
1~i�\/NS~— ~ I(p){~(~+ ~)S~S~+ ~ (~— ~)(S~S~i~+ S;SI~)+ S~’S~~} (6.29)

where:

~ O~~l

I(p)=I(O)-y~, 1(0)=I.z, I~=~I(p)=0

y~(1/z)~exp(ip6), l~y0I~1, ~ .yp=O (6.30)
5±0 p

and:

Yp±po= — Yp, Yp±2p0 = Vp, ‘Yo = — )‘±po = 1.

Here Po = (IT/a) (1, 1, 1) is the boundary momentumof the first Brillouin zone, and we explicitly
assume the approximation of the nearest neighbour interaction: a parameter z denotes the number of
the nearest neighbours of a single site.

From now on we shall restrict considerations to a special case of spin s = ~lattice.This restriction
is justified both theoretically and experimentally [50,51,9] as a consequenceof the fact that the
majority of the physically interesting results rather weakly depends on a particular value of spin.
Moreover the peculiarities of the spin kinematics are essential in case of the lowest spin values, while
in the quasi-classical(quasi-Boson)limit s —~ they are completely negligible.

In this place there is usefulto employtherepresentationof spin operators through the Pauli matrices.
We shall introduce:

c~_i,* ~‘....t,
— Uk, ~L~k— Uk, ‘

3k — 2 1F Uk Uk.
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Then:

S~=b, S=b~, S~=(VN/2)6~0—p~ (6.31)

wherep~is a Fourierimageof the operatorn~.

= (1/VN)~ n,, exp(— ikp) = (l/\/N) ~ bb~
k q

= p-p. (6.32)

As a consequenceof the commutationrelations:

It. t.*1 —/1.~1 \CI,Uk, U, J — ~i ~..nk,uk,

[bk,b,].,,=0, b~=b~
2=0

we get the following relations in the momentumspace:

[ba,b~]_ = (1/\/N)2S~_~. = 6,,~— (2/\/N)p,,~

[b
0,p~]= (1/\/N)b~+~., [b~’,p~]_= (— 1/\/N)b~’_~.

[pa,pp’]_ = 0 = [ba,b~.]_. (6.34)

By virtue of b~= b~’
2= 0 andn~= ‘1k’ (5~)2 = ~, we get:

~ b_pbp+q = 0, (1/\/N) ~ P_~P~±~= p~ (6.35)

for all k, q.
Introducing all these notions into (6.29) we receive the final form of the Hamiltonian:

H = E
0+~{A(p)bb~+~C(p) . (bb~!0+ b~b~)}—~~ I(p)p,,p~ (6.36)

where:

E0=—~Np2—~NI(0),~ O’~i~~l,

A(p) = A*(p) = A(—p)= ~t~’+~I(0)(1 —~(~+i~)y,,),

C(p) = C*(p) = C(—p)= —~I(0)(~— ~)‘y~.

Let us add that if ~= q, the coefficient C(p) obviously vanishes,and in that caseE0 becomesan
energy of the ground state, while A(p)an energy of the ideal gas of Bloch’s magnons.

The general ~� ,~Hamiltonian (6.35) describes the magnetic properties of a few metals, and can be
alsoappliedto the quasi-spinformulationof the superfluidityproblemfor the nonideallatticegasand
the BCS model in the theory of superconductivity, compare [9,52—56]. The one-particle dynamics
generated by the Hamiltonian (6.35) leads to the following equations of motion:

ib’ = [b0,H]_ = A(p)b(p)+ C(p)b~0+ J~ (6.37)

where:

I —LVI .1. T*\j..!(I — 7*
~p — 2 ~‘p ~ .~—p) 2 ~ J_p

J,,±J.~= (1/VN)~ Vpq(X±)pq (bpq ±b~p+q)

x~= ~, x.. = (6.38)
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and a non-symmetric potential Vpq(X) is given by:

Vpq(X)= I(0)(y~ — xyq_p), V,,4(x)~ Vqp(x). (6.39)

In the Boson approximation the term — x-y0_0 is neglected. Analogously for p,,:

i~i~= [pp, H] = (1/2VN) ~ W,~b~!qb...q±p+ (1/4VN) ~ Wp~(b~qbq*_p— bqbq±p) (6.40)

where:

W~=±~(~±~71)Vpq(±1)=±I(0)~(~±~)(yq~yqp). (6.41)

In the particular case of the Ising model ~ = = 0, we get Vpq(0) = I(0)y,, for all p, and i15,, = 0,

~ = 0 so that all operators p~are the integrals of motion.
Dyson’s theory [48,49] of the isotropic Heisenberg ferromagnet, which was further reproduced in

terms of the Boson operators [57—64],is commonly treatedas the most exact and appears as the
standardtheory in the low temperaturedomain. Its generalizationonto the anisotropic case is
immediate. Let us now reproduce from [9] what happens if the Dyson—Maleev expansions are used.
Namelytheir translationto the momentumspacereads:

b —* a, b0 -+ a0 — (l/VN) ~ v,,...,,a,,, p0 -+ ,i~ (6.42)

where:

[a0,a~]_.= ö~,,,,, [a,,,v,,.]. = (1/V’.N)a0±~.,

I’,, = = (1/\/N) ~ ~ (6.43)

and the subsidiarycondition,which reflectsthe requirementb~= b~’
2= 0 is imposed:

~ av~~~_,,a
0= 0 for all r. (6.44)

Then:

HB = E0 + ~ {A(p)ap*ap + ~C(p)(a~’a~+

~ I(p)v,,v..,,+(1/4VN)(~+~)~I(p)a,~’~p.qaq

+ (1/4V’N)(~— q) ~ I(p)a.p~p_c,aq+ (1/2N) ~ C(p)vpqaqv_~,rar (6.45)
pq pqr

In the model ~ = ~ we get C(k) = 0 and then:

HB = E0 + ~ E:a:a~— ~~I(p)v0v_0+ (1/2VN)~~I(p)avp.qaq. (6.46)

Both Hamiltonians (6.45), (6.46) are obviously non-Hermitean and need an introduction of the new
topology in the statespace.However,if done, the eigenvaluesof H,, are allowedto be negativeand
evencomplex.
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If to make use of (6.30) the Hamiltonian (6.46) can be rewritten in the canonical Dyson’s form of
the symmetrizedfour-Bosoninteraction[48]:

H,, = .l?~+ ~ E,,~aa0— (1/4N) ~ ~ (6.47)

where the Dyson’s potential Vpqr(~)is given by:

Vpqr(~)= [)‘q + Yp—r—q— ~(Yq±r + y~_~)]. 1(0). (6.48)

In the case of the Ising model ~ = = 0 we would get

Vpqr(0)= Yq + 7p-r—q~

The Hamiltonian (6.47) generates the following equationsof motion: for the Boson operators
a,~’,a0:

iO,, = [a,,,HBL. = E:a~+ ~J~) ~ {‘Yp-r + Yp-q — s~(Yp-r-q+ yp)}a~’±q...paqar, (6.49)

— iO,~= [a, HB].. = Ea — (1/N)I(0) ~ (yq — ~yp_q)ap*_qa~*~qa~

= Ea — (1/N) ~ Vpq(~)a~qv...q. (6.50)

The above equations are not mutually adjoint.
By taking into account:

= [lip, HB] = (1/2v’N)~I(o)~ (7,,, — ypq)a~!q{aq+p — (1/VTh ~ t~_q+p_rar} (6.51)

andcombining it with (6.49),onegetsone moreequationof motion:

(id/dt — Ep84ap— (1/\/N) ~ vp_rar} = ~~~~(1/VN) ~ Vvq(~)vq{ap_q — (1/\/N) ~ vp_q_r~r}.

(6.52)
Wehave thus derived the complete Dyson images of the dynamical equations (6.37), (6.40) in the
anisotropiclattice.

The theory of the previous sectionsuggeststo use the rigorous Boson expansionsof the spin
operators,which in case of lowest spins do not suffer of all peculiaritiesand difficulties of the
Dyson—Maleevapproach:noticefor examplethatthe operationsof theHermiteanconjugationandthe
differentiationin time, do not commute.

In the rigorous approach the following substitutions are in order:

~ b~—*a0, p0—+v,,

b = P0a~’P0, b0 = P0a~P0, p,, = P0v,,P,, (6.53)

for all p, andthe appropriateprojector Po in p,,.
Notice that to make an explicit use of the up to now performed calculations, we have changed the

definitionof S~into — S~.
Substituting(6.53)into (6.36),we get:

H = POHBPO

H,, = E0+ ~ {A(p)a~’a,,+ ~ C(p)(a~a~+ a...0a~)— ~ I(p)v0i’,,,, (6.54)
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where:

Po=:exp(_~ak*ak):+~{Pok:exp(_~(a*,a)j):}
k=1 k=1 j�k

P~= 1~—: exp(—a~’ak): (6.55)

and P
0 projectsin ~,, onto the Hilbert spaceof the spin statesof the lattice [17].

For ~ = ~ we get in the placeof (6.36) a simple analogue of (6.46)

H,, = E0 + ~ E~a,,*a,,— ~ I(p)ii,,v...,, (6.56)

differing from (6.48)by the absenceof the term ~(2/VN) ~pq I(p)ap*vp...qaq.The canonicalform of H,,
is easily achieved:

H,, = E0+ ~ E,,E~a,,*a0— (1/4N)~ Vpqr(0)a~’±qa,~‘_qa0a~ (6.57)

what implies the following equationsof motion for the operatorsa,,,a

— ~0 la,,1- o,
1Up — ‘ 0 ia ~0

iá
0 = [a,,,H,,].,, = E,,”a0 — (1/2N)I(0)~ (y,,_,.+ yp_q)a~’+q,paqa,, (6.58)

— iO’ = [a,~’,HB] = E,~’a,~’— (1/N)I(0) ~ yqa...qa~”±qa.

andobviously, for v,,:

Po ii:’0ft0 =

i,>0 = [,~‘0, HB] = 0. (6.59)

One can easily checkthat the equations(6.58) are mutually adjoint with respectto the Hermitean
conjugation~.

Here, like in the Ising model (where ~ = = 0 manifestly) all operatorsv0 are the integralsof
motion.

In addition,combiningthe first equationin (6.58)with (6.59) onecan derivethe following analogue
of (6.52):

(id/dt — E:)(a,,— (1/VN) ~ lip.. qaq) = — (1/V’N) ~ Vpq(0)vq(ap_q — (l/V) ~ vp..,q.rar) (6.60)

where V00(0) = I(0)yq = 1(q).
Let us add that the extensionsof the describedmethodsonto the antiferromagneticcase are

straightforward.

7. The atomicnucleusin the weakexcitationlimit

In the theory of atomic nuclei there was noticed that in many cases,the spectraof low-lying
excited statesare similar to theseof the excited systemof the weakly coupledquadrupoleBosons
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[7,18—26]. Sucha Boson systemcanbethususedin the approximatedescriptionof the weaklyexcited
atomic nucleus, when the anharmoniccorrections,which correspondto the interaction of the
quadrupoleBosonsbetweenthemselves,are negligibly small.

On the other hand, there is well known that the Hamiltonians of the microscopicmodel of the
nucleus,if expressedin the representation of the generalized quasi-spin operators, are in closerelation
with the previouslydiscussedHeisenbergferromagnetcase.This suggeststhe useof Bosonexpansion
methods,to get an approximationof the starting systemby the setof collective Bosonswhich are
responsiblefor its low-temperatureproperties.

In the spherical model of the nucleus, with the j—j coupling, each jth one-particlestate is
characterizedby a collectiona,, = (n, l,j, m)k of quantumnumbers.Becausethe magneticparameterm
playsadistinguishedrole in furtherconsiderations,we shallusethe notation:

a,, = (n, I, J)k so thatas,, = (a,ma),,,, k= 1,2,.

Let us define the operatorsof Fermion pairs, whose total angularmomentumequals J, while its
projectionM:

A~~(a,b) = (1/V2) ~ (jajbmamb I JM)b,,~b~
rn,,,mj, (7.1)

B~,(a,b) = ~ (j.,jbma — mb I JM)(— 1)1b’ab - bb,.

rn,mt,

Here (j,,,,jbmam,, I JM) is the Clebsch—Gordancoefficient of the expansion.

Let us introducethe following abbreviations:

a,, = (a,,,, ma,,,)= (a, ma),,,, AJkMk(ak,bk): = Ak.

By the use of the sequence k = 1,2,... of the operators (7.1) and their ad joints, one can construct the
Hamiltonian of the nucleus in the microscopic model, as well as the transition operators between the
nuclear states.

The operators (7.1) obey

[A,, Ar].., = ô~” —2 ~ ~ (1 + j3,) ~ (1 + j3,,)Y(i,k, I). B,

[B,, Afl.,, = 2 ~ ~ (1 + p~)~ (1 + pk)Y(i, k, 1)A~’ (7.2)

[B,,Bfl_ = ~ (1— j3,13,j3,)Y(i,k, l)Bk

wherep,, is the permutationoperator:

j3J(k) = p~,,f(ak, bk, .~k,Mk)= — øk(a, b, I) . f(bk, ~ J~,M,,)

9(a, b,J) = (— 1)3~~’3b’~’J (7.3)
and moreover:

= (1 + j.9,,)8,,,(~)= 2 6JJk

6MiMk(Saiak~bib~— ø,(a,b, J)8aibk5b,ak (7.4)

while:

(Iajbkmakmbk I ~k~”1k) = Ck

Y(i, k, 1) = ~ C’CkC,(—1),~k~~~k•~ (7.5)
(rn)
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In the particular caseof J= M = 0, the commutationrelations(7.2) coincide with the commutation
relationsfor the spin operators.Namely,in that case,for eachk= 1, 2,... we have:

[Ak,Afl,~= 1 — 2(1/V21k+ 1)Bk (7.6)

[Bk,Afl = (2/\/2j~ + 1)A~

what allows to associatewith eachkth bifermion statea correspondingkth infinitesimal generatorof
the SU(2)group, accordingto:

Sk —~‘/Jk +~A,,, S~= ~ +~Ak

= ~ (1k + ~) — (1k + ~)(1/V2j,,+ 1) . Bk (7.7)

this fact justifies the Boson translationof the theory at least in the simplestcaseJ = M = 0, but
motivatesalso the trials to get any extensionof the Boson expansionmethodsonto more complex
situations.

Now, as the interlude in the main streamof considerationslet us study what happensin the weak
coupling limit, called also a harmonic approximation, when higher excitations significantly influence
the behaviour of the nucleus. In that case one can imagine the situation, when the compounds of the
atomic nucleus though Fermions in the basic formalism, can behave like Bosons.

Following [7],let usassumeto dealwith thelight nucleus,where the number n of the compoundsis
relatively small.

Weknow that the higher is the excitation level of the system (high temperature limit), the greater
becomesthe number~a(21a + 1) of the one-particle states which are mostly occupied by the single
constituents of the nuclear system. Moreover, only the great values Ia ~ I becomethensignificant.
This corresponds to the weakening of the coupling forces between the nucleons, so that the weak
coupling limit of the theory is approached.

Let us notice that for Ia ~ 1, we can use in the place of Y(i, k, 1) the correspondingasymptotic
expression:

Y(i, k, 1) -=
8b,b, - öaj~j 6a~a,(21 + 1)~~h/2

X \~~‘Jk+ l)(2J, + 1)(2J, + l)• (JkJ,MkM, I JiMi)(Ji,,Jiia~— Ib,’ Ia, — Ia,,, I TiiaI — J~,) (7.8)

where:

(2j + i)~ (2j,,, + 1)(2Iak+ l)(2Ib, + 1).

By virtue of Ia ~‘ 1, (7.8) includesa smallparameter(21+1Y”2~[~ (21,,,, + 1)]h/2. In consequence, the
operator part of the right-hand side of the commutator [A,, Afl can be neglected.

Moreover in case under consideration, the operators BJM(a,b) canbe alsoneglected. If we denote
by Im) the ground state of our nucleus, and consider the expectation value of BJM(a,b) in this state,
we get:

(mIb,*b~Im) (~
1)ib-rnb ~ ( l)Jb..rnbô - fl - (i/s (21a + 1))~ (7.9)

so that:

(mIBJM(a,b)Im) ~ (j,,jbma — mb I JM)(— l)Ib~bö,~n- (l/~ (21a + 1))

(n/V2J,,+ 1)
6ab6J06M0 (7.10)
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Hence, in the approximation ~a (21a + 1) ~‘ 1, the operators AJM(a,b) can be consideredas the ideal
Bosons:

[A,,Afl = o~, ~,A,= A, (7.11)

while BJM(a,b)_0.

In consequence, in the place of the initial Hamiltonian describing the interaction of Fermion pairs,
one can introduce an ideal Boson Hamiltonian,acting in the Hilbert spaceof the Boson states:no
Pauli exclusion principle is observed. This is an example of the metamorphosis of Fermions into
Bosonsif higher excitationsareessential.In thatcase,obviously, the Bosonic“phase” of the system
significantly prevails.

In the above, the Pauli exclusion principle, standing for a defining property of the Fermionic
behaviour,disappeared.Quite conversely,we shall now prove its appearanceif to considerthe weak
excitationlimit of theappropriatelydefinedBoson system.The four-FermioninteractionHamiltonian
will be now in order.

In the microscopic theory of the weakly excited atomic nucleus, the collective excitation branches
are connected with the pairing correlations inside the nucleus, which is assumed to consist of
nearly the same number of protons and neutrons. Because the nucleons can occupy the same
one-particle levels, differing by the isospin projection r only in addition to the p—p and n—n
correlations, the n—pones should be taken into account.

Weassume the correlations to be spin independent, so that the quantum numbers of interest are
now a = (j, m, Sr).

Let there be given a four-Fermion interaction Hamiltonian [65]:

H = ~ (�, — p,,)b,*b, + ~ b,~bb,b,,,,,W(a,/3, 7, tr) (7.12)
a

where ~ is the chemical potential: in the ground state of the system when W = 0, ~ equals to the
Fermi energy EF.

Weknow that in the nucleus, the interaction correlates the antiparallel magnetic momenta only,
what results in the following form of the Hamiltonian:

H = ~ (ç — p~)
1’1irn+ ~ b’mr,bT_nvr,bj’_rn’o,,bjm’

02 VU, j’, m, m’, Sr,, r2, cT,, 02) (7.13)
j,rn>O j,j’.m.rn>O

,71,,72T1T2 ±1/2

where:

Nirn = ~ (bj~ni.bjmi.+ btrnTbj,m,.).

1/2

Because terms differing by the sign at m give the identical counterparts to the total sum
~j, m>o(�i — p.~)Nim,we can in fact consider N,,,, = 2 ~ b7rn~bj~mT,compare e.g. [7,65].

In [7] one can find still more simplified form of the Hamiltonian (7.13)

H = ~ (E, — p~)I~imG ~ ~ (7.14)
j.rn>O j,j’,rn,rn’>0

i-=0. ±1

where:

A* (1\j—m /~•1~ j,,* ~*jrn,~— l~ 1) ~ 1/2nI/2,.2Ujm1.iL~j_rnT2
,i, ‘~=±1/2

and C~T,,I/2T2denotes the Clebsch—Gordon coefficient.
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To find the spectrum of (7.13) or (7.14), one must perform the appropriate diagonalization of the
Hamiltonian, see e.g. [65].

Let us now study the low-temperature behaviour of the nucleus in the microscopic model. The
discussionof the traditionalMarumori approachcanbe foundin [7], wherethe following form of the
finite Marumori expansions of the bifermion operators was assumed:

(~1)’A~,,,~—~cJ~nT(1— ~ C7rn~~Cim~)+ ~ ~— iy ~ c~fl~.c~fl,~’cjrn,,T(—IY, (7.16)

(— 1~”’A
1~ ~ c3,,,,~ -

Nrn ~ 2 ~ ctmTcjrn~

= 0, ±1.

Then the bosonized Hamiltonian includes the two- and four-Boson terms only, what seems to be
encouraging at the first sight. Unfortunately, as we know from section 2 the Marumori expansion
formula in the finite case, does not lead to the Hermitean Hamiltonian. Hence, any physical
conclusions drawn from (7.16) may be incorrect: compare in this connection [7], where one diagonal-
izes the BosonHamiltonianby the useof the nonunitarythoughlinear andcanonical,transformations.
Obviously, one can use the infinite expansions, which preserve the Hermicity of the Hamiltonian and
take accountof the Pauli exclusionprinciple. Howeverin that case,it is extremelydifficult to make
any explicit calculations with more than a few, lowest order expansion terms. Moreover, the infinite
expansions were never proved to converge sufficiently quickly.

The above difficulties with the low-temperature limit of the Hamiltonians (7.13), (7.14) can be
successfullyovercome,if to use the rigorous Boson expansions of the multifermion operators from
section3.1.

Let us first noticethat in the Hamiltonian(7.13) the secondandfourth order termsonly appear.We
have here a clear splitting into the two pairs {b~.1,b7_rnT2} and {bi’_rn’o.i, bj~rn~u2}.Notice further thatthe
bi-operatorsbi”rn,.,,~ b”_rni.2 and bj~rn~u,bj~rn’,,r2commuteto 0, and if multiplied, they produce a vanishing
fourth-orderterm if anyof triples in the sequence{jmT,, j — m~r2,j’ — m’~,,l’m’o2} coincideswith the
other.

We defineformally:
t.* _D* l~~c — *

— Pk, Uj_,,,~1.2— k2
bj_rn~= /3,,,, b’m~2= f3,,,~ (7.17)

what gives us the kth two-dimensional (i.e. dim K = 2) Fermi triple: {/3~,/3,~ ul~}belonging to the
family of the mutually commuting segments inside which the canonicalanticommutationrelations
hold. If specified to the bifermion case, with /3, /3” standing in the place of the generators b, b*, the
multifermion expansions of section 3.1 read: flF~~’~H

f3~’,13~= ak,al,,2EkkS. exp(— a~’,a,,,—

f
3k,I3k2= : exp(— a,,~a,,

1 — a,,,2ak2):akiaksEksk, (7.18)

f3~,f3,,~= a~:exp(— ak,ak, — aksaks):aki, i = 1,2

where e~is the two-point Levi—Civitta tensor: (�,~)= (_~ ~). The finite Boson expansions read:
Q*D*I * *1

Pk,Pk~— lFak,ak2IFEk,k,
I
3k,f3k~= lFaklakSlF�kSkl

I3~,f3k,= 1Fa~ak,1F. (7.19)
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Here E,
1 plays the role of the sign factor, while ‘F restores the Pauli exclusion principle in the pure

Boson scheme. Identities (7.19) hold only under the sign of the bilinear form: i.e. if multiplied from
both sidesby anantisymmetrictensorandsummedover all the indices.The substitutionof (7.19) into
(7.14) gives the correctBoson expansionof the nuclearHamiltonian:

H =
1FHB1F

HB= ~ (ç—~)2~a,’~,,,TajrnT+~~ V(I,f,m,m’,r,,r
2,o1,o-2)

I.rn>0 T jj’rnm>0
Ut

X �(jmtl)(imt2)~ E(j~rn’cr3)(j’—m’ui)a~rnt,a“_rnt2ai’rn.uiairnu2 (7.20)

with T,T = ±~.

Wehave thus derived a very simple, purely Bosonic Hamiltonian for the microscopic model of the
atomic nuclei, which exhibits all the essential properties, as e.g. the Pauli exclusion principle, of the
starting one. For this Hamiltonian the diagonalization procedure can be performed on the pure Boson
level.

The only difficulty arises here if to try to compare the correct expansion formula with this in the
Marumori approach. Namely, the Bosons we have used to perform the construction are rather
unphysical,as carryingthe odd isospin quantumnumbers.They are the ghostBosons,which in the
weak excitation limit behave like the physical Fermions. This situation can be easily improved. Let us
assume:

- 1 j—rn+/—rn’ ~ Tt Tr

V(j, j , m,m , T1, ~2,

0-i, (72) = (— 1) z~Ci,2~l1/2TSCI/2U
2 1/2oi

wherer = 0, ±1, T = 0, 1. If to neglectthe term with T = 0, we get, by the useof:
* * *~‘

i/2t11/21.2E(/m,.i)(/_rnt2)airnt,,a i_mt~ = c3,,~ (7.22)
t1t2

which, by virtue of the orthogonality and normalizability conditions for the Clebsch—Gordan
coefficients,see e.g. [65], implies:

~ c~,T,,,]_= (7.23)

the following, physical, form of our ghost Hamiltonian:

HB = ~ (�~— ~)2~ ~ + ~ (-_ l)~”~’~c~cTrn.t (7.24)
j.m>0 Tt jmj’rn>0

T~
where the interaction term includes now the physical Bosons only: each one appearing in the place of
the ghost pair. These are the nuclear analogues of the Cooper Bosons, which by virtue of

1FHB1F = H
still obey the Pauli exclusion principle.

We see that the explicit use of the orthogonality formulas for the Clebsch—Gordan coefficients,
nearly unavoidable needs a two-component structure of the four-Fermion interaction Hamiltonian in
the weak excitation limit. Namely, we have here the isospin I and isospin 0 “phases” of the weakly
excited atomic nucleus.

Restricting considerations to the isospin 1 “phase” only, an obvious comparison with the Marumori
approach is possible. It is quiteclear thatthe Marumori formula,evenin the finite case,proposestoo
many terms in the expansionfor A7,,,,~to get a correctequivalencewith the starting four-Fermion
Hamiltonian. -
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Let us add that in the second quantization approach to the four-Fermion interactions, one can also
usethe supplementaryBoson field method [66] in which the quantaof the Boson field describea
collectivemotion of agroupof Fermions.However,in that case,the Hamiltonianis not expressedin
termsof Bosonsonly but needsthe additionaluseof the new Fermions,which areconstructedfrom
the old Fermions and the supplementary Bosons.

8. The correspondenceprinciple in quantum field theory: quantization of spinor fields

We shall not go beyond the framework of the conventional quantum field theory, and all the
considerationsareessentiallybased on its LSZ formulation [77,78]. The basicassumption is here that
any operator quantity characterising a given quantum system: the scalar field at the beginning, admits
a decomposition into the power series expansions with respect to the normal ordered products of the
free asymptotic fields. With the scalar quantum field 41(x) —~~ ~(x) we associatean algebraof all
operators:

:F(q,): = ~ (fe, :q~:)=~ Jdx~- . .f dxJn(xn):q~(xi).. - ~o(x~): (8.1)

~ x~(x,t), xkEM~
4.

With the Fock representationof the CCR algebra (the asymptoticcondition) we can introducethe
coherentstatedomainfor the operatoralgebra:

{a*, a, C1B}k, K = ,,.~2(R3)~a, (a, a) = Jdka(k)ã(k)= 11a112

Ia) = exp(— ~IIaII2) exp(a, a*)11,,
(ala(k)Ia) = (a(k)) = a(k). (8.2)

If a, a are the classicalFourier amplitudes of ç~(x):

a, a —~a, a*~p’~(x)_~~(x)

we get:

(aI~’(x)Ia)= (~(x))= Co

(aI:F(~’):Ia)= F(~) = ~ (f Cfl) (8.3)

what establishes a correspondence between a quantum and the classical level of the scalar field
algebra,providedh = c = 1.

To restore correctly the corresponding quantum image, while the classical expressions are given, it
is extremely useful to employ the so called functional representations of the CCRalgebras, which
arise in the theory of the functional power series, see e.g. [74—76,27].

An introduction to the functional methods is given in the Appendix, and here we shall only quote,
without anydetailedexplanations,the basic results.

Namely if we have an operator expression (8.1) and the corresponding classical image F(~)=
~,, f dx,.f,,(x,,)q~’~(x

1).. . ~(x,,), it is sufficient to multiply F(~)by exp(ã,a) to getso called functional
representationof theoperator:F(~):.The functional power series F(ço~)exp(ã, a) playthe role of the
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operator:F(~);in the Bargmann space, which we denote by ~,, = ~(2’2(R3)).This situationcan be
summarizedin the correspondenceprinciple;wherethe correspondencerule reads:

{:F(~):}—* {F(~)}

(a~:F(q’):Ia)= F(~) (8.4)

while the quantizationrule:
{~(C)}~ {:F(~):}

F(~’~)exp(ã,a)= :F(Q):(ã,a)~:F(Q):. (8.5)

The pragmatists working in the domain of quantum field theory are strongly convinced that the quite
satisfactoryclassicallevel for the field algebraassociatedwith anyFermion (Dirac say) field is given
in the framework of the Grassmann algebra. This algebra is built of the c-number like but
anticommuting objects, what exhibits manifestly the Pauli exclusion principle, whose influence on the
starting Fermion level is thus taken into account. There was even founded a complete theory of the
anticommuting numbers in the functional-like integration and differentiation procedures, see e.g.
[72,74],to justify the useof anticommutingSchwingersources[77—81,74].

On the other hand, we have proved [27,28]that one can always associate with any element of the
Fermion field algebra, the corresponding c-valued functional power series with respect to the Fourier
amplitudes of the Dirac spinors. According to the Klauder’s prescription [73], one can even get the
functions with respect to the free Dirac spinors in case of the quadratic forms at least. So it is rather
surprising that no reasonable correspondence of the c-number classical level with the prospective
Fermion level was established.

The reason is obvious: the Pauli exclusion principle is not still introduced, because by no means the
classicalspinorsmustgiveaccountof it. So,theexclusionprincipleon theclassicallevelis anexternaland
extremelyartificial requirementwhich shouldbe eventuallyimposed.

To solve the questionof the c-number classical level for Fermion fields, we have previously
[27,28], developedthe c-numberlanguagein the functional formulationof the quantumtheoryof the
Fermi systems: the functional representations of the CAR algebra were invented there. Let us
however begin from the chronologically earlier Klauder’s proposal [73], whose short presentation will
allow to understand better our arguments.

Let us consider a free, mass m scalar time-zero field,

41(x) = (2ir)3’2 I V’2w [e~a(k) + e~Xa*(k)],

and the conjugate momentum

1r(x) = (21r)3/2f \l~~d3k[e~a(k)— e”~a*(k)].

The coherent states can be here defined by:

If~g) = U(f, g)I0),

where the unitary operators U aregiven by:

U(J, g) = exp{i J[f(x)çb(x)— g(x)1r(x)] d3x} (8.6)
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andarelabelledby two real, smoothtestfunctionsI, g. The overlapof two such statesis given by:

(1’ g If” g’) = exp{ — ~J [(k2+ m2)’”411 — f~I2+ (k2 + m2)”4I~ — ~lI2+ 2 i(j* g’ — ~“f’)]d3k}. (8.7)

Here f denotesthe Fourier transformof f. Thesestatesare so over-completethat diagonal matrix
elements (the coherent state expectation values):

(f,gIGIf,g) G(f,g) (8.8)

of an operator polynomial uniquely define the operator. One can easily prove that the operator G is
G= :G(IT, 4i): wherethe : . : denotesthe normal ordering with respect to the creation and annihilation
operators a*, a,

From this place let us consider a nonrelativistic Fermion model, with the property that ~Ii(x)I0)= 0.

It is equivalentto the assumptionthat~/i(x)in fact represents the positive frequency portions of both
the conventional ~‘(x)and i/”’(x).

In any case, let us define the basic states:

Ix,,. .. ,xfl)A = ~*(xi). . . 9!,*(xfl)I0) (8.9)

which are antisymmetric in the x,, variables, x~= (x,,. . - ,x,,). Now, following Friedrichs [86],let us
introduce an ordering of points, <,in configuration space. Weshall say that x< y if (1) x, < y, (these are
the first coordinates) or (2) if x

1 = y, and x2 < y2, or (3) if x, = y,, x2 = y2, and x3 < y3.Nextweintroduce
the orderingsign function,which we call the Friedrichs—Klauderfunction:

cr,,(x,,)o(x,,. . .,xj=±l (8.10)

given by the sign of the permutationP necessaryto bring theargumentsof 0- to the “standard” order
x~1<x~2< .. <x0,,; if anytwo x’s areequal,~is definedto be zero.
With the aidof o~we define the symmetricvectors

Ix,,. - - ,xj~=0-(x,,.. - ,x,,)~x,,. . - ,x,,)~,,,,
which vanish,if anypair of argumentsareequal.Note that, by virtue of considerationsof section3.1,
any symmetricFock spacevector,admitsadecomposition:

lx,, - . - , x,,) = [o-,,(x,)]
2lx,,- . - , Xn) + (1 — [~(x~)]2}Ix

1,- . - , x,,): (8 12)

= lx,,. . - , x,,)~+ lx,, - . - ,

to a part of which, we have restricted the considerations.
As the special example of the isomorphism E,,, let ussee that the relation: -

x,,... ,xfl)A=o-(xl,. - - ,x,,)lx,,. - - ,x,,)5 (8.13)

holdsas well, by virtue of o~= 1.

Armed with the symmetric states (8.11), we form:

Ix) = N~—~J d
3x~~(x,)- . - x(x,,)Ix

1,..., x,,)5

d
3x,, = d3x, - - - d3x~ (8.14)

where N is the suitable normalization factor, andx(x) denotes a complex, smooth c-number test
function. Thesestatesplay now the role of the Fermion “coherentstates”.Although thesestatesare
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not eigenstates of the Fermion field operator, they exhibit the essential property that:

(xl,/,*(x),/,(x)lx) = X*(x)X(x) (8.15)

which is a prototypical relation needed to derive classical images for the energy operator, which is a
quadraticform.

We do not just wish to tilt at windmills andto advocateany pure c-numberpoint of view, against
the conventionalGrassmanntools, especiallybecausetheselast are widely spreadand quite con-
venient for the explicit calculations(of propagatorsfor example).We wish howeverto prove that the
correspondenceprinciple of the kind (8.15)can beestablishedquite generally,by the useof the Boson
expansionmethods.

To getthe Fock representation suitable for the description of a free Dirac field, we must start from
the triples {a*, a, flB}®t~2R3 and{b*, b,1~B}®i~~(R~)exhibiting the number four of the internal degrees of
freedom(spin andcharge)in the theory. All resultson the Boson expansions of the underlying Fermion
operators hold herewithout anyessentialchangesif comparedwith section3.1, see e.g. [28,76].The
standardconstruction

b~=~_LI~.~i41b3] b_=~_LIt~1+th3
\~2~b2”+ ib’ \/2 1b2+ib4

b*+=_i_[~1th3l ~ (816)
V~Lb~—ib:i V2Lb3—ib4

(the analogousformulas for Boson operators)allows to get the quintets{b~,b*~,fl,,}~2.2(,,3) and

{a~,a*±,flB}~22R3 with:

[b~(f), b””(g)]~= Of, g)l,~= [b&), b*±(g)]+

[a
4’(f),a”(g)]_ = (I, g)1,, = [a’(f), a*”(g)]_ (8.17)

the other(anti)commutatorsvanish. -

With the Haag—LSZexpansionconjectureextendedonto thecas~of Dirac fields ~ ~fr areherethe
asymptotic free limits) we have for any elements of the field algebra the following operator expansion:

:f1(~fr,i/i): = ~ ~ :çI/’i/im:) (8.18)

= ~ n!m!~JdxnJdYm0~ m):~0x,L- - ‘I’~,,(’~)’k
1(Y,)-. -

ci, r arebispinor indices,and — denotes the Dirac conjugation of bispinors.
:fl(i/’, ~fi):canbe rewritten in the following form, resultingfrom the normalordering of operators:

the total antisymmetryof Wflm in all n + m variablesis hereessential:

:fl(~fr,di): = ~ n!m! (°~nm,:(çfr” + ~‘i~O/’~ + ,I[)m:) (8.20)

= ~ n!m! (wnm~:~ (~)(~J,±)k(~fr_)n_k ~ (7)(~+)I(ç~~_)m~:)

= ‘k’l’ ~ ~

nmkl - -

x ~ ~(x,,)~/i~(y,).- ~f1~,,(Ym)*p,(Zi)~ - *,,,(z,,)~fr01(’~,).~

~ 1 ±n ±m —k—I

= 2.~ntm~k!ll n+k,m±ftO/” ) 0* ) (‘/‘ ) (‘/‘ ))
nmkl -
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where the operators ~ ~ depend linearly, through Fourier transformations, on Fermion creation
andannihilationoperatorsb~,b*”, definedby (8.17):

[b,4’(k),b7”(p)].,. = S~,6(k— P)1F = [bI(k), b7’~(p)]~ (8.21)

the otheranticommutatorsvanish,and the indices i, I = 1, 2 denotethe helicity stateswhile j.c, v are
the bispinorindices. - -

In (8.20) we have clearly distinguishedthe two groups of operators,(*4)n(*1)m and (~!i’)”OPi’
which involve respectivelythe n + m point productof b*’s andthe k+ 1 point productof b’s.

By virtue of considerations of section 3.1 we havehere:

b~’(k
1).. - b~(k,,)b,~~(p,).. - bj~’(p)b~(q,)- . - b~(qk)b~(r,)...br(r,).~,,

a ± ± *+ *+

= cin÷m(kn,pm)0-k+,(qk, r,)1Fa~,(k,).- - a,,(k,,)a,,(P,). . - a,,, (pm) (8.22)

x ‘‘~ ‘ —i ‘ *~( *~( \I ~

~ - . - ~ ~r,1. . - tJ~~ kr,,IF.J F,

cin(km)a~’(k,) - . . a~(k,,):= ci(i,k,, i2k2, - . - , i,,k~)a,’~(k,)- . - a,(k,,)

where~ meansthat the identity holds true only underthe sign of the bilinear form, i.e. if integrated
over all variableswhile multiplied from both sides by a suitable,antisymmetricn + m + k+ I point
function; ok±,(q~,r,) = ci(t,r,,. . - , t,r,, skqk, . . - , s,q,) what means that — reverses the order of
variables.Ti operatorsa~,a*~stand for the creation and annihilation operatorsof the fictitious
subsidiaryBoson field ~ whose weak excitation limit exhibits the correctphysicalpropertiesof the
Fermionfield. This will bethe mediating Bosonlevel allowing to get ac-numberclassicalimageof the
Fermionfield algebra.In this place the FermionFock spaceS~Fappearsas a subspace‘F~R of the
Boson Fock spaceS’S. Theseare the representationspacesrespectivelyfor the triples {b~,b*’, fl,,}
and {a~,a*±,fl,,}. For clarity we shall restrict considerationsto the two point product~~(x)~~’(y)
wherewe immediatelyget:

‘~ (l/2irf Jdk(V2w,i” Jdp(V’2w,,~”~ v~’(k)v’(p) (8.23)

x exp{i(kx +py}- ci2(k,p)lFa,”(k)aT(p)1F~F.

Hereagain ~ meansthe validity of (8.23) only underthe sign of the bilinear form Ow2, (i/t~)

2).

To transforma productof the Fermionfields into a productof the Boson (spinor)fields, thereis
enoughto constructthe integraloperator‘2 with the property:

[I
2(*

8’~)2]~(x,y)~ ~ I dx’ fdy’I~’~(x— x’, y — y’) 1F*P(x)*~(y)lFPF

~ cIi~’(x)*~4(y).~F,,. (8.24)

With the useof the helicity basis:

~ v~(p)v~”(p) = = ~ v~’(p)v,”(p)

p = (p, w~) (8.25)
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this purposeis realizedif the following integralkernelof ‘2 is defined:

I~”~(x— x’, y — y’) = ~-1—~fdqf dr exp(— iqx’ — iry’)

x exp{i(qx + ry)}~cr
2(q, r)v~’(q)v”(q)v

1(r)v~”(r) (8.26)

wherex, y E M4, q = (q, q
0), and q, k,p E R

3

ci
2(q, r): = ci2(iq, Ir). (8.27)

Now (8.23) reads:

~Jdf f dy’ ~ I~vP
t(x— x’, y — y’) ~—yfdk(\/2w,,,i’1

x fdp(\/2w,,)” ~ v,’~’~(k)v”(p)exp{i(kx’ + py’)}1Fa,”(k)a7(p)lF3~F

~fdx’ Jdy’ ~ I~(x — x’, y —

= 1F[12(* ) ],,,,~(x,Y)’F~F, (8.28)

wherethe superscriptB meansthat ~ ~ appear as the positiveandnegativerespectivelypartsof
the fictitious (as violating the assumptionsof the spin-statisticstheorem)spinorfield, which obeysthe
Bose—Einsteinstatistics:Fermi operatorsarereplacedby the Bosonoperators.

The generalizationof (8.28) is obvious,and leadsto the identity:

çIi~,(x
1)...çfr~,(x,,)~/i~(y,)...~~,(ym)~~(z,).. - ~

1F[1fl+fl,(*1(cl’~)Ik÷,OI1)(l,fr)] “~(x~,y~,Zk, u,)

= fdx~fdy~,Jdzkfdu; ~ Je’v~’v’PU((~ — x’),,, (y —y’)
m, (z — z’),,, (u — u’),)

- —

X l~4’~(xD..- *(~)~b’~(yD.-. *~Z(y,,)*~~(z)...*~(z,,)~”(uD... ~‘(U~)lF. (8.29)

The sign — in k+l reverses the order of the k+ I variables.Byvirtueof (8.29),thefollowing equivalence
formulaholds on the FermionFock space:

:11(i/v, ~/‘)~F= 1F:IV(cI?, ~ ~ ~ 1F:**). (8.30)

Here the shorthandnotationW~m= (0)nm1~nIrn)is usedfor the coefficient functions.
We havethus proved that with the Fermion field algebra,one can associatea projectionof the

subsidiary Boson field algebra, so that on ~F both algebras coincide.
The pure Boson theory, obviously has its own classical imagerealizedeither by the useof the

coherentstateexpectationvalues or by the useof the appropriatefunctional representationsof the
CCR algebra:

ac(*c ~f,c)= :IV(*
8, çjB):(~ a) - exp[— (a, a)] (8.31)



118 P. Garbaczewski, The method of Boson expansions in quantum theory

wherethe classicalfields *C, ,jc appearas aresultof thereplacementof the Bosonoperatorsa*~,a~by
the classicalFourieramplitudesa*~,a~respectively.For moredetailssee [76].

In consequenceof this result, establishingthe correspondencerule for Fermion fields by the
mediation of the subsidiary Bosons, one can immediately formulate the quantization prescription for
the classicalspinors,what completesthe derivationof the correspondencerule betweenspinorsand
Fermions.Namely,if one startsfrom the setof functionalsof free Dirac (c-numbers)fields, thenby
the useof the functional representationof the CCR algebra:

flC(*C ~frC)exp(ä,a) = :IV(ifr
8, ~B):(ä a)~:flc(41B,9!?~): (8.32)

onegetsthe correspondingsetof Bosonoperators.Building thePauliexclusionprinciple into the Boson
structurethrough:

:IV(*8, ç~B):~ 1F:LV(*”, ç~B):1 08.32

we havefinishedthe job by observingthat on the subspace~F of the BosonFock space~,, we have
the identity:

lF:tV(~/i8,~B):1F~F = :f’l(*, ~fr):~F (8.33)

defining the Fermion levelof the theory. -

Note that operators 1F:flO/’, *8):1F and fl(~r,i/’) possessexactly the same matrix elements
between states from ~F-

9. Planependulum in quantumfield theory: lattice quantizationof the Sine—Gordonsystemin two-
dimensionalspace-time

A growing interestin soliton solutionsof classicalnonlinearequations,especiallyin connection
with the Sine—Gordonequation[87,88] and trials to understandwhat is the correspondingquantum
Sine—Gordon system [44,46,89,90,92], succeededin the rather involved and sophisticatedcor-
respondencebetweenthe socalled “quantumsoliton” of the Sine—Gordonsystemand the fundamen-
tal Fermionof the Thirring model.

The usual tool in this place was either the canonicalquantizationprocedureor WKB approxima-
tion,or perturbationmethodsin applicationto thenonlinearequations.On the otherhand,onea priori
statesthat a correctquantumSine—Gordonsystemis this with :sin41: on the right-handside of the
equation,what is believedto be a quantummap of the sin41 appearingon the classicallevel. Seein
this connection[89,90, 1261, but also [92] where the massiveSine—Gordonquantumsystem(LI +

m2)41(x, t) = A: sin[�41(x, t) + �J]:was axiomaticallystudiedand,for the priceof the imaginary time, its
connectionwith the classicalstatisticalmechanicswas established.

However up to the author’s knowledgeneither complete nor satisfactoryquantization of the
classical Sine—Gordonsystemin two space-timedimensionswas proposedso far. The notion of
“quantumsoliton” is mostly introducedad hocandwith no physicaljustification. The only exception
in this connectionare the Faddeev’spapers[89], wherea completecharacterizationof the classical
phase spacefor the Sine—Gordonsystemwas given, together with the semiclassicalquantization
prescription.We wish to perform here a somewhatnaive and intuitive study of the quantizationof
Sine—Gordon1-solitons in the lattice approximationof the system.This is a model study, wherethe
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pecularitiesof the quantumdescriptioncanbecarefully investigated,forming thusthe first stepin the
lattice quantizationof the Sine—Gordonequation.

As we know, the linearity of the free field equationsallows us to introduce the annihilation and
creation operators,by which one can count up the numberof particles in a statedescribedby the
c-numbersolutionof the samefree field equation.Oneof themostdifficult problemsin nonlinearfield
theoriescomesfrom the situationthat it is not so easyto constructa clear-cutrelationshipbetween
annihilationandcreationoperators,andthe numberof particlesin the statedescribedby the c-number
soliton-typesolution.

On the other hand,in the quantumworld one can nevercontrol the behaviourof any systemin
termsof the continuousdatafunctions.Oneshouldratherimagine a discretesetof the control points
(the averagedexperimentaloutcomes),which in the approximatedsensecan be eventuallyextra-
polatedto a continuouscontrol curve.

The most instructiveexample,taking this fact into account,is the famousTodalattice possessing
the exactly known solutions,which in the continuouslimit goesover to the so calledKdV equation
knownfrom hydrodynamics[131].

In the traditionalderivationof the quantumfield theoryof a free scalarfield, the Hamiltonian(two
space-timedimensionsare takenfor simplicity):

H = fdx{~(84,/at)2+ ~ (t941/8x)~+ ~ j~2412}(~~t) (9.1)

can be approximatedon the finite linear lattice,by the (rescaled)Hamiltonian:

H = A ~ {~p~+ ~ (Vx,)2 + I 22} (9.2)

with s enumeratingthe lattice sites.
The omissionof the gradientpartreducesthe problemto its single site approximationby the linear

chainof harmonicoscillators.In this approximationthe quantizationof the systemlies in introducing
the quantumoscillatorsin the place of the classicalones.To restorethe completequantumsystemwe
musthereperforma translationto the quantumlanguageof the neighbourinteraction(gradient)term.
Onecanmakeit accordingto [123]:

H = A ~ + ~(~+ D(0)x~)}+ ~ D(s, — s
2)x~,x~2. (9.3)

S 51±52

Quite analogousprocedurecan be repeatedin caseof the Sine—Gordonsystem.The corresponding
Hamiltonian:

H = f ~ {(841/at)
2+ (t941/dx)2 + A(l — cos41)}(x, t) (9.4)

is approximatedon the linear latticeby:

H = A ~ {~[ir~+ (V41
5)

2] + AOl — cos4,,)} (9.5)

whereagainthegradienttermis in fact the interactionpart of theHamiltonian,andcarriesthe nearest
neighbourcoupling. Its omission leavesus with the linear chain of the independentplanependula,
which was the root for the constructionof the Scott’smechanicalanalogtransmissionline [87,88] for
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the Sine—Gordonpulse.The solitons canbe observedexperimentallyin the chain,thougha complete
integrabilityof the lattice Sine—Gordonsystemwas neverproved,in contrastto the Todalattice.We
do not pretendhere to get the exact solutions of the discreteproblem. We wish ratherto find a
quantumimageof l-soliton solutionsin the single-siteapproximation,togetherwith the quantumterm
of the Hamiltonian which gives accountof the classicallyobservedlong-rangecorrelationsbetween
the nearestneighborsin the chain. -

The quantizationof the Sine—Gordonsystemin the single-siteapproximationlies obviously in the
introductionof quantumpendulain the placeof classicalpendula:eachone singly occupyingasingle
lattice site. The quantumpendulumis a solvableproblem[91], with anondegenerate,positive setof
eigenvaluesand Mathieu functions as the eigenfunctions.Mathieu functions can be proved to
constituteacompleteorthonormalset in ~s2(O 2ir) which is thus a Hilbert spaceof pendularystates.
The quantummechanicalHamiltonianthoughrathernot admittinganyreasonablenumberof particles
representation,canbe alwaysconsideredin the matrix form:

H=>~E~f,®f, (9.6)

whereE, areenergyvalueswhile f, denotesthejth eigenfunction.We needratherthe knowledgeof the
energyspectrumthan of the particularoperator(creationandannihilationoperatorscanbe hereeasily
constructedin the tensorproductform) structure.

Following the preliminary formulation [35], we shall now perform the lattice quantizationof the
Sine—Gordon 1-solitons. They are the solutions of the equation:

LIII4,(x, t) = (32/8x2— 82/8t2)4,(x,t) = m2sin4i(x, t) (9.7)

which areof the form:

4,(x, t) = 4 tan” exp(±m(x — vt)/V’l — v2). (9.8)

The energyE = 8m/V’l — v2 andmomentumof the solitoncanbe easilycalculated:P = 8mv/\/l— v2,
c= h = 1.

The approximationof the 1-soliton pulseon the linear lattice is given immediately,if with eachsite
(the spacingis a) to associatea correspondingcharacteristicfunction

11 xEA,
~S*-*xs(x)=to ~

so that:

{A,}
50±,±2,~,flA1 = 0 for s + t, U ~, CR’, ~(~~)= a I 1,

= dxx5(x)41(x, t) -

= -~ J dx{~E4,~— 41~+ 2m2(1 — cos41)}(x, t) .

= J dx{~[4~+ + m2(1 — cos4s)}(x, .t) - X,(x). (9.9)
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Having given the energy density of the 1-soliton ~C(x,t) = ~C(4i)(x,t) one can establisha positionof
the energy centre of the pulse at the initial instant of time t = .0. Let us assumethat this particular
point y, the collective variable (see e.g. Christ’s and Gervais’ articles in [126]),belongs to the 0th site
which is identified with the s = 0 interval y E ~

In consequence, the 1-soliton is completely described by the following collection of the initial data:

41,(0)=~(y+sa)=q5(y), T,(0)=41,,(0)=IT(y+sa)=IT,(y)

E=I dx~r(41)(x,0)~~~r(41),(y)=~ ~C,(y). (9.10)

Here ~0(y) = ~‘(y), ir0(y) = ir(y) and all the datatendto ~(y) and ir(y) respectivelywith y~—~~-

From now on, we shall simplify considerations by omitting the collective variable y in all the
formulas p5(y)= ~,, ii5(y) = IT,, E ~ The uniform motion rule çb(x — Vt) = 41(x, t) which holds on
the continuous level is now approximated by the following motion rule of the set of the initial data:

p,(t)=tp,(y,t)=cp(y—Vt+sa) ~ p,(t)p,,,, -

~t—na/o

- 1T,(t)=IT,(y,t)1T(y—Vt+sa)~’1r,(t)=1r,_~ (9.11)

what is simply the shift of the data along the chain, following from the influenceof the neighbour
coupling, implied by the gradient term. Wehave thus separated on the classical level the nonlinear
geometry (shape) of the solution from the fully linear dynamics. Let us add that a similar procedure
can be repeated also in case of the n-soliton solutions where the number n of collective variables is
necessary, for more details see [95].

Let now the quantum chain be given, where in the single site approximation a sequence of
independent quantum pendula appears, together with a corresponding single-site basis. Weshall try to
translate the classical data and motion rule to the quantum lattice.

Let us begin from the question of statistics. Because each site of the lattice is occupied by a single
quantumpendulumwhosespectrumis positiveandnondegenerate,if we pretendto describethe line
of quantumpendula,thePauli exclusionprincipleshouldgovernits behaviour:the occupationnumber
of each(s, n)th stateof the latticeis either 1 or 0. s, n meansthatthe nth energylevel of thequantum
pendulum is occupied at the sth site.

In consequencethe single componentFermionsshould appearon the quantumlevel. Because,as
we know from the previoussectionthere is not immediate to have a reasonablecorrespondence
betweenthe classicalandFermionlevel,we shallformulateall theresultsfor the subsidiarymediating
Bosonsand then,in the senseof theweakexcitationlimit, the transitionto the final Fermionvariables
will be performed.

Let usdenoteby E0,E, the energiesof the two loweststationarylevelsof the quantumpendulum.
We assumeto havemappedeachplanependulum,whoseenergy~C,doesnot exceedEmjn= E, — E0,
into a non-excited, hence occupying the ground state E0, quantumpendulum.This receiptis motivated
by the naive hope that such energiescannotbe quantized,and play in the theory the rOle of an
unessential noise. Now, the question of interest there becomes an energy sharing in-between the
quantum pendula of the net energy E of 1-soliton, which we consider as the net in the sense of the
renormalizaijon by a subtraction of the ground state energy from the total energy at each site of the
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lattice.We expectE to be approximatedby the sumof quantizedportionsE(,,~)

sup ~ {E(. p~)— E0} E. (9.12){(s.n)} (~ n)

BecauseE is a macroscopic value, the equality in fact holds. The 1-soliton pulse has a finite energy
value,what if combinedwith therequirement(9.12) clearlyrequiresat mostfinite numberof quantum
pendulato be simultaneouslyexcited.Note that the free field techniques,especiallythe Fock space
methods,can be usedby virtue of this argument:Fock spacevectorsare the linear combinationsof
stateswhich in afinite numberof entriesonly (the productstates)differ from the vacuumstate.

With eachsingle latticesite let usnow associatethe subsidiaryBosonfield 41,, whoselatticeFourier
expansion:

41~ ~Jv>~~{a exp(i4%~s) + ak exp(_~
4-~s)~= 4,,”+ 4, (9.13)

allows to introducethe correspondingcreationand annihilationoperators:

[a,,,,a7],. =

[a,,,,a,].. = 0, a,,fl,,= 0 for all k. (9.14)

In the abovethe normalizationconstantV= dim{(s, n)} for the setof pairsrealizing the supremumin
(9.12),andk enumeratesthefinite setof degreesof freedom(energylevelsof pendulareproducingthe
1-soliton pulse). The quantumnumbersk are definedby the initial 1-soliton data, if to define the
appropriatecorrespondencerule; by the useof the coherentstatemethods:

If) = ~ .i~~.’a:}ci,,- exp{— 11f112(1/2)}

f
5 = ~ {.f~exp(i~~_ITs)+f~’exp(_~s)}. (9.15)

Let usnoticethatputting f, = ~,, we get

(~l41,I~)= ~p5. (9.16)

We canexpectthe existenceof theproper~ suchthat(Qj~,~ç)= ir, howeverfor thispurposewemust
realizethe solitary dynamicsin the quantumchain.

In the single-siteapproximationthe form of the energyoperatorimmediatelyfollows:

H, = ~ ~ �~ exp[i~(s — s’)]}a,~~ H = ~ H, (9.17)

where �,,, must still be properly defined.
A total energyoperatorfor the I-soliton readsthen:

H—~aa,,�,,. (9.18)

The solitary evolutionrule on the classicallevel implies:

I = na/v
~o,(t)=ço(y+sa—vt) ~

1 1 ± / ikir \ /ikir \ - /ikir \ / ikIT
~ ~ t~exp(,,,_-~_n)exPt,,,,~j~~s,~+ckeXP(,,,,-~-fl)exp~—-j~-s
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so that:

(9.19)

In consequence, for t = na/v

HOt) = ~ a,,”(t)a,,(t)e,, (9.20)

implies:

(~PH(t)Iq’)= (q’IHIcp) E. (9.21)

On the otherhand:

H = ~ H,, (9.22)

and (wIH,,I~)= (~lHk(t= na/v)Ip).

If now to require simultaneously:
~r,=~~Zcos-~, H,=~~H,,cos (9.23)

thenthe correspondencerule ~C,= (~IH~I~)establishesthe following connectionbetweentheclassical
andquantumenergydata:

E,,, — E0 = Z/(Pk’Pk- (9.24)

To geta quantumimageof the 1-solitonevolutionthereis usefulto know that, if the quantumgradient
term is takenin the form [128]:

Dn2mm5D2(n_m)~~Idk-k
2exp[ik(m--n)]

a —p 0~D2—~ — V2~(x— y) (9.25)

thenanimmediatequantumlatticeanalogueof the spacetranslationoperatorcanbe given:

P = —i~ HnDnm4,m, H,, = VV>~{~~kexpQ4~n) — a: exp(_~-~n)}- k
0 (9.26)

Dnm = ~-Jdk - k exp[ik(m — n)], [H,,, 4’m]- = — i8nm

so that:

exp(iP,,)-41m exp( iP,,) = 41m—n (9.27)

exp(iPvt)- 41m exp(— iPvt) = 4,m(t) = 41m-vtt=tv 41m-n

Obviously, in the senseof the correspondenceprinciple (9.27) is the quantumimageof the 1-soliton
evolution rule, what seems at the first sight to contradict the ordinary expectations that an energy
operatorH should play this role rather (~l41rn—nl~)=
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Let us in this place prove that the energyoperatorof the just constructed“quantum soliton”
cannotbe a correctgeneratorof the solitary time translations.For this purposethereis enoughto
noticethatH obeysthe restrictionsof the Borcherstheorem[132]:

Given a one parametergroup U, = exp(— iHt) where the generatorH ~ c> — ~. Denote F, =

U,FU~’for any operatorF. If thereis a pair of projectorsE, F suchthatfor tI < �, EF, = 0, thenfor
anytER’,EF,=O.

Let us remarkthat the solitaryevolution rule:

t —* t — na/v~p,(t) —p ~,,,(t) (9.28)

can be equivalentlydescribedby the motion of the localizationvolumes(sites)while the 1-solitonnot
evolving at all:

A, —* ~ ~,_.,,(t). (9.29)

In the operatorlanguageit needsto associatewith eachA, a correspondingprojectorE,,~,,.
Let usconsiderthe threesitesA,, A~,,A,..2. Then,obviously~ - E~2 = 0, andoneneedsat least

finite time interval tI ~ � to get EJ~2U,E1~,,U~’� 0, where for tI < �, 0 = EA,,,U,E/aSU~’holds. In
consequence, for neither time t wecanget the requiredtransition:

—* A: = A,_2 (9.30)

if the positive evolution operatoris used. In the connectionlet us notice that the correctevolution
operator— Pv for the quantumimageof our 1-soliton is manifestlynot positive.

The aboveargumentsjustify, in a little bit sophisticatedway, the independenceof the single sites
of the lattice for all times,like thisappearingif the gradientterm is absentin the Hamiltonian.Doesit
at all excludethe long rangecorrelationsfor anyclassof positive Hamiltonians?.

The aboveconsiderationssuggestthat togetherwith the collective shift operatorP, one should
introduceacollectivevelocityoperatorQ, whichin caseof 1-solitonsis notproportionalto P; as in that
casePQ would be AP

2, and hencepositivet if A > 0.
The last step in our considerationsis now to makea transition to Fermionvariables,which should

appearby virtueof the built-in Pauli exclusionprinciple.The mostconvenienthere,thoughobviously
not unique,tool seemsto employ the weakexcitationlimit conceptof theprevioussections,andthen
the map:

1F41sI1F =

1FH1F—HF

1FP1F= PF (9.31)

whichrealizesthe translationof our constructionof the “quantum soliton” to the Fermionlanguage.

10. Appendix: Functionalintegration(eq.differentiation)methodsin quantumfield theory

Here we shall concentrateon a particular domainof applicationsof the path integral methodsin
quantumtheory,namely on the theory of the socalled functionalpower series and arisingin it the
theory of functional representationsof the canonical algebras:CCR and CAR respectively.The

t In the particular case under consideration, the velocity operator should be a constant of motion, and its 1-soliton eigenvalue enters — Pt~.
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review of topics is basedon the papers[74-76,27—29], see also [72,73].Hilbert spacesof functional
power serieswereintroducedinto physicsby V. Fock,as earlyas 1934, andwere investigatedsince
that time by many authors,including in this numberquite abundantmathematicalliteratureof this
subject[72].

We are especiallyinterestedin their application in connection with Fock spacemethods,with
specialaccountof FermionsandBosons.

Let us denoteby K a Hilbert spacedefined by the scalarproduct(a, /3), and let us assumethat
thereexistsan involution a -+ a in K )a, /3, satisfying~c= a and(a, /3) = (a, /3).

We candefinein this caseabilinearform in K as (a,/3): = (a, /3). The scalarproduct,bilinearform
andinvolution in K inducethe correspondingnotionsin ~,, = K®~:

(f~,g,,),Of,,, g,,): = (f,,, ga), fn ~fn (10.1)

Of,, — I,,, (f~, g,,) — (f,,, g,,),f~,g, E ~

Considernow the space~ of sequences{fn} ,,~ (I,, E ~‘,,, n = 0, L. - .;YC
0 = C) satisfyingthe condition

III II = ~ lIf~I!
2 < (10.2)

where lIf~ll =

31 U = {f,,}flEN: I,, E ~ Ilfll<°~}”~~‘~‘n (10.3)

An arbitraryelementf~of ~/�,,= ~ canbe representedas a sumof termswhich areinvariantwith
respectto the irreduciblerepresentationsof the symmetrygroup,acting in the nth tensorproductof
Hubertspaces.With the help of the Young’s idempotentsY,,, we canwrite:

f~= ~ Y,.f,, (10.4)

wherefrom the various Y~of particularinterestfor uswill be the two:

S,, ~ P,, A,, =~1~’ (— 1)~P,, (10.5)

being the symmetrizingandantisymmetrizingoperators.The sumsareextendedover all permutations
P,, of n elements.Young’s operatorshavetheir duals yd,, amongthemselves,e.g. S,, = A~, A,, = Sd,,.

Let usnowintroducethe inversionoperators.1’,,,, in ~C,,interchangingthe indices of the kth and ith
element of the tensorproduct K®~.Let further E,, be a boundedoperator in i/C,, satisfying the
relations:

E,,*=E,,, E~=E,,
P,,,E,, = — E,,P,,,. (10.6)

It follows from (10.6) that E2,, is a projector,which realizesthe following decompositionof ~/t~’,,:

= ~ ~
— j’2~e — (1 — —
— noS.n, O±fl — ~ i_~flJO(.fl. - -

If to take into accountthe Young’sdecompositions: -

= ~ y,,y~ ~ ~ (10.8)
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thenby the basicpropertyof E,,:

= Y,,E~,,, Y,,~ = Y,,(l — E~’,,

E2,,Y,, = ~ (10.9)

E,, is an automorphismof ~‘C,,consistingof the isomorphismsY,,X~1,4 Y,,~ what implies:

An~* S,,~

EJ~=f~, E~f~”=f~. (10.10)

We arebasically interestedin the E,,’s possessingthe additionalproperty

E2nAn~Cn= ~ = 0 (10.11)

which allows to considerthe map:

~ s,,X~, EJ,,A=f,~, ~ (10.12)

The simplestexamplesof E,, arefound in [27].
The operator:

E,, = ~ e, ® - - - ® e~e,, ,~e,,® . - - ® e,, (10.13)

defined by the eigenfunctions{e,, .... ® e,,} and the eigenvalues�, . . . i,,. E,, is an exampleif K is

separable,and{e
11 ®- - - ® e,,,} is anorthonormalsetin X,, correspondingto theorthonormalset{e,} in K.

In addition we need~ to be thetotally antisymmetricLevi—Civitta tensorwith ~ . ..,, = 1 for Ir� ~,

(r,s = 1,2,... ,n;r� s)and�,,,,,=Ootherwise.
Anotherexampleis the operatorwith the integralkernel:

E,,(x,,, y,,) = u(x,,)5(x, — y,).. - ö(x,, — y,,) (10.14)

which in caseof the greaterthanone numberof the internaldegreesof freedomin theorygoesover
to:

E~’(x,,,y,,)=cr(i1x,,.- - ,i,,x,,,j,y,,. - - ,j,,y,,)- ô(x,—y,). - - ~(x,,~y,,)ö,1j~.- - 8,,,,,. (10.15)

In the aboveu(x,,. . . , x,,) = cr(x,,) is the previouslyintroducedFriedrichs—Klaudersign function.
Above study of the symmetrystructureof the nth tensorproductis immediatelygeneralizedonto
so that in the symmetricand antisymmetriccaseswehave:

~ ~

= Ar,, = ~{AX, ~ A~} = (10.16)

~ ~ ~ ~ A~ (i=l,2)
11=0 n=o

~2A0~ ~

Let us consider now the correspondingHilbert spacesof functional power series (generating
functionals)which aredefinedas mappingsV: K )ã ~4 V(a) EC in the following way:
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Bs(K)= Bs = ,{ Vs: V
5(ã) = ~ —L (v,,5, a”), II VSII <

BA(K) = BA = { VA: VA(ã) = ~ —L(E,,V:, a”), II vAIl <~~} (10.17)
,,~, Vn!

II VSII2= IIv,,iI~, II VAIl2 = lIv,~il~, v,, E a’,,.

The first definition is the conventionalone in the symmetric case, the seconddefinition is the
generalizationto the antisymmetriccase.In this last connectionsee also [73].

Givena series

V(a) = ~ —L(~,,,an),
,, V’n!

we constructthe series:

(m) - ~“ V’(m+n)! -n(gm,v )(a)”~ n! (vm+n,gma ) (10.18)

obtained from V(d) by differentiatingeachterm in this seriesm timesaccordingto the formula:

(g,~)V(a) = urn �~{V(a+�g)—V(a)} (10.19)

wherea, gEK, �ER.
Onecan prove [75] that (10.18) is equalto the mth derivativeof V(ã) so that we caninterchange

the summationanddifferentiation:

(gm,dlda)V(a)= (g,,,, V(m))(ã). - (10.20)

We haveherethe isomorphismof BA andB is:

B” = { Vis: Vis(ä)= ~ _i== (i,~’,a”), lIvislI <cJo}. (10.21)
,,,

0Vn!

Thus BAC Bs and we canspecializethe resultsproved in the symmetriccase,to the antisymmetric
caseby puttingeverywherev,’ = E,,v~’.The operator E,, canbe omitted in all scalarproductsdue to
the properties(10.10)which make(v,,, g,,) invariantwith respectto E,, if atleastoneof the elementsin
(va, g,,) belongsto ~ Indeed:

v~=E,,v,,, g~=E,,g,,, v,

In particular: -

(E,,v,,A,E,,g~’)= (v~’, g~”), (E,,v~,’,E,,g,~,’)= ~ g,~’). (10.22)

This showsthatthe theoryof Hilbert spacesof functionalpowerseries,which is originallydeveloped
for puresymmetriccoefficient functions v,, worksas well in the antisymmetriccase,whereall scalar
productscontainingsymmetricfunctions,can be replacedby the correspondingscalarproductsof
antisymmetricfunctions.

The scalar product in the Hubert spaceof functional power series can be written formally in
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severalalternativeways,which explicitly exploit pathintegrationmethods:

(V, V’) = ~ (va, v~)= V(d/da)V’(a)I~
0

= J V(a) V’(a) exp(— I1aI1
2) d(a/\/ir) = w(x)cIi(x)d(x/\/2ir) (10.23)

where:

fd(~=)=Id(-~=)Id(~=);d=-~=-(x+iy), IEK, x,yEK
0 (10.24)

~

x E K0.

K is theHubertspacedefinedat the beginningof this section,andK0 is thecorrespondingreal Hilbert
space (x = (a+ a)/\/2= i E K0, (x, x’) = (x, x’) = ~ (a + a,a’ + i’), Ia!!

2 = ~ (IIxlI2 + IIyII2)~ {e
1} is an

orthonormalset in K0: (e,, ek)= (e,, ~) = ~5,,,and K0 ~x= ~ x,e,, x, ER).
In the last expressionin (10.23):

~(x) = ~ 5(v,,, x”) = f A(x,d) V(a)exp(-11a1l2) d(a/Vir), (10.25)

wherev,, arethe coefficientsof the expansionsfor V(a) (in the sameway *(x) correspondsto G(a)),
J(v~, x”) arethe Hermite functionalsdefinedby:

J(v,,,x”) = =~exp(— ~llxII~)exp{_~(~,-~-)}(v~~x”) (10.26)

and (d/dx,d/dx) = (1,,, d
2/dx2) where1,, is the unit operatorin K

0. The kernelA(x, a) of the integral
in (10.25) is the generalization

A(x, ~) = exp{— ~lxiV — ~(a, a) + (x, a)} (10.27)

of the Bargmannoperator[72]to countablydimensionalspaces.The Hilbert spaceof the functional
power series can be consideredas a carrier spaceof the algebraof operatorsin it, definedby the
doublefunctionalpowerseries:

A(a,a)= ~ ±-_~-(a,,m,a~cx”) 010.28)

whoseaction as operatorsfrom ~(K) into ~(K) is givenin accordancewith:

(AV)(a)= V’(a) = ~\/n! (~(a,,,,, Vk), a”)

= A(a,~-)V(’~)I~,0= f A(ã, y) V(j~) exp(— Il’y1l
2) d(~3=). (10.29)

To establishaconnectionof the developedaboveformalism with the Fock space,let us first notice
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that (10.29) inducesthe following multiplication law for operators:

(AB)(a, a)= ~\/n!m!(~(a,,,,,,b~m),a~~am)

= A(a,~_)B(i~,a)i~.o= A(a, ‘y)B(’~,a)exp(— 117112) d(ç3~=) (10.30)

so that introducingthe doubleseries:

.~1(a,a)=~,__(Anm,a”am) (10.31)

vn!m!

connectedwith (10.28)by the relation:

A(a, a) = ~ a)exp(a,a) (10.32)

we canexpressthe multiplication law (10.30) in terms of ~ a)

(A,A
2)(a,a) = exp(a,a) - ~ a)(*).~2(a,a)= :.ctl, (a,~)::~~2(a,~):exp(a,a) (10.33)

where:

.~,(a,a)(*).~2(c~,a)= :.s~,(a~a + ~i~2(a, a) = ,st~,(a,a) exp{(~_,~)}.~2(a,a) (10.34)

and :s~(a,d/da):meansthatin the series(10.31)a is replacedby d/da in sucha way that d/dastands
always to the right of a (similarly in :.~(a,a + (d/da):).

For .~(a,a) = 1, (A~= 1, A,0 = A0, = A,, = - - - = 0) we obtainthe unit operator
1B with the kernel

i
5(~,a) = exp(a,a) = ~ -~(a”,a”)

(lB v)(a)= v(a). (10.35)

Note that the coefficientsin the expression(10.31)for the unit operatorareof the form Anm = 6nmlmm

where 1mm is the unit operatorin K®~~~:(1mm,a
mam)= (atm, atm).

The next simple operators after unity are the operators represented by double series (10.32) where
~s~1(a,a) is a first order polynomial. There are two such independent operators: the annihilation
operator a(f) and the creation operator a(g)* given by the kernels:

a(f)(a,a) = exp(a,a)(a, 1)

a(g)*(a, a)= exp(a,a) - (I, ~) (10.36)
of certainoperatorvalued elementsof K, which we shalldenoteby a and a*.

Oneeasilyderivesthe commutationrelations:

[aOf), a(g)*](a, a)= (I, g) exp(a,a) ~‘ [a(f), a(g)*] = (f, g)1
5 (10.37)

[a(f), a(g)}_(a,a) = 0 -

and:

{a(f,)* - -. a(f,,)*}(a, a) = exp(a,a) - {(a,f1) - . - (a,f,,)} (10.38)

{a(f1) -.. a(f,,)}(a,a) = exp(a,a) - (Of,,a). - - Of,,, a)}.
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Furthermore:

:.~(a*,a):(a,a)= exp(a,a)~i(a,a) = A(a,a) (10.39)

whichenablesus to expressevery operatorwith akernelA(a,a)of the form (10.31),(10.32) in terms
of creationandannihilationoperators.In (10.39) :.~(a*,a): is definedby the equation:

:.~(a*,a): = ~ _L__(Anm, a*”arn). (10.40)
nm Vn!m!

Similarly, onecanexpresseveryelementof ~(K) in termsof creationoperators:

v(a*)(a,0) = ~ (v,,, a*”)(a, 0) = V(a). (10.41)

,, \1n!

In particular,if v,, = f”/’s/n!, f EK we obtainthe setof so called principalvectorsor coherentstates:

exp(f, a)= exp(f, a*) (~,0). (10.42)

Evidently a(f)v
0= 0, v0 EC andf0 (if normalized)is to be consideredthe vacuumstate.:

V(a) = (V(a*)V0)(a), exp(f,a) = (exp(f,a*). v0)(a) (10.43)

what shows that each elementof P~(K)is obtainedfrom the vacuum by repeatedapplicationof
creationoperators.Togetherwith relations(10.39) theyestablishthe connectionbetweenthe Hilbert
space~(K) of functionalpowerseriesandthe Fock space~

The triple {a*, a, ~B = v0, IVOI = l} we call a functional representationof the CCR (canonical
commutationrelations)algebra~(K) =

If now to definemorecomplexoperators:

—i±n nb(f) (a,a)~’L—i(a E1±,,,fE,,a

b(f)(a, a)= ~ -~-~(fa”E,,, E,±11a
11) (10.44)

one getsthe following formulas,see e.g. [25,26]

k — ç~ 1 —,, k±n
(vk,b )(a,a)~~—j(Vka ~ )

(Vk, b*”)(ã, a) = _~j(a”4”Ek±,,,v,,E,,a) (10.45)

((vk, b*k)(w,, b’))(a, a)= ~ ~

where w, denotesthe elementw, with inversedorderof indices.The calculationof b - b* gives:

d1±,,

b(f)(a,~~)b(g)**(y, a)I~o= -~ (faflEn,E
1±,,d~~÷”)~ ,~7i±m~ gE~a

tm)~~

= ~ .!~LiJ (fa”E,,A,±,,,E~±,,gE,,a~)”~ ~-~-1(fa”E,,A,~
11,gE,,a”) (10.46)

= (I, g) ~
1(a”,E~a”)— -~ (a’~”E

1~,,,gfE,+,,a’~”)
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so that thecanonicalanticommutationrelationsfor b and b* follow at once:

[b(f), b(g)*]±(a, a)= (I, g)1~(a,a)
[b(f), b(g)]~(a,a)= 0

1F(a,a) = ~ -~-j(a”, E~a”)~ [b(f), b(g)*]+ = (/, g)1,~

[b(f), b(g)]~= 0. (10.47)

Togetherwith the identity b(f)v0= 0 we havedefinedthe triple {b*, b, fl5 = v0, vol = 1} whichwe call
to generatea functionalrepresentationof theCAR (canonicalanticommutationrelations)algebra.The
correspondingcarrierspacefor the representationis selectedfrom 1~(K)= S~5by theuseof its unit
operatorSrF = 1F~BC ~

A formulationof functional formulasin the operatorlanguageis hereimmediate,by analogywith
the symmetriccase.Any vectorfrom

5’F canbe generatedby the useof seriesof normalproductsof
creationand annihilationoperators.The functional representationformula in the generalcasereads:

:.~(b*,b):(a, a) = ~ 1 (Anm, b*”brn)(a, a) = ~ 1 ~ -~—(a~~E,,±,,,A,,mEm+kam~~)
nm~1~~k k! -

(10.48)

where~i indicatesthat the orderof the correspondingindices hasbeenreversed.
All the importantresultsof section3.1 wereprovedby the useof functionalrepresentations.
One canhereeasilycheckthatreally:

:F(b*, b): = : exp(_(a*,a))- ~ ~ ~(cin+Jnmcim+~,~ (10.49)
,,mVt~m! k k! -

andfurther:

:F(b*, b): = : exp(_(a*,a))- Fc(a*, a): (10.50)

where f,,C
m = O~~fnrntTmis a symmetric function with respect to permutationsof variables inside

groups(n)and (m) respectively,but antisymmetricwith respectto permutationsfrom (n) into (m) and
conversely.

The ProjectionTheorem:

1F:F(a, a):lF
3~F=:F(b*, b):~F (10.51)

needsthenthe proofof the following identity:

(:F(b*, b): V)(a) = 1 \/(k + m)! (ak+n, 0-k+JntmVk+m) (10.52)
nmVt~m!k k! -

= (1F:Fc(a*, a): V)(a) = i~ V’(k + m)! ~ ~

nmVt~m! k k! -

needingin fact a simpler identity (a sequenceof them):
—k±n 2 —k±n

(a ,ci~+,,ciJ,,rnOmO~~±mV&+m) = (a , U~+JnrnV~+m). (10.53)
In this placeone mustnoticethat the integrationssymbolizedby the sign of the bilinearform (. ,.)
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include a non-zerocounterpartfrom thesesymmetrygroup decompositiontermsof functionswhich
aretotally symmetricin the groupk + n of variables.

Denoting A(n, m) the antisymmetrizationoperatorof the product ci,, - ci,,, of sign functions,we
immediatelyhave:

ci,,fnmcim = Sym{tr,,o-,,J~~}+ otherdecompositionterms
= f,,rnA(11,m)ci,,o-,,,+ o.d.t. (10.54)

In consequence:

fnrnt~k+m = {o~+,,A(n,m)cinumo~k+m}fnrnvk±m+ o.d.t. (10.55)

Quite analogously:

cik±pfflrnVk±m = {u,,+11A(n, m)u,,cimo~k±m}crk±Jnrnvk±,,,+ o.d.t. (10.56)

which proves(10.52)andhence(10.51).

As an applicationof the ProjectionTheorem one can prove that operatorslFa(f)1F,lFa(f)lF
satisfy the canonicalanticommutationrelationsin ~F =

More detailscanbefound in [76].
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