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0. Introduction

Within last twenty years, the method of Boson expansions has proved useful in the quantum theory
of many-Fermion systems. For example it allowed to build a contemporary theory of spin waves in
the low temperature description of the Heisenberg ferromagnet [1-9, 15], where for long time it was
known that the ideal magnon gas perfectly simulates the behaviour of the Heisenberg crystal itself. A
similar situation appears in the study of the weak excitation limit of atomic nuclei in the microscopic -
model, where the spectra of low lying excited states are similar to these of the excited system of
weakly coupled quadrupole Bosons [7, 18-26].

On the other hand recent developments on the connection between the Thirring and Sine-Gordon
systems in the two space-time dimensions, resulted in a couple of papers connected with the Boson
expansion methods in quantum field theory, see e.g. [38, 44—46, 105-128], but also [16, 17, 27-35, 40—
42,76].

All the approaches mentioned above were developed independently and as applications to quite
different physical phenomena. Therefore, there appears the fascinating problem of considering Boson
expansion methods in the quantum theory of Fermion systems from a unified point of view, i.e., to
establish whether there exist any global physical conditions under which this method admits concrete
applications, governing all Fermion systems, independent of the number of degrees of freedom in the
theory. Here there appears also the question of the mutual relations between the different approaches
proposed so far. .

We include here the new results following from the construction of representations of the canonical
anticommutation relations algebra in the Fock representation of the canonical commutation relations
algebra. (Throughout the paper we use a shorthand notation CAR and CCR respectively while using
these representations.)

We claim that the physical essence of the Boson expansion methods reads:

Any quantum Boson in the weak excitation limit can exhibit Fermion properties, which then prevail
the original Boson ones. We call it a Fermion-like behaviour. This is the reason for which Boson
systems can be in sufficiently low temperatures used to approximate properties of Fermion systems.
Quite conversely, if the higher excitations, as, e.g., the weak coupling limit of the theory, are admitted,
then the starting Fermion system can exhibit the Boson properties. We call it a Boson-like behaviour.

The above statement is obviously not true for isolated systems, but if the contact with a suitable
environment is taken into account, then in quantum mechanics, many-body theory and quantum field
theory one has justified quite serious treatment of the question of metamorphosis of Fermions into
Bosons, and conversely, see e.g. [44].

Obviously such a metamorphosis can not always appear for the case when both the starting Boson
and the final Fermion are physical objects. It may happen (especially in quantum field theory where
the spin-statistics theorem should be taken into account if the number of space-time dimensions is
equal to four) that the starting point is an ideal nonphysical, ghost Boson, whose weak excitation limit
acquires the properties of a physical Fermion.

From the mathematical point of view, the majority of essential results is based on the Boson
expansion theory developed by the present author [16, 17, 27-35, 76], but in the course of the paper we
give a review of the related topics which seem essential for better understanding of the method. Our
statement on the Fermion-Boson reciprocity is formulated on the basis of the equivalence theorems
proved in [17] for the example of Heisenberg ferromagnet, and in what follows for the microscopic
model of the atomic nuclei. They result from the projection theorems proved in [76], and collected in
the Appendix.
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In the case of the Heisenberg lattice it means that its Hamiltonian H can be received as a reduction
P,HyP,= H to the Hilbert space of spin states of a suitable pure Boson (magnon gas) Hamiltonian,
where P, projects onto the spin space in the Boson Fock space %3:PyFs= %, A similar situation
appears in the case of the atomic nuclei.

In application to quantum field theory, we were able to prove that with each normal ordered
operator series :Q(y, §): of free asymptotic Dirac fields ¢, ¢ one can associate the corresponding
functional power series Q°(¢°, ¢°) of the classical (commuting ring of functions) spinor fields. The
transition from Fermions to classical spinors is realized through the subsidiary (but unphysical as
involving the spinor fields which obey Bose statistics) Boson level: 4°, ¢®. The Boson spinors satisfy
the free Dirac equation, and 1g:Q°(¢°, ¥®):1:F¢ = :Q(, §): F= what is the equivalence relation between
the Bosons and Fermions on the Fermion Fock space. On the Boson level one has the concept of the
coherent state expectation value of the operator what realizes a correspondence principle: to the
mediating Bosons we have assigned their classical images: (:Q°(¢®, ¥®):) = Q°(°, ¥°).

Acknowledgement
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discussions, and conversations on the less or more specialized topics, being held with many people at
different occasions. I am especially indebted to Prof. J. Rzewuski, Prof. J. Lukierski, and Drs A.
Pekalski, A.Z. Jadczyk, B. Jancewicz, Z. Strycharski, Z. Popowicz from Wroctaw, Profs 1. Biatynicki-
Birula, J. Mycielski from Warsaw, Prof. R.F. Streater from London, Prof. J.R. Klauder from Murray
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1. Boson expansions of spin operators

Let H denote a finite dimensional Hilbert space: dim H =25+ 1 with s =0,3,1,3,... . Assume to

have given in H an irreducible unitary representation of the SU(2) group whose infinitesimal
generators obey the relation: a,b, ¢ =1,2,3; §={S,}a<123

[Sur Sp]- = i€meSer  Se=(1/V2)(S, 2iS)>[S:, S 1-= S5,  [S5, Sl =%8; (1.1)
=Y 5.=8.5+S5S.+83=s(s+ L (1.2)

Given further an infinite dimensional Hilbert space %, and a Fock representation of the CCR
(canonical commutation relations algebra) in it, realized by the triple {a*, a, (}} with:

[a, a*]=1, all=0. (1.3)

We state the following question: find the representation of (1.1) in a certain finite-dimensional
subspace of %. By virtue of the irreducibility of the pair {a*, a} we can expect the operator § to be
fully expressed in terms of Boson generators.
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Let us begin from Holstein-Primakoft [1] solution:

S™: V28, = S, +iS, = V2sa*V1 - a*af2s
V2S.=8,-iS,=V2sV1-a*al2s - a (1.4)

S, =s—a*a.

The square roots are understood formally as infinite series with respect to a*a/2s.

The Hilbert space ¥ consists here of functions of the occupation number parameter n (the
eigenvalue of the operator /i = a*a).

One can easily check that the operators S,, S,, S, obey the commutation relations (1.1). However
the condition of mutual adjointness for S,, S_ and the selfadjointness for S,, as well as (1.2) do not
hold on the whole of %.

The operators (1.4) leave invariant subspaces of & consisting of functions which depend either on
the occupation number parameter n =0,1,...,2s or n=2s +1 The first, 2s + 1 dimensional, sub-
space we denote H. The orthogonal complement of H in ¥ is called a nonphysical space, as it
involves spin values greater than s.

In practical applications one must restrict considerations to H only, where the functional argument
n does not exceed 2s. However this subsidiary condition is not easy to realize directly. One can use
here an indirect method [2]. Namely, let us in the place of Boson operators consider quasi-Boson
ones, obeying the relations:

[a’ a*]* — (1 __ZS + 1 . a*ZsaZS)

(25)!
a2$+1 — a*2s+l — 0. (1.5)
Then, by virtue of the relation:
*23+1 2s+1 _ H (a a-— 1) — l-[ (n p) (1.6)
and:
fif(n) = nf(n) (1.7)
we get:
[T i = p)fon =TT (= p)fen) . (1.8)

which implies that for n <2s — 1, one of factors appearing on the right-hand side of (1.6), necessarily
vanishes.

In consequence, the action of (1.5) onto any function from % gives a non-zero result only if f& H.
In that case, the quasi-Boson operators differ from Boson operators outside H only. This is the case,
when the higher excitations of the quantum system {a*,a,(} can appear with a considerable
probability.

The approximation of spin operators by quasi-Bosons becomes better with increasing spin value s.

One can also make use of the power series expansions of (1.4), (compare [3]):



70 P. Garbaczewski, The method of Boson expansions in quantum theory

5¢ crFefat s _ 22 L
\/ZS+—\/2s(a 4sna 3—zna+ )

(1.9
- — 1 . 1 .2
— X _ g% — *
\/ZS_—\/Zs(a sa n 55 a*in + )

and neglecting all terms except a few.

The approximate formulas for the spin operators obtained in this way become good for s > 1, and
are surely not exact for s = 3.

In connection with Dyson’s theory of spin waves in a Heisenberg ferromagnet [48, 49], the so called
Dyson-Maleev slution [4] was introduced:

S§%: V28, =V2sa*

\/ES_=V:—Z}<1—% a*a) ‘a (1.10)

S, =s—a*a.

The operators S,, S_ are here never mutually adjoint inside % (hence the operator § cannot be
Hermitean) though the commutation relations (1.1) obviously hold in %. Moreover, the eigenvalues of
S, are equal to —s, —s+1,... and are not bounded from above, while for a real spin operator we
would have the upper bound equal to s.

The difficulties with adjointness and the spectrum of S, can be removed [5-7], by a suitable choice
of the metric in %. Namely, % is a Hilbert space with respect to a scalar product:

1

Fof,g>(,g)€C, fi=—=a*"Q (1.11)
Vn!
(fﬂ, fm) = 8’"‘"'
Let us consider in & a sesquilinear form:
(f,&)r =(f, Fg) (1.12)
where F is a Hermitean operator. We impose on F the additional restriction:
(f, S9)r = (8°f, &)r (1.13)

where S is the Dyson-Maleev spin operator.
By virtue of (1.13) we have satisfied in & the two identities:

FS.=S:F, FS,=S*F (1.14)

which, by taking into account the Boson expansions (1.10), lead to:

a*(1-a*al2s)F = Fa*

a*aF = Fa*a (1.15)
proving that F can be diagonalized in % together with /i = a*a. Hence:

(1-Al2s)F.a*f, = Fo.a*f, (1.16)
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where:

F, = (f., Ff,) (1.17)
F,..1=(1-n/25)F,
F,=1-(1-1/28)---(1—(n—1/2s).

It is obvious that for non-physical spin values, namely for n=2s+ 1, the matrix element F, of F
vanishes, because, by virtue of (1.11), (1.12), we have:

(fn, fm)F = Fnanm- (1]8)

The metric defined by the scalar product (f,g)r is indefinite: (f,, f.)r vanishes for n>2s. It
distinguishes however in % a 25 + 1 dimensional, proper subspace H of physical states, on which
(f, g)r defines a Hilbert space topology.

The two discussed solutions $" and S are not fully independent, and a connection between them
can be found. Namely [5-9], the square root F"* of F induces the following identities on H:

S.I"'l — Fl/ZSDF—UZ
S; =P =_F1/250F—1/2 (1.19)

More detailed considerations of this subject can be found in [7-9]. Together with §" and S°, one can
imagine the more general Cooke-Loly solution, given in [10, 11]:

S§S: V28, =V2sa*(1-il2s)"*

V2S_ = V2s(1 - #f2s) (1.20)
S, = s —a*a,

where 0<x <1, and § = S” for x =0 or x = 1, while for x = we get §°=S".

One can develop a few more approaches, such as, e.g., Schwinger’s method of paired Bosons
[12,13], the use of two sets of Bosons, being responsible for the dynamics and the kinematics,
respectively of the spinning system [14], as well as the introduction of two sets of Fermions [15].
However all these approaches meet difficulties analogous to these exposed in connection with $” and
s®.

A concrete algebraic realization of the infinitesimal generators of the SU(2) group, does still not
guarantee physically correct results, and subsidiary conditions (including a proper definition of the
state space and the scalar product in it) are unavoidable.

Recently, in refs. [16, 17], another Boson expansion for spin operators was suggested, giving exact
results for spin 3, and which is free of all disadvantages discussed above. We have

§% V28, =a*: exp(- a*a):
V2S. =: exp(—a*a):a
S, =—31p+a*: exp(- a*a):a (1.21)
where : . : symbolizes the normal ordering of generators a*, a, and one can equivalently introduce
S, =21r— a*: exp(— a*a):a.
Here:
1z = : exp(— a*a): + a*: exp(— a*a):a (1.22)
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so that:
S, = —3[: exp(— a*a): — a*: exp(— a*a):al. (1.23)

Because the operator : exp(— a*a): projects onto the ground state ) =f, in %, the spin operator
components (1.20) make invariant a two-dimensional subspace H = 1% of &, which is spanned by the
two basis vectors f,; and f, = a*f,. In this basis, the matrix realization of the operators (1.21) is exactly
given by Pauli matrices.

By virtue of §°f =0 for f& H, and (§°)> =} 15 the spin value s is equal 3.

The expansions (1.21) can be written in the form:

V28, = a*-a**a +1a*’a’-
\/Es_z a _a*az+%a*2a3_. . (124)
S.=-3ta*a—3a*’a’+- - .

If compared with (1.10), we find at once that the solution S” in case s = 3 is a particular form of (1.21).
To check it, it is enough to neglect higher order terms in the expansions (1.24). In addition one must
take — S, in the place of S.. Hence, it is not surprising that §° cannot be an exact Boson expansion for
spin 3, and the subsidiary conditions are necessary in that case.

Let us further notice that H is two-dimensional and is spanned by the basis {f,, f}. If to remember
that correct spin 3 commutation relations are provided by (1.21), where H is invariant under the action
of spin operator components, it is convenient to use the simplified formulas:

V28, =a*, V2S.=a, S, =-3+a*a (1.25a)
being the finite version of the correct, infinite expansions:

\/ES_,, = lpa*lp, \/is_ = lpalF

S, =1{— 3+ a*a}ly. (1.25b)

Obviously one can equally well use — S, in the place of S.. (1.25b) is a projected set of operators
(1.25a).

The question of higher spins will be considered in below, in connection with Boson expansions of
Fermion operators.

All above considerations were pure quantum mechanical in spirit. The transition to the description
of the infinite assembly of spins is here immediate. If to consider a Fock representation of the CCR,
generated by the triple {a}, a, Qs}i-1.2

[a, az*]— =8ylp

la, a]-=0=[ai,a].. (1.26)
allg=0forall k=1,2,..., and repeating arguments given previously for each single / = 1,2, ...,

we get a corresponding sequence of bosonized spin operators {S;},-12. .., a,b,c=1,2,3
[Skn’ Slb]— = Skc * 8kl ‘ ieab(:- (127)

This sequence is, in fact, used in practical applications.
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2. Boson expansions of bifermion operators

Let the triple {b, b, Qg},-1.,.... generate a Fock representation of the CAR (canonical anticom-

mutation relations algebra):

[bk’ b;k]+=8k11]:, kaF=0 fOI' all k= 1,2,...

[bi, b/, = 0=[bf, b*]..
1¢ denotes here an operator unit in the algebra. Each element of the representation, being quadratic in
b, b, we call a bifermion operator. Following papers [18-25], we restrict our considerations to
operators b b and b} b, which together with their adjoints satisfy the commutation relations:

[bl’ckbl’ b:'kbs]‘- = 8lrb;<kbs - 6skb:'kbl’

[bl’ckbla b:kb;k]— = alrb;(kb:‘_ 6lsb;<kb;k’

[bl,(kbl’ brbs]— = alrb;:bs - skrb;kbs + (alsark - aksalr)1F+ aksbl*br - alsb:‘bn (22)

[bEbF, bYbE)_=0=[bb, bb,]_.
We are interested not only in concrete bfbf,bSb, but in the whole class of operators
UbgbFU*, Ubfb,U* determined by (2.2) up to a unitary transformation.

Now, let us assume to have given a Fock representation of the CCR algebra. We wish to prove that
there really exists a unitary transformation U such that the Boson expansions:

2.1

UbEbFU* =2 3 3 pulk, L Frum sa)a¥ .. ak, 0y . ey (2.3)
n=0 ri+n Sn

o

Ub}bU*= 3> q.k L r,s)a%...a%a,...a,
n=0 rp sn
hold on a suitable domain. Here: r=(r,,...r,).

In the above conjecture, we have combined the original idea of Belaev and Zelevinsky [18, 22] with
Marumori [19-21,23-25] approach, giving compact formulas for Boson expansions of bifermion
operators. This last approach allows us to avoid a wearisome use of the iteration procedure extensively
applied in [18].

Let {fi}i=1......constitute a complete orthonormal system in £*(R"), R" 3p = (p,, ..., pn)

S0f@=56-0, [ defi®)i)= b0 4

It allows us to consider in place of discretely indexed operators aj,a, see (1.26), continuously
indexed ones:

a*(p) = 2, atfp),  a(@) =2 af(p). 2.5)

[

Letus write R" =R'QR", i+j=n,p=(p1,..-,PsPivts- s P) =(@1s.. ., @ 11, ..., 1) =(q, 7), q E
R, pER’.
The basis in £*(R’) we denote by {g,},~, .. .. and in L*R’) by {h},_, »
basis in £°R") ® LR’) is given by: {2e® hi}e1-1.2....
Let us consider the set of antisymmetric basis elements in *R’) ® £*(R’) given by: {fu}li.i=1.2

respectively. Then, the

TN
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where

fkl=vl_§'(gk® El‘&@ Ek)

fulg.r)= ;/‘—5 (@) - 2@ h(r)). 2.6)
We have:
fula, 1) = fu(p). 2.7

Hence, the operators (2.5) can be transformed to the form:
[ dpa*@)futo) = a

[ 0271 = e3)
and, by virtue of:
(fkla fst) = f d‘l f drfkl(r9 q).fst(r’ ‘I) = 6ksalt - akt(sls (29)
R! R
the operators (2.8) satisfy:
[aw, a:]— = (Oks0y — 810y )18

law, a,)- = 0=[ag, a,] (2.10)
auQlg =0 forallk,I=1,2,...

and also: a, =0=a}.

We denote the Boson Fock space generated by (2.10) %;. Its most general element can be written in
the form:

F =3 (F,,|m)y) @.11)
where: i

Im)s = (&)™ - . - (@) Qs 2.12)
and:

(F,. |m)g) = "’“F,'.'."' Im)s, nm=(n,...,n,).

Here F™ is a tensor, totally symmetric in the variables n, k, I. Let us restrict our considerations to a
subspace H of % distinguished by the requirement 1 =n,=-. - =n,, for all m.

Then if tensors F* which are totally antisymmetric with respect to k, I are used to be multiplied by
basis vectors and summed over k, I, we can introduce into consideration the following antisymmetric
basis system in H:

Im)y = (1IV2m - 1)1 > 1Yady, ... ak, Qe 2.13)

perm
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This definition makes sense only under the sign of the bilinear form:

(Fpy |m)g) = 2 FXim)g.

Let us further denote by %, a Fermion Fock space for the representation (2.1). The basis vectors in .?F
are totally antisymmetric and by analogy to (2.13) can be defined in the form:

Im)e=bEbY ... b bEQ.. (2.14)

Now, we take into consideration the tensor product space 5 ® %, the vacuum in which is denoted:
2:Q Q’F=|0)B|0)F-
Furthermore, we restrict 5 QX %z to HRQ .
Here H® % is spanned by vectors |m)y|0)s, and Qp @ F: by [0)g|m).
Let us define the operator Uy:

U= 0001 3, s ot (3 a2bib) 1000 @.19)
which, if acting in H® % has the remarkable property to realize the map:

Uwu: Qe ® F—>HR Qr. (2.16)
In this connection compare [7, 19, 20]:

Unml0)s|m)e = [m)5|0)e (2.17)

F(0|H(m| U;: = F(mIH(Ol
F(mlB(OI Un UMIO)BlmI,’) = F(OlB(m | m')BIO)F =8,m

which proves that UyiUy plays the rdle of the unit operator on Qy ® % An arbitrary operator T
acting in 5 & %; has its image 7 in HRQ Q:

r(m |B(0|T|0)B|m')1= = F(OIB(ml Uum TUI:;Im,)Blo)F = F(olB(m |T|m,)B|O)F- (2.18)
Let us notice that a projection onto Oy ® Fx:
UnUi = 2 [0)a]m)er(m|s(0] (2.19)

has an obvious image:

U(UnUD U = 2 [m)sl0)eeOls(m| = (2.20)
which is a projection onto H® Q.
Because of:

UXP = UX, PUy=U,, P*=P*=P @.21)
we get: .

r=PUyTUXP = PrP (2.22)

which proves that 7 possesses nonzero matrix elements between physical states in 5 @ % only, i.e.
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between elements of HQ (. Following [7], we shall give an explicit formula for the Boson image 7
of the operator T:

7= 2 |m)ee(m|TIm)en(m'| = 0| TI0)r0)ss(0)

N
— 1S e *
t 2 m),(kEl) fOlbubr, - bubu T ey 3 (- 170l [ 0)ss(0
S 1 (2.23)
+ 0TbEbE ... bl bEI0)HD)ss(0 o T
2_1 (2m)’(§) at I Kb K, ll )FI Jea( I\/m pgm( ) kmlpm Aryp
1 1
+ 2 amit .zl;p(OIb,,,bkm bub, THRbS .. bED O G

X Z (" l)pa;(klll . aknluIO)BB(OI (2m )” 2 ( 1 rmsm e rm

perm perm
This lengthy formula for a special case of bifermion operators reads:

UnbfbF U= aki—3(1=1/V3)ahi D ahulpn =52 Qlnlik@mnt - - . (2.24)
In [22] there were derived formal, but compact formulas for bifermion operators of interest:

P . -
Umbib U= ((175— ; a:’fmazﬁamn)—\/ﬁT—NZ P(a*V1-p)y, (2.25)

UMb;(kblUl:i = z a:;a,,,p
where:
P = 2 a i, N= ; Duse (2.26)

We have thus found the Hilbert space in which operators UnbfbfU,,, Uubib Uy satisfy the
commutation relations (2.2) and moreover admit the Boson expansions (2.23)—(2.26), which by virtue
of (2.5)-(2.8) proves our starting conjecture. In this way we have additionally disclosed the conditions
under which Belaev-Zelevinsky and Marumori Boson expansions for bifermion operators, can
coincide. In this last connection compare also [7, section 5].

The infinite Boson expansions (2.25)~(2.26) are not convenient for practical applications, especially
because the convergence of these series is not sufficiently quick. Therefore, one usually either
neglects all expansion terms except a few, or one tries to develop a separate theory of finite Boson
expansions, see e.g. [26].

Let us consider in the place of U, the operator U:

U = [0)ex(0] exp (3 3 alibib )[0)5o 0] @.27)
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This operator, though mapping Q5 ® %= onto H® (), spoils the normalizability of the basis vectors:
1

)0 = s U0} -
£n15(0] = 7= O (.
To improve this defect, let us define an operator U
= Os0] T s (3 6267 ) 1000 229)

(notice that U is a slight modification of U), satisfying:

Oslm)e = V@m — 1)1t Olm)al0), (2.30)
r(0ls(m| = V(2m = 1)!1x(m|5(0|U.

One can easily check that the operator UU is a unit operator in Qy ® % while P = UU in H X Qe
respectively. By analogy to previous considerations, for an arbitrary operator T acting in Qp ® %%,
we can easily get its Boson image 7 acting in H® Qp:

r=UTU. (2.31)

By virtue of the relation U*# U, T*=T does not here imply 7* = . By making a few, not too
difficult calculations, one can derive finite Boson expansions for bifermion operators:

UBEb0 = (af-3 a:,.a:;am)ﬁ’

nm

UbbU = a,P, Ub¥bU 2 ata,P, (2.32)

implying obviously the commutation relations (2.2).

In connection with both infinite and finite Marumori expansions one can express a few objections,
being in close analogy with these appearing in the discussion of Boson expansions of spin operators.

A practical use of the infinite case, meets essential difficulties, though it gives a Hermitean
Hamiltonian. Usually one takes into account the two first terms of the expansions, as e.g. in
[18, 20, 23, 24], not worrying whether this assumption is mathematically and physically correct. On the
other hand, even the application of full infinite expansions can appear to be doubtful, because there is
no rigorous proof of their convergence.

In case of finite expansions, it is not possible to get a Hermitean Hamiltonian, by virtue of the fact
that for example Ub,b,U cannot be transformed into Ub¥b}U by the use of the * operation; compare
also a discussion of the Dyson-Maleev expansion, where an analogous question appeared.

3. Boson expansions of Fermion operators

To explain the leading idea motivating approaches to the question of Boson expansions for
Fermions, let us make a citation from [38]: “It has been taken for granted that a fundamental theory
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of elementary particles must involve Fermion fields in the basic formalism, but need not involve
Bosons. The spinor theory of Heisenberg [36] is the most developed example of this philosophy
(compare also considerations on the two-neutrino theory of photons [93]). More recently the opposite
point of view has been proposed: that is, a theory in which only observable fields, necessarily
uncharged Bosons, occurring in the basic formalism, might be capable of describing Fermions, or
uncharged Bosons. An early paper of Skyrme [37] goes so far as to give explicit formulas for the
Fermion field in terms of the Boson one in a two-dimensional field theory”.

3.1. Representations of the CAR generated by representations of the CCR

Now, we shall collect a few results of the Boson expansion theory developed in the series of papers
[27-34,16,17,76]. As its extremely exciting feature there appears the fact that we deal with a kind of
universal Boson expansions for Fermion operators, involving applications in quantum theory as a
whole, beginning from quantum mechanics through many-body problems and ending in quantum field
theory. From a physical point of view this theory governs the behaviour of systems whose excitation
level is so lowered that a probability of occupying other than the Oth and 1st energy levels of each
single degree of freedom (normal mode) is very small.

Let us begin from the case of the infinitely many degrees of freedom. We denote K a complex
Hilbert space. By %g(K) we denote a Fock representation of the CAR (canonical anticommutation
relations algebra) over K, acting on the representation space %, and defined by the triple:

{b*, b, Qelx, f.e€K

(), b(g)*). = (f, 8)1e

[b(f), b(g)l, =0=[b(f)*, b(g)*].

b(H)2e=0 forall fEK. 3.1

By %g(K) we denote a Fock representation of the CCR (canonical commutation relations algebra)
over K, generated by the triple {a*, a, Qp}«

la(f), a(g)*]-=(f, 8)1s
[a(f), a(®)]-=0=[a(H)*, a(g)*]-
a(f)dg =0 forall fEK. (3.2)

The representation space we denote by Fp.
Let further E, be a bounded operator acting on the nth tensor product K®" = ¥,, with properties:

Er3t = Em E: = Em PikEn =- EnPiln (33)

where P, is an operator of permutation of the ith and kth'K in K®" compare also [27, 29] where examples
for E, are given.

By virtue of (3.3) EZ is a projector: ¥, = E:¥,, ¥>=(1- E%X,. Let us denote by. A,%, and S, ¥,
respectively the totally antisymmetric and symmetric subspaces of #,. E, realizes an isomorphism:

AH) —— S, X} 3.4
which under an additional restriction on E,:
AX2=0 (3.5)
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extends to:
AH, —— S, XK. (3.6)

In connection with E, compare also arguments following (2.12). Let us choose K = £*(R"), E, (k,, p»)
is then an integral kernel of E,, k, = (ky,..., k), k, p ER".

The Fock representation %yz(K) of the CCR algebra acts in the domain 9 C 5. We denote
(a*, a) = fa~ dka*(k)a(k). Then the operators b(f), b(g)* with:

b(f) = : exp{— (a*, a)}Z\/ fdk fdp,.f..m(kmpn)a*(k) a*(k)a(py) ... a(p.): (3.7

where:
fnm(kn’ pm) = \/n + 1 8m.1+n f dqnf drEn(km qn)f(r)El+n(r’ ‘Im pH—n) (38)
dk, = dk, ... dk,

generate a Fock representation %x(K) of the CAR algebra acting on the following subspace of Fg:
Fy = 1:Fy, where: Fg = Fx

1= exp{- (a*, a)}- D, ;lifdknfdpnfdrn
X E, (k,, r)E,(r,p)a*k,) ... a*k)a(p)...a(p,): 3.9

The canonical anticommutation relations for b(f), b(g)* are proved in [29].

In the above %y appears as a physical space H employed in the previous considerations.

The Boson expansions of Fermion operators (3.7)-(3.9) can be applied in quantum field theory.
Now let us study a transition to a finite number of degrees of freedom.

We have proved in [32, 16, 17] that the Boson expansions (3.7)-(3.9) can be reduced to a finite
number of degrees also. Namely, let K = @;-, K, where dim K, < for each /. Then we can construct
what we call the truncated representation of the CAR, consisting of mutually commuting segments,
inside which the usual CAR hold. The Ith segment is generated by the triple {b*, b, Qg}, given by:

b(fz)=iexp(— § a::a,,)- Nf (1/VnlmY)

a=0 n,m=0

N; N, (3.10)
X Z 2 ofnm(amBm)atl---a:naﬂl...asm:

aj...an=08)...8n=

with:
- N N,
fom (@ Br) =V 418, 100 D ) 20 E.(@ ¥a)F, - E1.n(0) Vs Brsn) 3.11)
Yi...mn=00=
and
Ny
Kaf = 20 F_ fies{fia}a=o,1,..., n, being the basis system in K,

az=a(fu)*= f dkfu(k)a*(k),  dimK;=1+N,
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Furthermore:
En(am Yn) = eal .. .an8a|y1 L 5an7n (312)

where €,, . is the generalized Levi-Civitta tensor vanishing if any two indices coincide and taking
the value = 1 depending on the odd or even permutation of indices.
We then get:

[b(f), b(g)*). = (f» 815
[b(f), b(g)). =0=[b(f)*, b(g)*).
b(f)dy=0 forall f,EK, (3.13)

where 1; is a unit operator in the /th segment of the truncated representation of the CAR, projecting
onto the subspace: Fr = 1;:.%5 of %5 with:

N; N
Ip=: exp(— > ai‘aa) <> (1nY)
N «=° Ny "=181
x > > > Bl @ ¥n)Eu(ym Bu)al, ... ak ag, ... ag . (3.14)

ap...ap=081...B1=0vy)...ya=0
In the above we have assumed the vacuum y to be common for all segments from the sequence
I=1,2,....

However preserving formulas (3.10)-(3.13) we can without any difficulty consider for each | a
separate vacuum (5. In that case, in the place of a truncated representation of the CAR we deal with a
sequence of finite-dimensional Fock representations of the CAR, generated by the appropriate
sequence of triples {b*, b, Oy}, In this connection compare [17].

Restricting our considerations to -a concrete Ith segment, we achieve the required finitely dimen-
sional case, namely the quantum mechanics of the many-particle system, generated by dim K, =1+ N,
number of different Bosons.

The simplest example is here dim K = 1. If Qg =Q, forall I =1,2,... we get:

bf=a} exp(-afa);, b, =:exp(-aa):a, (3.15)
1.=:exp(—afa)-[1+alkaq]:
and in %, there obviously holds:
(b, bF1-=0  for k#1
by bl =1p,  b=0=b%, bQy=0 foralli=12,.... (3.16)
If with each Ith segment to associate a particular /th vacuum Q3 and then to restrict considerations to

a concrete single segment, we deal with a one-dimensional quantum mechanical system. Omitting the
now superfluous index [/, we get the following identities for b, b*:

[b, b*], = 1R, b**=0= b’ bQp =0,

1-=:exp(—a*a). + a*: exp(— a*a).a (3.17)
which thus define an irreducible representation of the CAR in the two-dimensional subspace % of the
original Hilbert space %y generated by {a*, a, }z}. Fr is spanned by the ground state {y and the

one-particle state. For more details see also [16, 17]: a*Qg = b*Qy (3.17) is the case when the correct
Boson expansions for spin 3 can be proposed.



P. Garbaczewski, The method of Boson expansions in quantum theory 81

In case of dim K =2 there is possible to find the correct Boson expansions for spin 0 and 1
operators. We deal here with a two-particle quantum system, where by (3.10)-(3.14) a Boson with two
internal degrees of freedom {a}, a,,Qg}._, ., generates a corresponding Fermion {b}, b,, s}, .
with:

exp( 2 ) . [a,,, + %EB alEje, v, B Bz)a,,la,,,]: (3.18)

which by virtue of (3.12) gives:
exp( 2 ata ) [a,+afa,a,): (3.19)

= exp( Za a) la,— afa,a,):
and:
= exp( za a) [l+afa,+afa,+afaka,a,l. (3.20)

Here, the anticommutation relations can be easily checked through an immediate calculation, by
taking into account that : exp(— 2_aXa,): projects onto Q.

The representation space Fg is now four-dimensional. The basis vectors in %= 1%, can be here
chosen in the form:

|1’ )= a;ka:ﬂn=f1®fo
11,0)= (1IVDlaf + a3 is = WVIf, @ fo+ o ® 1]
L-D=0:=f,®fs G20
10,0) = (1/V2)[a} - 6310 = VDI, ® fo— fo ® fi]
while in the Hilbert space of a single Boson, we would have:

Qs = fo, fn=(1/\/m)a*"fo~

In (3.21) we have indicated spin properties of the quantum system (3.18)—(3.20). Namely, by [17], we
have defined in % the representation of the SU(2) group, whose infinitesimal generator § is given by:

V28, = > al:exp(—(a*, a)):

V25_=3 :exp(-(a*, a)):a, (3.22)

~32 L. +:exp(—(a*, a)) - (a*, a):
where (a*, a) =2, aza, and:

1, =:exp(—(a*, a))[1 +a*a.]}. (3.23)

One can check that the first of the numbers on the left-hand side of (3.21) indicates the eigenvalue of
§°, while the second number indicates that of S, respectively.
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Hence the representation § naturally splits into the two irreducible components corresponding to
spin 1 and spin 0 respectively. Let us notice that the formula (3.22) was presented in the way allowing
an apparent extension onto an arbitrary many Boson, dim K = n, case. Now let us consider the case of
Boson expansions of multi-Fermion operators. We assume that a finite, dim K = 1 + N, number of
Bosons is involved. Then, we can apply expansions (3.10)—(3.14) to find the corresponding expansions
for bifermions b}bg, b,bs with a,=0,1,..., N.

To make an explicit calculation is not difficult, but rather tedious and therefore let us mention a
useful method of functional representations of the CAR and CCR, developed in [27-28, 76], see also
the Appendix. In [28], in the proof of Theorem 1, we have listed formulas needing a few minor
modifications to solve the problem under consideration. Namely, we have:

o =(ay,...,on),  Phan =y Biin)s

[ 1
bX ...bX =:exp(-(a*, a))- - > ak¥...ak,

X Ek+n("k1»n9 ak, pn) ) En(pm yn)am et a,,,,:, (324)
r N—1 1 N
b, ...b, =:exp(—(a*, a))- - af...ak
L. n=0 e, p=0
X En("'ns pn)Ek+n(¢~Uk9 pm Vn+k)av1 ... a v,,+k:’ (325)
N 1 N
b% .. bEbs... by =:exp(~(a* a))- [2 LS g ar
=0 n! u v, p=0
X Ek+n(l‘-k+m o, pn)EH-n(pl, pm l’I+n) ’ aw ... a w+,.:’ (326)
@ = (ax, ak—1, ..., ay).

Identities make sense only under the sign of the bilinear form, where after multiplying by the
antisymmetric tensors, summations over indices are performed.

The restriction of (3.24)~(3.26) to bXb}, b,bg, b¥b, is obvious. By taking into account (3.12) we can
easily get expansions in terms of Boson operators for concrete values of @,8=1,2,..., N where
tensors E, ., E,.,, involve suitable sign factors.

Let us notice that the expansions, though infinite, are well defined as operators in % No
convergence questions appear here in contrast to the Marumori or Belaev-Zelevinsky approach.

The original Boson expansions of Fermion operators constitute, of course, infinite series. However,
for practical purposes, there is useful to know that one can always restrict considerations to a few
lowest terms only. If to remember that full operators make invariant the representation space %, and
to take care of not getting vectors from beyond %, no explicit use of the infinite expansions is
needed. Let us for example notice that under the sign of the bilinear form, the following identity
holds:

* — * — —_
br ... biQs=al .. . at€e, Qs=¢€. o, a)s=la,...,a)k (3.27)

It suggests that pure Boson operators can be sometimes used in the place of pure Fermion operators.
In fact (3.27) is a special example of the quite general correspondence relation between Fermion and
Boson algebras.
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Let us consider an arbitrary operator:

:F(b*, b): —E\/

7 o b*"b™)

-3 \/m f dk, ] pofun (s P )b* (k1) .. B*(K)B (D) . b(pn)  (3.28)
dk, =dk, ... dk,, k,=(k,...,k,), keRr?

whose generating triple {b*, b, (0} is associated with the starting Boson triple {a*, a, {5} used to
perform the construction of the Fock representation of the CAR in this of the CCR. Here f,,, is a
totally antisymmetric n + m point function (distribution in general). We have satisfied the following
identity:

F(b*,b):= s exp(-(@%, @) 3 == B 2 (O s 670" (3.29)
nm . - k .

where o,(k,) is the n-point Friedrichs—Klauder sign (alternating) function, being a continuous
generalization of the Levi-Civitta tensor:

E, (k.. p,) = 0, (k,)8(k,~p) ... 8(k, = p,) (3.30)

and m denotes that the order of variables is reversed:

fm!l(kns pm) =fnm(kl9 sty km pm’ pm—lv ce. 1pl)'

One more identity can be further derived:
F(b*, b): = : exp(— (a*, a)) - F(a*, a): = 2 cy (a*" :F(a*, a):a™),

:F(b*, b):Qp =, 7—'_—' (Onfam@ms a*"a™ g = :F¥(a*, a):Qy (3.31)
m Vnim! -

where f.,.= 0, Om" fu, is a function symmetric with respect to permutations of variables inside
groups (n) and (m) respectively, but antisymmetric with respect to permutations from (rn) into (m) and
conversely. (3.31) is the generalization of (3.27) and allows to prove that if 1 is the unit operator in
{b*, b, Qg} so that Fr = 1%y, then the following identity:

1e:F(a*, a):1gFe = :F(b*, b). F¢ (3.32)

holds for all operators :F(b*, b): and :F°(a*, a): related by (3.31). As a specialization of this result,
one finds at once that the canonical anticommutations relations hold on % for operators 1ga(f)*1:
and 1ga(f)1z. The corresponding representation of the CAR is called a projected representation.
Notice here that the formal operator expressions for 1ga(f)*1g, 1ga(f)1x respectively, are quite
different from these for b(f)*, b(f) and the action of them on vectors from the domain is essential.

In general, if the number of N Bosons {a),a,}u-0.1.....~_: is involved, Boson expansions of
multifermion operators (3.24)—(3.26) can be, by the use of (3.12), rewritten in the form:
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N-— N
* x 2, * _1_ * C
b, ...b. =:exp(—(a*, Z P 2 el a0 €oi gy GG, (3.33)
=0 (4
a N-1 l N
2. 1 * *
bm . b,,,( =:exp(— (a*,a)) Z ;}E apdg - .- dpdp,
n=0 .
Xem.”pne . .Lakpl . a a
a N 1
* *® _— i
br,...babs ... bg =:exp(—(a*, 2 E_z
=0 [ 4
xa¥*a a*a -€ €, a ag,
prttp - v Up Uy, al...akpl...pn BT AN - T < TR o ¢ T

Where eal T akpt. . pn = Eukak«l L..o1pl.. . pn and: U',,(kn) = Ea eal L anfm(kl) L fa,,(kn) Wlth {fa}a=l,2. A being
the basis in £*R’). The symbol = means the validity of identities under the sign of the bilinear form only
(after the integrations with test functions).

By the use of (3.31), we get:

* * 2 * *1 g
ba] et bang =€y ... aleaal e aale‘ij’
a
Il — [
boy oo by Fr=1ga,, ... a, 1p€,, ~ o Fr,

* * il ; *
bo .. ..babg ... bg=1gal ...a ag ... agl1c€,, o €g ~ pFe. (3.34)

In the above, the complete formulas 1g:F“(a*, a):1¢ are called the infinite Boson expansions
equivalent on %y to :F(b*, b):, while operators :F(a*, a): are called the finite Boson expansions
corresponding to :F(b*, b):.

Notice that in general :F°(a*, a): can appear as the infinite operator series, and the word finite
informs us that finite parts only of Boson expansions for b* and b were used to construct : F(a*, a):.

3.2. Jordan-Wigner representation

In the many-body problems, people frequently employ the Jordan-Wigner construction of the
representation of the CAR algebra, which is based on the use of an infinite family:

[ox,01-=0  for k#1 (3.35)
loc,0c)s =1, (07 =0=(0y)

of spin 3 raising and lowering operators, see e.g. [100-105].

In practical applications, above part-Boson, part-Fermion nature of operator stands for a difficulty
in the theory, because no simple linear transformation between o, ’s and o’s such as would be
required to diagonalize a quadratic form (the Hamiltonian), leaves these rules invariant.

However, there is not difficult to transform rules (3.35) into a complete set of the CAR. The famous
Jordan-Wigner trick is here in order, where the Fermion creation and annihilation operators appear
according to:

k—1

Cr = €xp <i1r > a',f'a',-)- i

j=1

k-1
= xp(iwz 0?0';) cop (3.36)
=1
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where:
e, =olop (3.37)

and the inverse transformation reads:

k—1

o = exp(irr c,-*c,-)- Ci
A
> c}"c,-) - Cy.
i=1

The above method was invented many times since the basic paper [100] appeared. It has been used to
change spin operators into Fermions in [102], to change electrons into Bosons with a ‘“hard core”
{103], and to change the hard core Bosons into Fermions [104]. See also [119, 120, 123-130]. Above
considerations are closely connected with the application of Boson expansion methods of the previous
section to so called Jordan-Wigner representation of the CAR algebra [100, 43, 74, 83]. Namely by the
use of operators (3.35), we can introduce the following Fermion operators:

(3.38)
oy = exp <i7r

i—-1 j—1
b=T[(-2050x) a7, b}=[]0-20}0;) 0o} (3.39)
k=1 k=1

[bk,b:*LQSkllp, [bk’ bl.=0= [bf,b,*],,.

This is a Fock representation if o, Q=0 for all k=1,2,... . If to consider spin operators ¢~ as
constructed in the Fock representation of the CCR algebra, we have:

o =:exp(—afa):a,, op =af exp(—afa): (3.40)

where a, = [ dpa(p)fi(p) and {f.}i_, ,  is the basis system in £*R>). If to notice that in case of
dimK=2forall k=1,2,...:

1r=exp(-afa) - (1+afa,):, (3.41)
15— 2a¥:exp(— afau):ar = :exp(— axax): — ay: exp(— ara,):a,

we get at once:

i-1 L H
bj - H [lll(:__zaz‘: exp(_ a:‘ak):ak] . exp(— a;ka,-)ta,- = exp<— 2 al?ak)‘ I-I (1 - a;(kak):aja
k=1 k=t k=t
,~ - (3.42)
bf=a}: exp(— > a,’fak>- ITa-afa):
k=1 k=1

which gives one more example of the CAR induced by the CCR, and is a complete “bosonization”
formula for the Jordan-Wigner representation [23].

3.3. Kalnay solution

Let us now present another approach to the question of Boson expansions of Fermi operators in
which, in addition to the Bosons of interest, one introduces a finite number of subsidiary Fermion
operators. Original considerations can be found in [40—43, 34] as well as in references listed in these
papers.
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Let there be given a Fock representation of the CAR algebra realized by an infinite sequence
{F},_, . . of matrices

([E9 Fj*]+)rt = 2 (E)rs(Fj*)st + Z (Fj*)rs(E)st = (EF]*)rt + (F]*E)n = 8,']'5" = aijlm
[F,Fl,=0=[F* F*, =0, (3.43)
F®=0>(F0),=>(F),0,=0 forallri=12,...

where © is the vacuum veétor for the representation. Let us write K = ® Y £*R%). Then K is spanned

by a complete orthogonal system {g/}; 'y -~

> 2N p)el(q) = 8,.0(p — q)

N
> [erwwrerdp=s. paer: (3.4
m=1 e
Then the following trilinear functions can be associated with matrices F
F™(q, p) = 2(F)&(@)g:(p)
F*™"(q,p)= 2, (F) £, (@)8:(p) = F'"(p, 9)*. (3.45)
They satisfy the identities:
N
> f dk[F™(p, kYF[*" (k, @)+ F*™" (p, k)F"(k, )] = 8,.8(p — q)8;;, (3.46)
n=1
3 [ dKLE 0, OF K @)+ F"(p KF? (K @) = 0.
Let there be given a Fock representation of the CCR algebra (1.26). By the use of the basis system

(3.44) we can consider in the representation space %, a continuously indexed set of generators,
according to:

aXp)=2 alelp), a.(p)=2 ag’(p) (3.47)
where:

[am(p)’ a:(‘l)]— = 8(1) - q)anmlB’

(4. (p), a,(@)]-=0=[an(p), ar(q@)]-, (3.48)

a,(p)Qy=0 for all m, p.

By the use of above formulas one can easily check that the operators {b}, b;},_, ,.... given by:

N
b= ffFi’""(p,q)a,’i(p)a,,(q)dp dq

m,n=1

N
br= 3

m,n=1

f f F*™(p, q)ax(p)a.(q)dp dq (3.49)
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satisfy:
(b b} =8;1g,  [b,b).=0=[b},b]],. (3.50)

The identities (3.50) are valid in the one-particle sector B' of the Boson Fock space %j.
Moreover, by the use of the vector ® ={0,},_, ,  we can construct

8" (p)=2, 0,8 (p) (3.51)

and further:

%= dp 3 0" (a0 (.52

the vacuum vector for the representation (3.50), which obviously belongs to B': b,Qr=0 for all
i=1,2,....

Hence, we have defined the triple {b, b;, Qg}i-, »
the CAR algebra.

In the above we have tacitly assumed that the objects (3.45) are c-numbers. In this connection let
us add that we have shown elsewhere [34], that there exists a broad class of coefficients (3.45) which
are operator-valued and can be derived through a simple construction from an arbitrary Fock
representation of the CAR algebra: the matrix representation is then explicitly constructed from the
starting one.

Kalnay’s theory thus admits Fock representations of the CAR algebra, which are directly Boson
constructed, but indirectly through trilinear functions which can appear as operator-valued, depending
on certain starting Fock representation of the algebra, quite different from the derived one.

which in B' defines a Fock representation of

4. Fermion-Boson reciprocity in quantum field theory

4.1. Relations between Fermions and Bosons

Let us start from the two arbitrary families Qr and Qg of Fermion and Boson quantum fields
respectively. We can consider the following question: do there exist relations assigning to one or more
elements of Qg the one or more elements of Qg.

Quite popular recently supersymmetry approach [67,68] seems to offer an example of the a priori
requested relation between Fermions and Bosons. The fields are formed into irreducible super-
multiplets, allowing to deduce the conservation laws, which reflect the mentioned relation. This is
obviously a result of the supersymmetry requirement and not of the intimate structure of Qg and Qr.

Another possibility is concerned with field theories of several quantum fields, obeying the abnormal
commutation relations. In that case one introduces so called Klein transformations [69], changing
commutation properties of fields under consideration.

The approaches developed in [36, 70,71, 93] can be summarized in the notion of the fermionization
of Bosons program, where all appearing in Nature Boson and Fermion fields are believed to be
derivable from a single nonlinear spin 3 “urfeld”".

In the framework of the conventional quantum field theory the fermionization program was
realized in connection with the Thirring model, see e.g. [47, 116, 117]. Namely, to define a current one
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needs a Fock representation of the CCR algebra over #*(R'") constructed in terms of the Fock
representation of the CAR algebra over ®; £*(R"), hence with a doubled number of the internal degrees
of freedom in the theory. Quite the converse trend is realized within the Bosonization of Fermions
program, where one wishes to get Fermion fields in the field algebras of the given Boson fields. This is the
place where the Boson expansion methods are applied.

There was conjectured in [37] that it is more difficult to construct half-integral representations of
rotation groups out of the integral than conversely, and it seems to be patiently impossible within the
limitations of the polynomial expansion. The author even tried to derive the explicit formulas for the
Fermion field in terms of the Boson field, when the number of space-time dimensions was reduced to
two. This approach was further analyzed and generalized in [38] with the use of the C*-algebraic
techniques what allowed to construct a field algebra of the Boson field, which exhibited the
anticommutation rules for certain values of the charge.

Another realization of the program is based on the idea of Boson expansions of Fermion operators;
the approaches of previous sections give here the solutions in the indirect way. Namely, the relations
between quantum fields appear on the level of the Fock representations of the CCR and CAR
algebras, hence free fields. Through the Fourier analysis one goes from the SL(2C) covariant to the
SU(2) covariant objects. Because the Haag expansions of interacting fields and scattering operators
are power series of normal ordered operator expressions which include the “bare” (free) images of the
“dressed” (interacting) field only, one can always express any Fermion field in terms of the
appropriate free Boson fields. See e.g. [30, 31, 108120, 45, 46]. Recently, papers [105-107], threw a new
light on the possibility of the Fermion-Boson metamorphosis in gauge theories with the magnetic
monopole. Namely, in the SU(2) quantum gauge field theory, with the isospin symmetry broken
spontaneously by a triplet of scalar mesons, isospinor degrees of freedom are converted into the spin
degrees of freedom under the influence of the magnetic monopole field [105]. Then in the transition
formfactor, spin and isospin form an antisymmetric singlet, which implies the nonvanishing of matrix
elements of the spinor field between the spinless states.

On the other hand in [106] there was argued that as a consequence of the spin-statistics theorem, in
the SU(2) theory of isospin Bosons, in the field of the magnetic monopole, one can get Fermions. In
the analogous direction there goes the investigation [107], where an object composed of the spinless
electrically charged particle and the spinless magnetically charged particle may bear net half-integer
spin, while the two-cluster wave function is symmetric. The study of a relative motion of these
clusters proves that this symmetry condition does not violate the spin-statistics theorem. An intuitive
Goldhaber’s explanation says: perhaps an object whose half-integer spin comes from the charge-pole
contribution obeys Fermi-Dirac statistics so that a Fermion can be made out of Bosons.

As a solution to this question there is found that the anomalous relation between the cluster spin
and the permutation symmetry of a two-cluster wave function produced by the static fields of charge
and pole in a given cluster, is compensated by the anomalous relation between the wave-function
symmetry and the quantum numbers which correspond to physical observables. All that follows from
the long-range interactions of charges with poles in the different clusters. So, indeed, the two
anomalies combine in such a way that Fermions can be made out of Bosons.

4.2. On field theories in the two space-time dimensions

The method of Boson expansions is not a strange concept for people working in the domain of the
low temperature description of the (anti)ferromagnetic crystals or the atomic nucleus. There is
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however not broadly known its close connection with the so called lattice approximations of Boson
(quantum) field theories, see e.g. [119-130] as well as its relation to the investigations of the
Fermion-Boson correspondence, especially for the Thirring and Sine-Gordon systems [44-46, 108
120].

The famous Coleman’s conjecture [44] on the possible metamorphosis of Fermions into Bosons,
results in the statement that for mass zero and the space-time dimension two, the Fock space of a
massless Dirac field, contains massless Bose particles. In the study of equivalences between the
appearing Fermions and Bosons, the explicit constructions of field operators were performed, see e.g.
[45, 46, 109, 114, 115, 116, 118, 126, 130]. An example of the Mandelstam’s solution [45] reads:

‘P(x)={q’l(x)}l=l.2

¥,(x) = (cu/2m)" exp(u/8e): exp [~ 2mip”! f dédo) - ﬂ¢(x)]:

W) = —ieui2m)"™ expluiSe): exp - 2miB ™ | dede)+3igo00) | 4.
where ¢(x) satisfies the so called quantum Sine-Gordon equation:

x=(x,1)

060) = (52 -22) 6% 1) = (w7I): sinlB(x, ] 42

and the canonical commutation relations, while ¥(x) is proved to be a Fermion, which under suitable
restrictions becomes a Fermion of the massive Thirring model.

There is instructive to know that the introduced so Fermion-Boson correspondence results also in
the equivalence of the Thirring and Sine-Gordon models Hamiltonians, see e.g. [46, 115]. In [115] it is
shown that any interacting spinor system in the two space-time dimensions can be equivalently
described by the scalar system: both theories have a common Hamiltonian. The correspondence of
this kind is further extended on the case of the vector-spinor systems and the Yukawa interacting
systems, which both can be related to the Sine-Gordon model.

The transition from Fermions to Bosons in the two-dimensional quantum field theory follows from
the fact that the Fock space of the free massless Fermion field contains in every charge sector mass
zero bound states, so that the two Fermion bound states are connected with the massless Boson field.
This result was at the roots of the neutrino theory of light [93]). How to get Bosons from the
two-component Fermions see also [47].

Let us add that the structure of the Fermion Fock space, with special respect to the Fermion-
Boson reciprocity was studied in detail, in the Uhlenbrock’s papers [116, 117]. The transition from
Boson’s to Fermions is realized by the use of the exponentiated field. Here, we shall only mention an
interesting feature of this approach resulting in the so called Kronig identity between the Hamil-
tonians of the free massless Fermion and Boson fields:

He=Hp+3(Q}+Q?) 4.3)

with Q,, Q_ being the suitably defined charge operators. In case of the Thirring model the authors get
the generalization of the Kronig identity in which the renormalized Hamiltonians Hg and Hg appear
in the place of Hg and Hp.
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In the massive case, an analogous identity can be proved if to use the concept of the dressing
transformation. It allows to reformulate the physical Hilbert space problem in the Fock space, by the
use of pure Boson operators. Denoting d, the scaling dimension, n to be an index of the charge sector,
and m denoting the mass, we get:

He(d, m,n) = Hg(d, m, n) +3(Q1 + Q). 4.4

Some efforts are connected with the “choice of quasi-local Fermi fields instead of quasi-local Bose fields
so that they are interpolating fields for the same one-particle states, whose corresponding multi-particle
states will obey either Fermi or Bose statistics’ [114]. The special notion of “schizon” was introduced in
this connection. Then, if starting from Bosons:

la(p), a*(q@))-=ped(p —q),  la(p),a(q)]-=0 (4.5)

the authors define Fermions by:

oo

b*(p) = a*p) exp(~ i [ n(q) da) “6)

n(q) = (1/q)a*(q)a(q).

Note here a close analogy with the Jordan-Wigner trick. In addition to pure Boson approach to
Fermions, it is useful to mention the study of the Fermion-Boson correspondence which is performed
on the level of Lagrangeans for simplest models, but for the price of introducing the additional, quite
formal (elements of the Grassmann algebra) degrees of freedom being the reminiscent of the
supersymmetry approach. They make the Boson constructed fields to anticommute, see e.g.
[112,113].

5. Quantum fields on the spatial lattice: towards the Heisenberg crystal
5.1. Lattice approximation of the Thirring model

The Hamiltonian of the massive Thirring model on a one-dimensional lattice with spacing a and
N =2r sites is given by [119, 120]:

H= 3 {5 VO 61005080+ 175G 801+ b10)
G + 1 + 1
32 (@19, ~ b0~ D} - Bo 6.0

The ¢,’s are Fermion operators [¢,, ¢,.]. =35, and ¢,.,=¢_,,,. G is a renormalized coupling
constant, and the V(G) is the finite renormalization constant needed to make the speed of light equal
to unity. Up to the first order in G, we have V(G) = 1 + (G/x), m, denotes the bare mass and E,, is included
to make the ground state energy vanish: m, depends on the lattice constant a.

With the help of the Jordan-Wigner trick we can relate the above model to the Heisenberg spin-chain
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problem, the XYZ-model with the Hamiltonian

1 - X X z
HXYz=f§, 2 {Ixok0k 1+ Jyoiol o + T 00000}

k=—r+1

- periodic boundary conditions are implied.
The appropriate version of the Jordan—-Wigner trick reads:

o7 = expli(wl N + D} or [T (Go)

j=—r+1
or =3 (0% +ioY),
so that, under this transformation:

H=Hyy, ++(1+=D"F) {J oo, + Jo)o?, .} + const.

with:
AN L _V_m _ 6
J"‘2a+2’ ]y_2a 2’ Jz_4a
0= 1 ci=exfin 3 oidd.
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(5.2)

(5.3)

5.4

(5.5

Here (— 1) commutes with Hy,, and H. It proves that in the sector (— DF=(=1"" we have
H = Hyy,, while if (- 1) =(—1)", H equals to another Hamiltonian Hyy, given by the Heisenberg

ferromagnet formula with the anticyclic boundary conditions: o), ,=-0%,,,,0,,=

.y z
Ors15 0 rp1 =

o’,.,. Unfortunately for J, =0, which corresponds to the free model, the three Hamiltonians Hyy,
H,y, and H have different spectra, what slightly spoils the received equivalence. Here the strong
dependence of the theory, while formulated in the Heisenberg language, on the choice of the

boundary conditions, should be emphasized.
If to introduce the projection operators:

P.=5:(1-(=1"F), P_=;(1+(-D"")

we have
[Hxyz P.]. =[Hxyz P.]l_=[H, P.]
so that

H=P Hy,,+ P H xyz T const.

and hence:

a) P, resp. P_ is the projection on the subspace with an even resp. odd Fermion number above the

physical ground state,

b) for large N the spectra of P, Hy,, and P_H,,, are the same, what partly solves the mentioned

spectrum problem.

5.2. From Bosons to Heisenberg antiferromagnet

Let us consider again the spatial lattice with spacing a and the integer lattice label n. If, with each
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lattice site we have associated a complex scalar field ¢, satisfying the canonical commutation relations:

[, @m)-=8um, [@m@m]-=0
0, Q=0 foralln=1,2,... (5.6)

then in the corresponding Fock space we can construct the Fermion unit operator where in the place
of creation and annihilation operators a*, a we put respectively: ¢, ¢, 1g(a*, a) > 1(¢", ¢). By the
transformation: 1g@,1x= ¢, we have associated with each lattice site a single component Fermion
field ¢,:

[¢m ¢::]+ g 6nm1F9 [¢m ¢m]+ = 0 (57)
Let us consider the Hamiltonian:
i + +
lFHBlF= HF=EE{¢71 ¢n+l_¢n+l¢n}’ ' (5.8)

compare in this connection (5.1). We have:

I[H, ¢n]—— ¢n ¢n+1 ¢n 1 __ AA‘in (59)

so that the time dependence of ¢, at even (odd) sites is determined by the spatial difference of ¢,., at
odd (even) sites. Following the prescription of [127], let us define a two-component field ,,:

_ (% é.=¢,, neven
Vo = <¢> 6.= ¢, nodd (5.10)

the components of i, satisfy:
bo=A¢JAX,  P.=Ado/Ax (5.11)

which, at the continuum limit becomes the massless Dirac equation: (8/at)y = (] o)ay/ox in the
standard representation: y, = (; _}). By the use of the Jordan-Wigner trick:

=[]{ie}}: o

I<n

=I1{-io}- o (5.12)

I<n

the one-dimensional Fermion problem can be rewritten as the one-dimensional spin problem: o, is the
spin matrix at the nth site, [ =1,2,3... so that:

1 N +
HFzzl'Z{a-n '0n+1+0-n+1'(7n} (513)

what describes the XY antiferromagnetic chain.
As we know from previous considerations each of Pauli operators can be bosonized so that one can
once more state the question of the Boson translation of the same (see (5.8)) physical problem.

5.3. Variations on ¢%

The ¢35 quantum field theory is given by the Hamiltonian:

H = [ dshaglar? +3 @dlanr 4 0@ - F>0. (5.14)
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Its lattice approximation on the linear lattice with the dimension L, spacing a = 1/A, L = 2N + 1)/A,
V = L is described by the Hamiltonian:

1

H=3 2 i +3(V6) + 2] - 1)) | (5.15)
where the gradient term is chosen in the form [123, 124, 128]:

1 |4 A ..

~23(V¢) =5 X K¢(k)p(-k)= X 5 ¢, DG~ ) (5.16)

A% 24 72
with:

l kmax k2
DG~ =577, 2 {xrexeliG -l (5.17)

After rescaling:

=AM py= AT Iy x = —id

A=AATZ fi=F (5.18)
we get:
H=AY {% pi+3(Vx)+ Ao(x,-’—fé)’}. (5.19)
- ;

The lattice version of the starting quantum model is obviously an approximation of the continuous
one. However, further approximations can be made within the lattice formulation.
Let us notice that in (5.19) the different single-site terms:

H,=AX o]+ xi= 0} (5.20)

are coupled by the gradient terms only, which in fact carry interactions in the model. If to neglect the
gradients, we receive the so called single-site approximation, where at each site we have the identical
Schroedinger problem of a particle in an anharmonic potential. In this approximation, the eigenstates
of the Hamiltonian, are formed by the product of single site eigenstates. The lowest energy eigenstate
is [¢,) =11, |¢,); where |¢,); is the jth site ground state. The next energy level is achieved if at most
one of oscillators is in its first excited state; huge degeneracy appears here.

Introducing the annihilation and creation operators at each site j:

2a; 2

La;, ayl.= O (5.20)

we can get the most general, in the single-site approximation, state function of the system:
w=TTlw). @) =8
J

l4) = l;IO Culm;). (5.21)
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In the so received single site basis, one can approximately calculate the energy of the original, interacting,
system:

H = A{Z H.()+z 2, DG _jZ)xilxiz} (5.22)
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so that its expectation value in the trial state |¢):
(W|H|)=H, = A{Z (i [Hylg) +3 2, DG -fz)(wj,lxj.l%,)(whlxhlw,-,)} . (5.23)

In case of the translation invariant ground state, needing 2; D(j, ~ j,) =0 so that X, D(j,—j,) =
-2, D(0) = - LD(0), implies:

Eo(¢) = H, = A - L{(¢|H.,|¢) — 3 DO)W|x|$)*}. (5.24)

Another kind of approximation of the starting Boson theory is the finite spin approximation. Let us
discuss it for the case of ¢3 theory with the addition of the nearest neighbor coupling term:

H=AX P} +3 (1" +2)x]+ Axj~ xpx..}. (5.25)
1

The periodic boundary conditions are assumed.
In each single site, the corresponding single-site term describes the anharmonic quantum oscillator,
whose solution as the Schroedinger problem:

Gp*+3(u*+2)x>+ AxY)|n) = E,|n) (5.26)

by the use of the basis ®]n;), 0<n; < allows to write the Hamiltonian (5.25) in the matrix form, H
being dimensionless H = HJA:

H= 2 (E-X'®X™. (5.27)

Here E is the diagonal matrix {E;} consisting of the single site energy values. X has the nonvanishing
matrix elements between the even and odd parity states.

The finite spin approximation is received by truncating the base to a finite number S of levels at
each site: ®/|n;), 0<n; < S -1 so that the truncated Hamiltonian represents the coupled spin s system
with 2s + 1 = S. Notice that the approximation is base dependent. As a particular example one can
consider the spin 3 approximation: S =2 what means that the two low lying states only of the single
site Schroedinger problem are retained now. This approximation is reasonable under the existence of
the external regulation mechanism (low temperatures, the strong coupling, eq. the weak excitation
limits) forbidding the occupation of higher energy levels: the probability that the system is excited to
higher than the lowest two, energy levels, is negligibly small.

The Hamiltonian matrix acquires the form:

H = const. + Z {; ai—A- (o] +o;)o}, + 0',-11)} (5.28)
]
where, see e.g. [123, 129] € = (E, — E,), A = [(0|x|1)]’, 01 = o_, and ¢’s are the ordinary Pauli matrices.

Since only the two states are considered for each oscillator, they can be represented by the
presence or absence of a Fermion, what motivates the translation of H to the pure Fermion language:
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the Jordan-Wigner trick:

i-1 N
or =[] D% n=>b}b, n =2, n,

{=—N
j—1
o =[TD", oi=2n-1
{
allows to derive:

N N
H=LE,+€ D b*b—A > (b}—b)(b} + b)) +AbN—by) b+ b_y)expimn)+1)
j=—-N j=—N
(5.30)

what finally enabled us to associate with the starting Boson system the corresponding lattice Fermion.
One can here obviously state the question whether (5.30) can be further connected, in the sense of the
lattice approximation, with some continuous (quantum field theory) Fermion system.

6. Heisenberg ferromagnet in the low temperature limit

6.1. Spin 3 approximation in quantum mechanics

Let us consider an elementary quantum system in one dimension. Such a system is completely
determined by an irreducible pair {P, Q}" = A1z, A € 0' of the momentum and position operators, which
are selfadjoint in the suitable Hilbert space 3.

We assume the quantum motion of the system to be governed by the Hamiltonian H, whose
complete eigenfunction system {f,},_o ... Hf, = E.f, spans %,. We have then given the operators
a=(1/V2(Q+iP), a*=(1/V2)(Q—iP) so that af,=0, and f, =(1/VnYa*"f, Hence, the triple
{a*, a, f,} generates a Fock representation of the CCR in %5. In accordance with considerations of
sections 1, 3.1, in a two-dimensional subspace % of %5, which is spanned by vectors f,, f,, we have given
a Fock representation of the CAR algebra {b*, b, f,} with:

b =1galg, b* = 1pa*1g 6.1)

and furthermore, an infinitesimal generator § of the irreducible in % representation of the SU(2)
group: V2S* = b*, V2S =b, S;= (= 1/21p+ b*b = 1[— 1/2+ a*a]l; where: §* =31g, Ssfo=—3for
Sif, =3 f.. Notice that S; =31z~ b*b implies: Sifo=13 fo, Ssfi=—3f..
In consequence, the vectors f,, f, are the common eigenvectors of the three operators: H, §°, S.
Therefore, if the description of our elementary quantum system can be restricted to %5 only, we can
in principle characterize it fully by a complete family {H, §>, Ss} of the commuting in % observables:
Hg=1gH 1. The only thing is to disclose the physical conditions, under which such a restriction is
possible. It is obviously nonrealizable for the isolated system. Let us therefore assume it to be in
contact with a suitable, low-temperature environment (reservoir). In such case, any pumping of the
system to energies exceeding E, can be made negligibly probable if compared with this to produce
either E, or E,. Then, the description of any elementary quantum system, with the good accuracy can
be reduced to %; only, where a complete family of observables {Hp, §°, S,} is given.

Another mechanism of this kind can be the strong coupling potential forbidding the system to
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occupy higher energy levels. This phenomenon seems to be of special importance in the interacting
many-particle systems.

The above considerations can be summarized in the following conjecture: the quantum motion of a
one-dimensional spinless system, which is governed by the Hamiltonian H, provided the system is in
contact with the low-temperature environment, in the weak excitation limit perfectly simulates the
internal spin 3 quantum motion of a spinning object, in its own reference rest frame.

Furthermore, we can treat each spinless elementary quantum system as a superposition of the
Bosonic and Fermionic “phases”. If higher excitations are allowed, the Bosonic one prevails, however
in the weak excitation limit the Fermionic one becomes prevailing.

One can even try to establish certain critical temperature of the reservoir, beginning from which
our Boson can be with a good accuracy considered as the spin 3 Fermion. Things would become still
more exciting if there would exist a large energy gap between E, and higher energy levels of the
Hamiltonian. In that case there would be even possible to get the highly stable Fermionic ‘‘phase’ of
our elementary quantum system, in may be large range of energies.

6.2. Bosonization of Fermions on the isotropic lattice

We are interested in the special class of the quantum spin systems called the isotropic Heisenberg
models, whose specialized case is the famous Ising model. Let the isotropic spin lattice consist of the
number N of equivalent sites, each one occupied by identical atoms: each one with spin s and the
magnetic moment w. With the Ith site of the lattice we associate the Ith copy % of the finite

dimensional Hilbert space %, dim %=2s+1, s=0,3 ... together with an irreducible unitary
representation of the SU(2) group, with the infinitesimal generators {S,},-, , __ satisfying:
[Ska> Siv]- = 1€apcSke * Bu (6.2)

where a, b, c =1,2,3, (or x, y, z), §2= s(s + 1)1, and 1, is a unit operator in %,.

We denote I, =I(k-1|), L,=0, k,1=1,2,...,N, the exchange integral of the lattice, and
# =(0,0, %) is the magnetic field oriented along the z-axis of the reference rest frame. Then the
general Hamiltonian of the lattice [9], reads:

N N
H=Go~uk21%-Sr%“_llk.sks, (6.3)
and can be further written in the form:
Sy =S £iS}, 6.4)
H=E,+H,+H,
E,=~Nu¥ - s —3 Ns*J(0)

H, = (u¥ + sJ(0)) ; (s — S0 —%; L.S¢ST
H,= _%;‘,’ Iy(s — S)(s = S))
where j(v) = 2, I(k) exp(ikv). Moreover, to be in agreement with commonly accepted in solid state

physics notation S* must be identified with the notion V28, of previous sections.
The description of the Heisenberg ferromagnet in the low temperature limit (Curie point) involves
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Bosons in the basic formalism (48, 49]. Namely, in that case, a collection of the ideal spin waves
constituting the free magnon gas, is believed to simulate perfectly a behaviour of the crystal:
transition probabilities for the ideal spin wave processes with a good accuracy approximate these for a
real system. A conventional computational tool in this place is the use of formal substitutions as e.g.
these of Holstein and Primakoff or of Dyson and Maleev. They allow to consider in the place of (6.2)
a pure Boson Hamiltonian of the ideal spin waves defined in the appropriate space of spin states.

The use of the Holstein-Primakoff prescription for spin values s> 1 allows to consider H in the
form:

H-H,=E,+H,+H' +H", (6.5)
H,= (u¥ + sJ(0) Ek: n - ; sl.aia,
H' =- % ; Ly,

H"= %kZ L1+ (1/8s))aFa,a, + afata))

+ 2 L(1/32s)aaia, + afa}’a)) - D L,(1/16s)afafala, + O(s ™)
k, 1 kil

while by the use of the Dyson-Maleev prescription we get:

Sy —> V2sa}

Si —> V2s(1- afaJ2s)a, (6.6)

Si— s—afa,=s—n,.
In both cases H, is interpreted to describe the noninteracting spin waves, H' their dynamical
interaction, H" being responsible for the kinematical corrections. H' and H” appear here as small
perturbations of H,+ E,.

In the above the condition s> 1 automatically excludes from considerations lowest spin lattices,

therefore it seems reasonable to apply here a rigorous approach of section 3.1.

Let the triple (a*, a, O} generate a Fock representation of the CCR algebra over the complex
separable Hilbert space K = @7, K; withdim K, =n forall Ln=1,2,... .

l=a=n

The basis system in K we denote {f,},=; 5" so that the indexation a(f,,) = a,, of modes, induces:

(G a:p]— = akl‘saB 1g
(a1, a1s]- =0, a,05=0 for all [, a. 6.7)

The underlying Fock space we denote %.

Let us now assume to have defined the subsidiary Boson lattice consisting of a finite (large) number
of identical cells: [ = 1,2, ... N, each one occupied by the n-mode cluster: @ = 1,2, ..., n enumerating
the components of the cluster We define the following operators:

Fi=FT+i¥} = 2 al
a=1
Fr=F-i% = aa
a=1
Fi=—(n2)+(a*, a), (6.8)



98 P. Garbaczewski, The method of Boson expansions in quantum theory

with (a*,a), =27%_, ar.a, and introduce the Hamiltonian of our lattice Boson: notations are taken
from the above, and I, =0 for all k,
N

N
HB=G0"M"21 xyk_%k’ IIklyk%' (6.9)
This operator is well defined in the suitably chosen domains in %g. If to admit a contact of the
subsidiary Boson lattice with an appropriate thermostat (reservoir), one can imagine the regulation
mechanism for the excitation level of the lattice, through the raising or lowering of the temperature.

Temperature changes influence the structure of the set of transition probabilities between lattice
states: certain transitions become more probable than the others.

Let us choose a discrete set {T,},_o ,.... of points along the temperature scale, each one with a
corresponding neighbourhood AT,. The separation intervals between the neighbouring points are
assumed to be sufficiently large if compared with the corresponding AT’s. With each discrete T, let us
associate a projector P, with the property: .

B Fy = F; (6.10)
prob[%g] = 1, prob[Q;]=0

1> prob[ %;]> prob[ %5\ %] within the interval AT where the notion prob[%;] denotes a probability
with which the transitions between lattice states from %, are realized inside %y on the chosen
temperature range T + AT/2. To remove the arbitrariness connected with the relation >, one can try to
associate temperature values with concrete probability values, as e.g. prob[Fp\ %] <0.001, say. In
that case, the Boson lattice, with a good accuracy can be described in terms of states from %, and no
necessity to consider the whole of %5 appears.

By virtue of considerations of section 3.1, for certain critical temperature T, (T,<T¢) and a
corresponding temperature range AT, there exists a projector P, such that within the interval
T, = AT/2 the following operator identity:

N 2
P,HyP,=H = G,— kE} xS, — ,;'1 1SS, (6.11)

holds on the Hibert space of spin states %, = P, %5 which is a finite dimensional subspace of .

Furthermore, each of operators: S, = P,&.P, is an infinitesimal generator of the reducible on %,
representation of the SU(2) group, whose irreducible components induce a corresponding splitting of
%, into a direct sum of suitable spin spaces. They are parametrized by the spin values associated with
each of the N sites of the Heisenberg lattice.

A few comments are now in order:

The identity (6.11) establishes a connection of the subsidiary Boson lattice with the isotropic lattice
in the weak excitation limit. It clearly exhibits the limitations (projectors P,) under which the use of
Boson expansions in the theory is justified. Formally one can consider a straightforward equivalence
relation between Hy and H. However in that case the essential domain questions arise. Hg appears
here as the finite Boson expansions corresponding to the infinite expansion for H.

The cluster structure of the subsidiary Boson lattice, introduced by us as the limitation of the
theory, plays an essential réle. Namely, in case of dim K, =1 for all /, we get the spin 3 lattice. If
dim K, = 2 for all I, then %, can be reduced and with each lattice site one can associate either spin 1 or
spin 0 quantum excitation.
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Our main task now is to construct explicitly the operator P,. Let us notice that {5 is a common
ground state for all clusters of the subsidiary Boson lattice. We denote %5 a Fock space associated
with the kth cluster, and hence determined by the triple:

{a ;:a’ aka, QB} 1<a=n*

From now on we assume to have allowed the spin 5 approximation of our quantum system, so that
the two lowest energy states corresponding to each single normal mode of the system (including the
single components of the clusters) are essential. Then with each single degree of freedom we have
associated the Fermion:

* = g*: exp(— a*a):, b =:exp(—a*a):aq, 1z = :exp(—a*a) - [1+ a*al:,

and furthermore the induced spin 5 operator S.
If further to consider the n-mode cluster, and repeat above consideration for each single com-
ponent, then the operator

§=>8, (6.12)
a=1
defined by:
S*=>bF S =>b,
S§*=—3> 15+(b* b) (6.13)

where (b*,b)=3_b*b,, is an infinitesimal generator of the reducible on % representation of the
SU(2) group. It follows from the fact that for a # B, the operators b}, by do commute:

[ba, b3 =0=1[b,, bsl- (6.14)
while:
(o b2, =13,  bi=0=b} (6.15)

so that operators §, obey:
[Saa’ SBb]- = aaB ieachac
a,b,c=1,2,3, a,p=12,...,n (6.16)

By the use of the well known addition theorems for the angular momenta in mind, we can add these
generators, getting the new infinitesimal generator S, = Z_ S, of the SU(2) group being assigned to the
kth n-mode cluster under consideration. Obviously, this generator is defined on %5, and decomposes
this Hilbert space into a direct sum of spin subspaces corresponding to the irreducible components of
the representation.

In the spin 3 approximation of the Boson system we can apply the Boson expansion formulas to the
above operators according to: :

Sy =2 ak:exp(- afa,):,
(-3

Sl: = Z . eXp(_ altaaka):aka7

a
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=1 . * . x * .
Si=—22,{1exp(~ a101a): — Ao €XP(— Aralia): Ora ),

a

[Ska’ Slb]— = akl ieachkc‘ (617)

The Fermion unit operator 15 selects in %5 a subspace of spin states corresponding to the Ith cluster
with dim K, = n.

In the above the operator : exp(— (a*, a),):, (a*, a), = 2, az.a., is responsible for projecting onto
the ground state of the cluster. A global projection onto the ground state for the whole of the lattice is
then received by the multiplication of all particular cluster projections (by virtue of the direct product
structure of %;), and reads:

: exp(—(a*, a)):, (a*,a)z}kj(a*,a)k.

Let us now define the following operators:
P§=15—:exp(—(a*, a),):. (6.18)

Each kth one projects onto the non-zero mode subspace of %r. Then, the operator:
N
Py=:exp(—(a*,a)):+ D, {15'5 sexp(— D, (a*, a),-):} (6.19)
k=1 i=k

is a projector and selects in %y a subspace %,= P,%; being a closed set-theoretic union of all
particular spin spaces %, = U,_, % and thus being the Hilbert space of spin states for the subsidiary
Boson lattice.

Now there is quite trivial excercise to check that on %, the following operator identities hold:
S:ZPOE alﬁxﬁozﬁoy:ﬁo
Sk_:ﬁOE akaﬁ():ﬁoyk_ﬁo
Si= B3+ (a*, a)]P, = P,¥iP, (6.20)

where P, prevents us from leaving %, while using Bosons only. Moreover, for k# [ there obviously
holds on %,:

B, S S P, = B,S P,FP, =SS, ' 6.21)

what follows from the commutativity of the components of the operators &, &, and §,, §, respec-
tively.

Because P, is the unit operator in %,, we get thus the desired property Hy > PoHg P, = H to hold in
%,.

Let us summarize the received results: our starting point was the subsidiary Boson lattice, whose
description is in the spin ; approximation reduced to a particular subspace %, of %g, so that the
restricted lattice Hamiltonian Hg = P,HgyP, is in fact the Hamiltonian of the isotropic Heisenberg
lattice. .

The physical conditions under which a restriction to %, is possible, are clarified by the concept of the
spin 3 approximation. We need so low temperature T of the thermostat, that each single mode of the
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subsidiary Boson lattice is either singly excited or not excited at all, so that:
1> prob[ %,] > prob[ Fz\%,]. (6.22)

Probabilities with which transitions to, and between the higher energy levels of the system participate
in (6.22) are then negligible.

In the pure Boson language we deal here with a kind of the condensation of the magnon gas (its
single degrees of freedom in fact) around the lattice sites, so that the magnon condensate perfectly

imitates the structure of spin interactions inside the crystal.
Moreover, by the use of spin 5 approximation of the Boson system we have received, what in

section S did correspond to the finite spin approximation.

The last step in these considerations should be now a comparison of results (Hamiltonians I mean)
received by the use of the either of the presented methods. Calculations are here straightforward, and
to have a comparison with the Holstein-Primakoff and Dyson-Maleev expansions, we put ¥; » — &5,
what implies

Si— -85 Fi=aj,
- _| *
S =, Fi=3—a;a,
and results in:

HE = (udt+1J(0) - (N—; nk) ~13 luata

Hf == % 2 I, + % 2 Ly(ny +ny)— % E I, inym,. (6.23)
k, 1 k., ! k, 1
After the reordering of terms with respect to powers in which the operators a;, a, appear, we get:

E§ =5 Nu¥ +5NJ(0)-3> Ly,
n, 1
Hsz_(M%'*'%J(O))Zk "k_%kzl Ikla:al'*'%kzl Ly(n + my),

Hy=-3 ; Lanen, 2=0. (6.24)

If compared with the H-P and D-M expansions, we have modified Ef and HY, and no kinematical
term at all.

Obviously, the Hamiltonian Hy = Eg+ H, + Hy makes sense if employed in the theory of the
Heisenberg ferromagnet in the form P,HgP, only.

6.3. The anisotropic crystal

Let us consider the generalized Heisenberg model with the diagonal interaction exchange tensor
and the anisotropy with respect to all three crystalographic coordinate axis:

‘IZIB = 8aBIIZ’ a’ B = x, y, 4
Ia=1,, Ig=¢€&, ILi=1l, (6.25)

where £, n are the anisotropy parameters |£], |n|<1.
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For the case of a ferromagnetic crystal, we additionally need I, > 0. Note that I, <0 implies the
antiferromagnetism.

The external magnetic field is again oriented along the z-axis ¥ = (0,0, ). Then the Hamiltonian
of our spin system reads [9]:

H( ¢n)=— u%; Si—3 ; L(ESRST+nSyS! + SiST} (6.26)

where we admit —1<§ n<1.
If to introduce the operators S; = Si +iS}, we get further:

H(L¢m)=— u%ﬁk: St —%; Loz (€+m)Se ST +3(E— XSk Sy + Si S+ SiS7. (6.27)

Because of the translational invariance of the Hamiltonian (6.27), we can make a transition to the
Fourier images of the operators S; in the momentum space:

Sc=(IVN) Y Syexp(xikp),  Si=(1/VN)2 S:exp(—ikp)

Ly=I1k-1)= }pj I(p) expfi(k — )p} (6.28)
getting in the place of H(I, & n):

H=-u¥VNSi-3 ; I3 (E+m)S) S, +3(6—n)Sy ST, +S,S°,)+ 8287} (6.29)
where:

—nsé{sqn Osg=I

Ip)=10)y, IO=I-z, L= I(p)=0

y, = (1/2) 520 exp(ipd), |yl<1, D y,=0 (6.30)
#* p

and:

Yorpo =" VYo VYprapa= Yor Yo = ~ Yapo = L.

Here p,=(wfa) (1,1,1) is the boundary momentum of the first Brillouin zone, and we explicitly
assume the approximation of the nearest neighbour interaction: a parameter z denotes the number of
the nearest neighbours of a single site.

From now on we shall restrict considerations to a special case of spin s = ; lattice. This restriction
is justified both theoretically and experimentally [50,51,9] as a consequence of the fact that the
majority of the physically interesting results rather weakly depends on a particular value of spin.
Moreover the peculiarities of the spin kinematics are essential in case of the lowest spin values, while
in the quasi-classical (quasi-Boson) limit s -« they are completely negligible.

In this place there is useful to employ the representation of spin operators through the Pauli matrices.
We shall introduce:

Si=b¥, Si=h, Si=315-b}b,.
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Then:
Sy=b}, S,=b, S:=(VN2b,,-p, (6.31)
where p, is a Fourier image of the operator n,:

p, = (IIVN)E;, ni exp(—ikp) = (1IVN) 3, b¥b,.,

pr=p_,. (6.32)
As a consequence of the commutation relations:
[bi, b1 = (1-2m,)8y (6.33)

(b b]-=0, bi=bF=0
we get the following relations in the momentum space:
[b,, b¥]. = (1/\/_ﬁ)2s;_,,, =8,,,—(2IVN)p,_,
[bw pp’]— = (IIVN)bp'*p” [b:, pé']— = (_ I/VN)b:—p

(0ps pr)-=0=1b,, b,]_. (6.34)
By virtue of b2 = b}*=0 and n2= n,, (59 =13, we get:
2 bpbg=0, (UVNY p_ppea=r, (6.35)
p p
for all &, q.
Introducing all these notions into (6.29) we receive the final form of the Hamiltonian:
H=Ey+ X {A(P)b}b, +3C(p) - (b}b*,+ b_,b, )} —3 X I(p)p,p-, (6.36)
14 i4
where:
E,=—3;Nu¥-sNI0), -gq<ésny 0sqys<l,

A(p) = A*(p) = A(-p) = pH +3 10)(1 -3 (£+ 0)v,),
C(p) = C*(p) = C(— p) = — 3 I(ONE— ),

Let us add that if £=n, the coefficient C(p) obviously vanishes, and in that case E, becomes an
energy of the ground state, while A(p) an energy of the ideal gas of Bloch’s magnons.

The general £# n Hamiltonian (6.35) describes the magnetic properties of a few metals, and can be
also applied to the quasi-spin formulation of the superfluidity problem for the nonideal lattice gas and
the BCS model in the theory of superconductivity, compare [9,52-56]. The one-particle dynamics
generated by the Hamiltonian (6.35) leads to the following equations of motion:

iby =[b,, Hl.= A(p)b(p) + C(p)b*,+J, (6.37)
where:

J=3,+J*)+3U,-J*)

LEJ5=—(1IVN) S V,.(x)p, - (b,_g £ b*,..)

x, =& Xx_=mn ’ (6.38)
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and a non-symmetric potential V,,(x) is given by:
Voa(x) = 10Xy, — x¥4-,), Voo (x) # V, (x). (6.39)

In the Boson approximation the term — xy,_, is neglected. Analogously for p,:

ip, =[p,, HL=(12VN) D W b*b_,., + (1/4\/N)2 W (b* b, —bb_,.,) (6.40)
where:
Wi =232 n) Vo= D=2 10)3 (6% 7)Y, F Yay)- (6.41)

In the particular case of the Ising model £ =75 =0, we get V,,(0)=I1(0)y, for all p, and ig, =0,
W, =0 so that all operators p, are the integrals of motion.

Dyson’s theory [48, 49] of the isotropic Heisenberg ferromagnet, which was further reproduced in
terms of the Boson operators [57-64], is commonly treated as the most exact and appears as the
standard theory in the low temperature domain. Its generalization onto the anisotropic case is
immediate. Let us now reproduce from {9] what happens if the Dyson-Maleev expansions are used.
Namely their translation to the momentum space reads:

b¥—af, b,»a,-(INND v,_8 P, (6.42)
q9
where:
[ap’ a:’]— = app" [apv Vp']-— = (l/vﬁ)ap-Q-p"
v, =vE,=(1IVN)Y, ala,., (6.43)
q

and the subsidiary condition, which reflects the requirement b; = b}* =0 is imposed:

>alve, ,a,=0 forallr (6.44)
qp

Then:

Hy=E,+ > {A(p)a}a, +3CpXata*,+ a_,a,)}
1 2 I(p)v,v_, + WAV NYE+ 1) X I(p)a}v,_,a,

+(14VNXE- 77)2 I(p)a_,v,—4a, + (12N) X C(p)¥,-q8,7-p- 4 (6.45)

par

In the model n = ¢ we get C(k) =0 and then:
Hy=E,+ EPa}a, - zl(p)u v, +(1/2\/N)§2 I(p)atv,_.a (6.46)
p
Both Hamiltonians (6.45), (6.46) are obviously non-Hermitean and need an introduction of the new

topology in the state space. However, if done, the eigenvalues of Hy are allowed to be negative and
even complex.
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If to make use of (6.30) the Hamiltonian (6.46) can be rewritten in the canonical Dyson’s form of
the symmetrized four-Boson interaction [48]:

Hy=Ey+ > EPala,—(1/4N) Y, V,.(O)a} ,a} .a.a, (6.47)
14 pqr

where the Dyson’s potential V,,(£) is given by:
qur({:) = ['YQ + YP—r—q - §(7q+r + Yp—q)] : I(O)' (6‘48)

In the case of the Ising model ¢ = n =0 we would get

qur(o) =Yet Yoor-a

The Hamiltonian (6.47) generates the following equations of motion: for the Boson operators
al,a,:
id = =g +10 - * 6.49)
la, = [ap’ Hg)_ = Ep a, + 2N 2 {'Yp-r * Yo-q §(7p—r—q + 'Yp)}ar+q—paqan (6.
qr
—iay =[a;, Hgl-= Eja; — (IIN)I©0) X (v, — &y,-.)a}_.al. a,
qr
=Ejaf—(1IN) X V,o()a) v, (6.50)
aq

The above equations are not mutually adjoint.
By taking into account:

9, = [v,, Hol = 12VNE ) S (y, - y,,_q)afq{a_q+,, VNS u_qﬂ,_,a,} 6.51)
q r
and combining it with (6.49), one gets one more equation of motion:
(id/dt —E,‘?){a,, VNS v,,_,a,} - (VNS qu(§)vq{ap_q —AVe S V,H,_,a,}.
(6.52)
We have thus derived the complete Dyson images of the dynamical equations (6.37), (6.40) in the
anisotropic lattice.
The theory of the previous section suggests to use the rigorous Boson expansions of the spin
operators, which in case of lowest spins do not suffer of all peculiarities and difficulties of the
Dyson-Maleev approach: notice for example that the operations of the Hermitean conjugation and the

differentiation in time, do not commute.
In the rigorous approach the following substitutions are in order:

b:—)a:’ bp_)ap’ pp—,

b¥=Poa}Py,,  b,=Pea,P,, p,=Pew,P, (6.53)
for all p, and the appropriate projector P, in Fs.

Notice that to make an explicit use of the up to now performed calculations, we have changed the

definition of S; into — S;.
Substituting (6.53) into (6.36), we get:

H = P HyP,

Hp=Ey+ 2, {A(p)ata, +3 CpXatat+a_,a,)-3 2, I(p)v,v_, (6.54)

D 14
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where:
N N
B,=: exp(— D a,’(“ak): + {13'5 :exp(— > (a*, a),~>:}
k=1 k=1 i#k
Pl=1%—exp(—atay): (6.55)

and P, projects in % onto the Hilbert space of the spin states of the lattice [17].
For n = £ we get in the place of (6.36) a simple analogue of (6.46)

Hy=Eo+ 2, Efata, -3 I(p)v,v_, (6.56)
P p

differing from (6.48) by the absence of the term £2/V'N) 2,.1(p)a)v,_,a, The canonical form of H,
is easily achieved:

Hy=E,+Y Epata,—(1/4N) 3, V,,(0)a¥ ,a* .a.a, (6.57)
p

par

what implies the following equations of motion for the operators a,, a*
ib, = Byid,P,, b} =P,ia*P,
id, = [a,, Hgl_ = EZa, — (112N)(0) >, (Y, + Vp_0)@ 0 p8,a, (6.58)
qr
—id¥*=[a¥, Hyl_= EZa} - (1/N)I(0) D, v,a} ,ak .a,
qr

and obviously, for »,:
P,iv, P, =ip,
iv, =[v,, Hg]-=0. (6.59)
One can easily check that the equations (6.58) are mutually adjoint with respect to the Hermitean
conjugation *,
Here, like in the Ising model (where £ = n =0 manifestly) all operators v, are the integrals of
motion.

In addition, combining the first equation in (6.58) with (6.59) one can derive the following analogue
of (6.52):

(id/dt — ERYa, —(1IVN) D v,_,a,)=—(IIVN) 3, v,,q(())y,,(a,,_q -(IVN Y vp-q_,a,> (6.60)
q q r
where V,,(0)=1(0)y, = I(qg).
Let us add that the extensions of the described methods onto the antiferromagnetic case are
straightforward.

7. The atomic nucleus in the weak excitation limit

In the theory of atomic nuclei there was noticed that in many cases, the spectra of low-lying
excited states are similar to these of the excited system of the weakly coupled quadrupole Bosons
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[7, 18-26]. Such a Boson system can be thus used in the approximate description of the weakly excited
atomic nucleus, when the anharmonic corrections, which correspond to the interaction of the
quadrupole Bosons between themselves, are negligibly small.

On the other hand, there is well known that the Hamiltonians of the microscopic model of the
nucleus, if expressed in the representation of the generalized quasi-spin operators, are in close relation
with the previously discussed Heisenberg ferromagnet case. This suggests the use of Boson expansion
methods, to get an approximation of the starting system by the set of collective Bosons which are
responsible for its low-temperature properties.

In the spherical model of the nucleus, with the j-j coupling, each jth one-particle state is
characterized by a collection a; = (n, I, j, m), of quantum numbers. Because the magnetic parameter m
plays a distinguished role in further considerations, we shall use the notation:

a, = (n, L j), so that a, = (a, m,)y, k=1,2,...

Let us define the operators of Fermion pairs, whose total angular momentum equals J, while its
projection M:

Ahda, D)= (1IV2) 3 Gajpmam, | IM)bEDE
mamb (7.1
Bida,b)= 2, (uym,— m, | IM)(—1)*"™ - bXb,.

mamp
Here (jj,m.m, | JM) is the Clebsch-Gordan coefficient of the expansion.
Let us introduce the following abbreviations:
a, = (a, my) = (a, m,);, Apmla, by): = Ax.

By the use of the sequence k =1,2,... of the operators (7.1) and their adjoints, one can construct the
Hamiltonian of the nucleus in the microscopic model, as well as the transition operators between the
nuclear states.

The operators (7.1) obey

[A, A¥_ =85 -2> 31+ p)s(1+PIY (i, k1) - B,
{
(B, AF_ =23 31+ 5):(1+ P Y, k, 1)A¥ 71.2)
k
[Bb B;k]— = ; a- ﬁtﬁkﬁl)y(ia ka l)Bk

where p, is the permutation operator:
Piuf (k) = pif(ai, bi, Jiy M) = — O, (a, b, J) - f(by, ay, Jis M)

0(a, b, J)= (- 1)’ (7.3)
and moreover:

61(:) = (1 + ﬁ:)szk(%) = % aldkaMiMk(saiak&bibk - Oi(a’ b’ J)Baibksbiak (74)
while:

adpiM oMy, | JM,): = ¢,
Y(i, kD)= 3 ceici(=1)'% "% 8508 oiaBosr (7.5)

(m)
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In the particular case of J = M =0, the commutation relations (7.2) coincide with the commutation
relations for the spin operators. Namely, in that case, for each k=1, 2,... we have:

[Aw AR =1-2(1/V2j, + 1B, (1.6)
[Bi, A¥]-= 2/V2j, + 1) A}

what allows to associate with each kth bifermion state a corresponding kth infinitesimal generator of
the SU(2) group, according to:

Si=VictiAo  Sc=Vict+3A}
Si=30c+d) ~ G+ V2 + 1) - B, 7.7

this fact justifies the Boson translation of the theory at least in the simplest case J =M =0, but
motivates also the trials to get any extension of the Boson expansion methods onto more complex
situations.

Now, as the interlude in the main stream of considerations let us study what happens in the weak
coupling limit, called also a harmonic approximation, when higher excitations significantly influence
the behaviour of the nucleus. In that case one can imagine the situation, when the compounds of the
atomic nucleus though Fermions in the basic formalism, can behave like Bosons.

Following [7], let us assume to deal with the light nucleus, where the number n of the compounds is
relatively small.

We know that the higher is the excitation level of the system (high temperature limit), the greater
becomes the number X, (2j, + 1) of the one-particle states which are mostly occupied by the single
constituents of the nuclear system. Moreover, only the great values j, > 1 become then significant.
This corresponds to the weakening of the coupling forces between the nucleons, so that the weak
coupling limit of the theory is approached.

Let us notice that for j, > 1, we can use in the place of Y (i, k,[) the corresponding asymptotic
expression:

YU, k1)~ O 8y e 2j+1)
X V(2 + DRI+ 1)+ 1) - GJMM, | TMYUT s = oo Jar = Jax | Tt = o) (7.8)
where:

2+ 1)’ = Qg + D + D, + 1.

By virtue of j, > 1, (7.8) includes a small parameter (2j + 1)"*~[Z, (2j, + )] "2 In consequence, the
operator part of the right-hand side of the commutator [A,, A¥]_ can be neglected.

Moreover in case under consideration, the operators B,y (a, b) can be also neglected. If we denote
by |m) the ground state of our nucleus, and consider the expectation value of B,y (a, b) in this state,
we get:

(m[b*bslm) = (~ 1)»~™84n, = (~ 1)» ™85 - n - (1 / S Qi + 1)), (7.9)

1/2

1/2

so that:

(m|Bue(a, b)|m)= 3, (ufoma = my | IM)(= 1)*""8,5n - (1/2 Qia + 1))

magmb

= (n/\/zja +1)  8,,0500m0- (7.10)



P. Garbaczewski, The method of Boson expansions in quantum theory 109

Hence, in the approximation £, (2j, + 1) > 1, the operators A (a, b) can be considered as the ideal
Bosons:

[A; At]- = 6:::)a PiAi= A, (7.11)
while By, (a, b)=0.

In consequence, in the place of the initial Hamiltonian describing the interaction of Fermion pairs,
one can introduce an ideal Boson Hamiltonian, acting in the Hilbert space of the Boson states: no
Pauli exclusion principle is observed. This is an example of the metamorphosis of Fermions into
Bosons if higher excitations are essential. In that case, obviously, the Bosonic “‘phase” of the system
significantly prevails.

In the above, the Pauli exclusion principle, standing for a defining property of the Fermionic
behaviour, disappeared. Quite conversely, we shall now prove its appearance if to consider the weak
excitation limit of the appropriately defined Boson system. The four-Fermion interaction Hamiltonian
will be now in order.

In the microscopic theory of the weakly excited atomic nucleus, the collective excitation branches
are connected with the pairing correlations inside the nucleus, which is assumed to consist of
nearly the same number of protons and neutrons. Because the nucleons can occupy the same
one-particle levels, differing by the isospin projection 7 only in addition to the p-p and n-n
correlations, the n—-p ones should be taken into account.

We assume the correlations to be spin independent, so that the quantum numbers of interest are
now a = (j, m, 7).

Let there be given a four-Fermion interaction Hamiltonian [65]:

H=3 (e,— u)b¥b,+3 Y, bXbibb,W(a,B, v, 0) (7.12)

aBya
where u is the chemical potential: in the ground state of the system when W =0, u equals to the
Fermi energy eg.
We know that in the nucleus, the interaction correlates the antiparallel magnetic momenta only,
what results in the following form of the Hamiltonian:

H = z (E,- - I")ij +% Z b],'l:ﬂ‘nb;k—mfzbi'—m'o'lbf'm'¢72 : V(]a j'3 m, m" Ty, T2s T 02) (713)

j,m>0 B i’ m, m'>0
olo2riT2=*1/2

where:
Ni = (b;':n'rbjmr + bj*—m-rbj—m-r)-
r=x1/2
Because terms differing by the sign at m give the identical counterparts to the total sum’
3, m>ol€& — #)Nm,, we can in fact consider N, =22 b} b, compare e.g. [7, 65].
In [7] one can find still more simplified form of the Hamiltonian (7.13)

H=3 (§-wN;u-G 3 Al Apm, (7.14)
jm>0 Js j;::é r;'1>0
where:
AL =™ 3 Clhminnb b mn (7.15)
71, T2=*1/2

and C1},.,1/2., denotes the Clebsch-Gordon coefficient.
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To find the spectrum of (7.13) or (7.14), one must perform the appropriate diagonalization of the
Hamiltonian, see e.g. [65].

Let us now study the low-temperature behaviour of the nucleus in the microscopic model. The
discussion of the traditional Marumori approach can be found in [7], where the following form of the
finite Marumori expansions of the bifermion operators was assumed:

O™ A 1= 3 e ) +3CDS i (<1 (7.16)

(G ) (. Vp——

jmT jmT

Mm —>2 2 cjfn-rcim-r

,r=0,%x1.
Then the bosonized Hamiltonian includes the two- and four-Boson terms only, what seems to be
encouraging at the first sight. Unfortunately, as we know from section 2 the Marumori expansion
formula in the finite case, does not lead to the Hermitean Hamiltonian. Hence, any physical
conclusions drawn from (7.16) may be incorrect: compare in this connection [7], where one diagonal-
izes the Boson Hamiltonian by the use of the nonunitary though linear and canonical, transformations.
Obviously, one can use the infinite expansions, which preserve the Hermicity of the Hamiltonian and
take account of the Pauli exclusion principle. However in that case, it is extremely difficult to make
any explicit calculations with more than a few, lowest order expansion terms. Moreover, the infinite
expansions were never proved to converge sufficiently quickly.

The above difficulties with the low-temperature limit of the Hamiltonians (7.13),(7.14) can be
successfully overcome, if to use the rigorous Boson expansions of the multifermion operators from
section 3.1.

Let us first notice that in the Hamiltonian (7.13) the second and fourth order terms only appear. We
have here a clear splitting into the two pairs {b j..,, b}~ e} and {b_ o, b jmeaa}. Notice further that the
bi-operators b}, - b, and b o, * bjmeo, commute to 0, and if multiplied, they produce a vanishing
fourth-order term if any of triples in the sequence {jmr,, j — mt,, j — m'o,, j'm’a,} coincides with the
other.

We define formally:

bie =B bl =B

bj e = B b= B, 717
what gives us the kth two-dimensional (i.e. dim K =2) Fermi triple: {8, B., (s} belonging to the
family of the mutually commuting segments inside which the canonical anticommutation relations
hold. If specified to the bifermion case, with B, 8* standing in the place of the generators b, b*, the
multifermion expansions of section 3.1 read: Q- Qy

BB = af b€ exp(— afan — aiay):

BuBi = : €Xp(— a3,81, — a81): G, Qi€ (7.18)

BB = ai: exp(— i ay, — ai58): 6y i=1,2
where ¢; is the two-point Levi-Civitta tensor: (€;) = (_] o). The finite Boson expansions read:

BI:BI:kz = lFa;cklal:kleehkz

BB, = 1pai, Qi1 p€,

BiB = 1pagay 1. (7.19)
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Here ¢; plays the role of the sign factor, while 1 restores the Pauli exclusion principle in the pure
Boson scheme. Identities (7.19) hold only under the sign of the bilinear form: i.e. if multiplied from
both sides by an antisymmetric tensor and summed over all the indices. The substitution of (7.19) into
(7.14) gives the correct Boson expansion of the nuclear Hamiltonian:

2 (E —#)22 a}mra)mf+2 2 V(]’] m m 71972a 0'1, 0'2)
j,m>0 ji'mm'>0
oT
* *
X € jmrii—mrn * €Gm'oi—m'od jmr @ j-mry @ 'm'ci B j'mics (7.20)

with o, 7= +3

We have thus derived a very simple, purely Bosonic Hamiltonian for the microscopic model of the
atomic nuclei, which exhibits all the essential properties, as e.g. the Pauli exclusion principle, of the
starting one. For this Hamiltonian the diagonalization procedure can be performed on the pure Boson
level.

The only difficulty arises here if to try to compare the correct expansion formula with this in the
Marumori approach. Namely, the Bosons we have used to perform the construction are rather
unphysical, as carrying the odd isospin quantum numbers. They are the ghost Bosons, which in the
weak excitation limit behave like the physical Fermions. This situation can be easily improved. Let us
assume:

V(]’] m, m’ s Ty T2, Oy, 0'2) - ( 1), e z C1/21'11/21-2Cl/20'21/20'1 (721)

where 7=0,%21, T =0, 1. If to neglect the term with T =0, we get, by the use of:
E C1T/T2-r|1/2n€(jmn)(j—mn)a ;l:nﬂa;'k—m'rz = CfmT; (7.22)
T2

which, by virtue of the orthogonality and normalizability conditions for the Clebsch-Gordan
coeflicients, see e.g. [65], implies:

[C imrs Clonor )= = 81o (7.23)
the following, physical, form of our ghost Hamiltonian:
= 2 (G2 chici s ¥ (DT ek e (7.24)
jm> jmj'm’'>

Tr

where the interaction term includes now the physical Bosons only: each one appearing in the place of
the ghost pair. These are the nuclear analogues of the Cooper Bosons, which by virtue of 1:Hglg= H
still obey the Pauli exclusion principle.

We see that the explicit use of the orthogonality formulas for the Clebsch-Gordan coefficients,
nearly unavoidable needs a two-component structure of the four-Fermion interaction Hamiltonian in
the weak excitation limit. Namely, we have here the isospin 1 and isospin 0 “phases” of the weakly
excited atomic nucleus.

Restricting considerations to the isospin 1 “phase” only, an obvious comparison with the Marumori
approach is possible. It is quite clear that the Marumori formula, even in the finite case, proposes too
many terms in the expansion for A}, to get a correct equivalence with the starting four-Fermion
Hamiltonian. '
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Let us add that in the second quantization approach to the four-Fermion interactions, one can also
use the supplementary Boson field method [66] in which the quanta of the Boson field describe a
collective motion of a group of Fermions. However, in that case, the Hamiltonian is not expressed in
terms of Bosons only but needs the additional use of the new Fermions, which are constructed from
the old Fermions and the supplementary Bosons.

8. The correspondence principle in quantum field theory: quantization of spinor fields

We shall not go beyond the framework of the conventional quantum field theory, and all the
considerations are essentially based on its LSZ formulation [77, 78]. The basic assumption is here that
any operator quantity characterising a given quantum system: the scalar field at the beginning, admits
a decomposition into the power series expansions with respect to the normal ordered products of the
free asymptotic fields. With the scalar quantum field ¢(x)- ... ¢(x) we associate an algebra of all
operators:

Flo) =3 (o) =3 [dx... f dxf(5):0(x) . . @(x): 8.1)
X, = (X, ..., X,), x=(x,1), x. € M*.

With the Fock representation of the CCR algebra (the asymptotic condition) we can introduce the
coherent state domain for the operator algebra:

@* a0}, K=LR®) (ad)= f dka(k)a(k) = ol

la) = exp(—; ||la|f) exp(a, a*)Qy
(aa(b)|a) = (a(k)) = a(k). (8.2)

If a, & are the classical Fourier amplitudes of ¢°(x):

a,a—a,a*>e(x)~> e(x)

we get:
(alp(x)]a) = {e(x)) = ¢ (x)
(a|:F(p):]a)= F(¢) =D (fo 9" (8.3)

what establishes a correspondence between a quantum and the classical level of the scalar field
algebra, provided h=c = 1.

To restore correctly the corresponding quantum image, while the classical expressions are given, it
is extremely useful to employ the so called functional representations of the CCR algebras, which
arise in the theory of the functional power series, see e.g. [74-76, 27].

An introduction to the functional methods is given in the Appendix, and here we shall only quote,
without any detailed explanations, the basic resuits.

Namely if we have an operator expression (8.1) and the corresponding classical image F(¢®)=
3, fdx.f.(x)e(x) . .. ¢°(x,), it is sufficient to multiply F(¢°) by exp(a, a) to get so called functional
representation of the operator : F(¢):. The functional power series F(¢°) exp(d, a) play the r6le of the
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operator :F(¢); in the Bargmann space, which we denote by %5 = B(£*(R%). This situation can be
summarized in the correspondence principle; where the correspondence rule reads:

{:F(e):}— {F(¢")}
(a|:F(p):|la) = F(¢°) (8.4

while the quantization rule:

{F(e)}— {:F(p):}
F(¢®)exp(a, a) = :F(g):(a@, a)>:F(¢):. (8.5

The pragmatists working in the domain of quantum field theory are strongly convinced that the quite
satisfactory classical level for the field algebra associated with any Fermion (Dirac say) field is given
in the framework of the Grassmann algebra. This algebra is built of the c-number like but
anticommuting objects, what exhibits manifestly the Pauli exclusion principle, whose influence on the
starting Fermion level is thus taken into account. There was even founded a complete theory of the
anticommuting numbers in the functional-like integration and differentiation procedures, see e.g.
[72,74], to justify the use of anticommuting Schwinger sources [77-81, 74].

On the other hand, we have proved [27, 28] that one can always associate with any element of the
Fermion field algebra, the corresponding c-valued functional power series with respect to the Fourier
amplitudes of the Dirac spinors. According to the Klauder’s prescription [73], one can even get the
functions with respect to the free Dirac spinors in case of the quadratic forms at least. So it is rather
surprising that no reasonable correspondence of the c-number classical level with the prospective
Fermion level was established.

The reason is obvious: the Pauli exclusion principle is not still introduced, because by no means the
classical spinors must give account of it. So, the exclusion principle on the classical level is an external and
extremely artificial requirement which should be eventually imposed.

To solve the question of the c-number classical level for Fermion fields, we have previously
[27, 28], developed the c-number language in the functional formulation of the quantum theory of the
Fermi systems: the functional representations of the CAR algebra were invented there. Let us
however begin from the chronologically earlier Klauder’s proposal [73], whose short presentation will
allow to understand better our arguments.

Let us consider a free, mass m scalar time-zero field,

1 dl
Qn)Y?) V2w

and the conjugate momentum

é(x)= [e*a(k) + e ™ a*(k)],

— -1 é 31 aikx _—ikx g
w(x) (2—1r)mf \/2 d’k[e™ a(k)— e “a*(k)].
The coherent states can be here defined by:

If, &)= U({f, )l0),

where the unitary operators U are given by:

U(f,9)=expfi [ 100x) - gm(w) ¢'x (8.6)
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and are labelled by two real, smooth test functions f, g. The overlap of two such states is given by:
f.elf.e)= exp{ -3 f [+ m®) " = P+ K+ m)™g - g+ 2i(f* g - g*f)] d3k}. ®8.7)

Here f denotes the Fourier transform of f. These states are so over-complete that diagonal matrix
elements (the coherent state expectation values):

(f. 2|Glf. )= G(f, g) (8.8)

of an operator polynomial uniquely define the operator. One can easily prove that the operator G is
G =:G(w, ¢): where the : . : denotes the normal ordering with respect to the creation and annihilation
operators a*, a,

From this place let us consider a nonrelativistic Fermion model, with the property that (x)|0) = 0.
It is equivalent to the assumption that ¢(x) in fact represents the positive frequency portions of both
the conventional ¢(x) and ¥*(x).

In any case, let us define the basic states:

Xty ooy X)a = 0*(x) . ¥ (x,)]0) (8.9

which are antisymmetric in the x, variables, x, = (xi,..., x,). Now, following Friedrichs [86], let us
introduce an ordering of points, <, in configuration space. We shall say that x < y if (1) x, < y, (these are
the first coordinates) or (2) if x, = y, and x, < y,, or (3) if x, = y,, x, = y,, and x; < y,. Next we introduce
the ordering sign function, which we call the Friedrichs—Klauder function:
Un(xn)=0(x1""sxn)=tl (810)
given by the sign of the permutation P necessary to bring the arguments of o to the “standard” order

X, <X,,< ... <x,,; if any two x’s are equal, o is defined to be zero.

With the aid of o we define the symmetric vectors
lea L} xn)S = 0'(x|, L ] xn)lxl’ ] xn)A (811)

which vanish, if any pair of arguments are equal. Note that, by virtue of considerations of section 3.1,
any symmetric Fock space vector, admits a decomposition:

[X15 s X0) = [On(x ) X1s ooy X)) +{1 = [0, () W1y - . o, X, ®.12)
=lx19""xn)S+|xl""’xn)B

to a part of which, we have restricted the considerations.
As the special example of the isomorphism E,, let us see that the relation:

X1 X )a =0 (Xqs ooy X )| X1y oy Xa)s (8.13)

holds as well, by virtue of o2 = 1.
Armed with the symmetric states (8.11), we form:

)= NZO%I Py (x) - xE Xy« oy Xe)s
d’x, = d’x,...d%x, (8.14)

where N is the suitable normalization factor, and y(x) denotes a complex, smooth c-number test
function. These states play now the rdle of the Fermion “‘coherent states”. Although these states are
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not eigenstates of the Fermion field operator, they exhibit the essential property that:

(Y ()(x)lx) = x*(x)x (x) (8.15)
which is a prototypical relation needed to derive classical images for the energy operator, which is a
quadratic form,

We do not just wish to tilt at windmills and to advocate any pure c-number point of view, against
the conventional Grassmann tools, especially because these last are widely spread and quite con-
venient for the explicit calculations (of propagators for example). We wish however to prove that the
correspondence principle of the kind (8.15) can be established quite generally, by the use of the Boson
expansion methods.

To get the Fock representation suitable for the description of a free Dirac field, we must start from
the triples {a*, a, Q} o1 2@y and {b*, b, Qp} g1 2w exhibiting the number four of the internal degrees of
freedom (spin and charge) in the theory. All results on the Boson expansions of the underlying Fermion

operators hold here without any essential changes if compared with section 3.1, see e.g. [28, 76]. The
standard construction

pe o | [b* lb,] b_=i[bl+ib3]

V2 lbr+ib¥ V2 Llb,+ib,

1 [bf¥-ib¥ _ 1 [b,—1b
o= [PEBE] e L[t 616
V2 Lp¥—ib¥ V2 b,—1ib, (8.16)

(the analogous formulas for Boson operators) allows to get the quintets {b*, b**, Qp}gt-2x? and
{at, a*:, QB}@?_{ZZ(R% with:

[67(F), b* (@), = (£, )1 = (b (), b*" ()],

[a™(f), a* (&)]-=(f,)1s = [a (), a*"(g)]- (8.17)
the other (anti)commutators vanish.

With the Haag-1.SZ expansion conjecture extended onto the casg of Dirac fields (i, ¢ are here the
asymptotic free limits) we have for any elements of the field algebra the following operator expansion:

00 9= 3 % (@nr U T™) 818

=3 i3 [ ax, [ vt 15 W0+ )

a, 7 are bispinor mdlces, and - denotes the Dirac conjugation of bispinors.
:Q(, ¥): can be rewritten in the following form, resulting from the normal ordering of operators:
the total antisymmetry of w,,, in all n + m variables is here essential:

2 §): = X 5 @ () @)™ (8.20)

am n'm
=3 i (0 2 QU™ Z O E))

= ‘ m 2 f dxn J’ dym f dzkf dulwnmkl (xm Yms Zks ul)

* uvop

X P00 o DB - B O (20) - Y2 (1) - . D)
EIn.m.k,,,(wm mes @@

nmk
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where the operators ¢*, ¢* depend linearly, through Fourier transformations, on Fermion creation
and annihilation operators b*, b**, defined by (8.17):

(b (k), b} (p)]. = 8;8(k — p)1e = [b; (k), b} (p)]. (8.21)

the other anticommutators vanish, and the indices i, j = 1,2 denote the helicity states while u, v are
the bispinor indices.

In (8.20) we have clearly distinguished the two groups of operators, ()" (¢*)™ and (¢ )“(¥")
which involve respectively the n + m point product of b*’s and the k + 1 point product of b’s.

By virtue of considerations of section 3.1 we have here:

bitky) ... bu(k)bi (p) ... b (Pa)b (@) ... bo(q@)b X (r) ... b () Fe
= Ok Pr) 0y (G 1R (k) - 2l (ko)A () ... a2 (p) (8.22)
Xau(q). .. a(q)ay (r). .. al (m1eFr,

ou(k)ai(ky) ... ai(k,): = o(isky, ixks, ... ik)aik) ... an(k,)

where = means that the identity holds true only under the sign of the bilinear form, i.e. if integrated
over all variables while multiplied from both sides by a suitable, antisymmetric n + m + k + | point
function; oy.,(qr)=o(tt, ..., L1, Siq. . .., 5,q,) what means that ~ reverses the order of
variables. The operators a”, a*” stand for the creation and annihilation operators of the fictitious
subsidiary Boson field ¢® whose weak excitation limit exhibits the correct physical properties of the
Fermion field. This will be the mediating Boson level allowing to get a c-number classical image of the
Fermion field algebra. In this place the Fermion Fock space %p appears as a subspace 1% of the
Boson Fock space %;. These are the representation spaces respectively for the triples {b*, b**, O}
and {a*, a**, Qp}. For clarity we shall restrict considerations to the two point product ¥ (x)¢, (y)
where we immediately get:

eI (NFe= (127)° f dk(V20)™ f dp(V2e,)™' 3 0,1k, (p) (8.23)
x expli(kx + py} - o4(k, p)lga; (k)a; (p)1eFr.

Here again = means the validity of (8.23) only under the sign of the bilinear form (w,, (¢*)’).
To transform a product of the Fermion fields into a product of the Boson (spinor) fields, there is
enough to construct the integral operator I, with the property:

LW )2 3 [ ax [ ayT=mx= sty = ) 1 G2 (01
= YL OW () Fe. (8.24)
With the use of the helicity basis:

> olip)ori(p)=8;= v (P (p)
p=(p,®,) (8.25)
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this purpose is realized if the following integral kernel of I, is defined:
1 .
I*(x—x". v —y) = - v’
2 (x=x'y—y) mqufdrexp( igx’' —iry’)
x expfi(gx + )} X o, r) v, (@)vy (@) v, (v ¥ (r) (8.26)
ij

where x, y € M*, 9 =(q, q,), and g, k, p ER?

aAq, r): = av(iq, jr). 8.27)
Now (8.23) reads:

Yr (W (9) F = f dx’ f dy’ ; I(x—x',y - )")ﬁz f dk(V20,)™"
<[ ap (Vo) 3 07007 0) exviths'+ py el e} ()15
2 [ax [ ay S - sty -y OO
= Ll LW, (%, 9)1eFe, (8.28)

where the superscript B means that ¢°, ¢/® appear as the positive and negative respectively parts of
the fictitious (as violating the assumptions of the spin-statistics theorem) spinor field, which obeys the
Bose-Einstein statistics: Fermi operators are replaced by the Boson operators.

The generalization of (8.28) is obvious, and leads to the identity:

VX)) LIS - B W) - 2B ) - ) Fr
= 1l Lo (™) P D (B TP 1 (s Yo 210 )

- f dx! f dy., f dz, [ du] 3 I (= 2 (9= ¥ ) (2= 2 (= w'))
w'v'o'p’ - ~

X Lpfei (1) . i3 ) - S (20) . Wep (i (ud) - . o (iDL, (8.29)

The sign ~ in k + | reverses the order of the k + [ variables. By virtue of (8.29), the following equivalence
formula holds on the Fermion Fock space:

QW §):Fe = 12:Q°W°, ¥°)1:.Fe = ;,. ;1—,%"—, (@goms Lp: Y2 P2). (8.30)
Here the shorthand notation w;,, = (w,..I.1,) is used for the coefficient functions.
We have thus proved that with the Fermion field algebra, one can associate a projection of the
subsidiary Boson field algebra, so that on % both algebras coincide.
The pure Boson theory, obviously has its own classical image realized either by the use of the
coherent state expectation values or by the use of the appropriate functional representations of the
CCR algebra:

QY §°) = :Q°°, §°):(a, @) - expl— (&, a)] (8.31)
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where the classical fields ¢°, §° appear as a result of the replacement of the Boson operators a**, a” by
the classical Fourier amplitudes a**, a™ respectively. For more details see [76].

In consequence of this result, establishing the correspondence rule for Fermion fields by the
mediation of the subsidiary Bosons, one can immediately formulate the quantization prescription for
the classical spinors, what completes the derivation of the correspondence rule between spinors and
Fermions. Namely, if one starts from the set of functionals of free Dirac (c-numbers) fields, then by
the use of the functional representation of the CCR algebra:

QW< §°) exp(d, @) = :0°W°, UP)(d @)W, ¥P): (8.32)

one gets the corresponding set of Boson operators. Building the Pauli exclusion principle into the Boson
structure through:

QW ) — 1:0°(0°, §°):1; (8.32)

we have finished the job by observing that on the subspace %y of the Boson Fock space %, we have
the identity:

120°°, §°):1:Fp = QW §): Fr (8.33)

defining the Fermion level of the theory. _
Note that operators 1::Q°(°, ¢°):1x and Q(y, §) possess exactly the same matrix elements
between states from .

9. Plane pendulum in quantum field theory: lattice quantization of the Sine-Gordon system in two-
dimensional space-time

A growing interest in soliton solutions of classical nonlinear equations, especially in connection
with the Sine-Gordon equation [87, 88] and trials to understand what is the corresponding quantum
Sine-Gordon system [44, 46, 89, 90,92}, succeeded in the rather involved and sophisticated cor-
respondence between the so called “‘quantum soliton” of the Sine-Gordon system and the fundamen-
tal Fermion of the Thirring model.

The usual tool in this place was either the canonical quantization procedure or WKB approxima-
tion, or perturbation methods in application to the nonlinear equations. On the other hand, one a priori
states that a correct quantum Sine-Gordon system is this with :sin ¢: on the right-hand side of the
equation, what is believed to be a quantum map of the sin ¢ appearing on the classical level. See in
this connection [89,90, 126], but also [92] where the massive Sine-Gordon quantum system (CJ+
m?)@(x, t) = A: sin[ed(x, t) + O): was axiomatically studied and, for the price of the imaginary time, its
connection with the classical statistical mechanics was established.

However up to the author’s knowledge neither complete nor satisfactory quantization of the
classical Sine-Gordon system in two space-time dimensions was proposed so far. The notion of
“quantum soliton” is mostly introduced ad hoc and with no physical justification. The only exception
in this connection are the Faddeev’s papers [89], where a complete characterization of the classical
phase space for the Sine-Gordon system was given, together with the semiclassical quantization
prescription. We wish to perform here a somewhat naive and intuitive study of the quantization of
Sine-Gordon 1-solitons in the lattice approximation of the system. This is a model study, where the
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pecularities of the quantum description can be carefully investigated, forming thus the first step in the
lattice quantization of the Sine-Gordon equation.

As we know, the linearity of the free field equations allows us to introduce the annihilation and
creation operators, by which one can count up the number of particles in a state described by the
c-number solution of the same free field equation. One of the most difficult problems in nonlinear field
theories comes from the situation that it is not so easy to construct a clear-cut relationship between
annihilation and creation operators, and the number of particles in the state described by the c-number
soliton-type solution.

On the other hand, in the quantum world one can never control the behaviour of any system in
terms of the continuous data functions. One should rather imagine a discrete set of the control points
(the averaged experimental outcomes), which in the approximated sense can be eventually extra-
polated to a continuous control curve.

The most instructive example, taking this fact into account, is the famous Toda lattice possessing
the exactly known solutions, which in the continuous limit goes over to the so called KdV equation
known from hydrodynamics [131].

In the traditional derivation of the quantum field theory of a free scalar field, the Hamiltonian (two
space-time dimensions are taken for simplicity):

H = [ dxts 01a17 +1 aglax +1 w265 1 .1
can be approximated on the finite linear lattice, by the (rescaled) Hamiltonian:
H=AY (p2+3(Vx)+3u"x]} 9.2)

with s enumerating the lattice sites.

The omission of the gradient part reduces the problem to its single site approximation by the linear
chain of harmonic oscillators. In this approximation the quantization of the system lies in introducing
the quantum oscillators in the place of the classical ones. To restore the complete quantum system we
must here perform a translation to the quantum language of the neighbour interaction (gradient) term.
One can make it according to [123]:

H= AZ{p‘+ (——2+D(O) )}+% S D(s, - $2)%, %,y 9.3)

S17#582

Quite analogous procedure can be repeated in case of the Sine-Gordon system. The corresponding
Hamiltonian:

H= f%{(a¢/at)2 + (3 ax)* + A(1 — cos @)}(x, t) 9.4)
is approximated on the linear lattice by:

H=AX Glm+(V.7]+A(1~-cos 6,)} 9.5)
where again the gradient term is in fact the interaction part of the Hamiltonian, and carries the nearest

neighbour coupling. Its omission leaves us with the linear chain of the independent plane pendula,
which was the root for the construction of the Scott’s mechanical analog transmission line [87, 88] for
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the Sine-Gordon pulse. The solitons can be observed experimentally in the chain, though a complete
integrability of the lattice Sine-Gordon system was never proved, in contrast to the Toda lattice. We
do not pretend here to get the exact solutions of the discrete problem. We wish rather to find a
quantum image of 1-soliton solutions in the single-site approximation, together with the quantum term
of the Hamiltonian which gives account of the classically observed long-range correlations between
the nearest neighbors in the chain.

The quantization of the Sine-Gordon system in the single-site approximation lies obviously in the
introduction of quantum pendula in the place of classical pendula: each one singly occupying a single
lattice site. The quantum pendulum is a solvable problem [91], with a nondegenerate, positive set of
eigenvalues and Mathieu functions as the eigenfunctions. Mathieu functions can be proved to
constitute a complete orthonormal set in £%(0, 2#) which is thus a Hilbert space of pendulary states.
The quantum mechanical Hamiltonian though rather not admitting any reasonable number of particles
representation, can be always considered in the matrix form:

H-3 B8] 08)

where E; are energy values while f; denotes the jth eigenfunction. We need rather the knowledge of the
energy spectrum than of the particular operator (creation and annihilation operators can be here easily
constructed in the tensor product form) structure.

Following the preliminary formulation [35], we shall now perform the lattice quantization of the
Sine-Gordon 1-solitons. They are the solutions of the equation:

Qe (x, 1) = (8*9x* = 3% at)P(x, t) = m* sin d(x, t) 9.7)
which are of the form:
&(x, 1) = dtan”" exp(x m(x — v1)/V1—-v2). (9.8)

The energy E = 8m/V'1— v> and momentum of the soliton can be easily calculated: P = 8mo/V1 - 17,
c=h=1.

The approximation of the 1-soliton pulse on the linear lattice is given immediately, if with each site
(the spacing is a) to associate a corresponding characteristic function

1 xXEA,
bexw={; 4

so that:
{Adi=0. 21,22, LA NA, =@ for s+t U A, QRI,;L(AS)= a<l,
s=1

0=+ [ a1
20 =1 [ dxBo2- 81+ 2m*(1 - cos $}Hx - 1)

#(0)= [ dxBIsI+ 82+ m (1~ cos $))x 1) x.(x). .09
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Having given the energy density of the 1-soliton #(x, t) = #(¢)(x, t) one can establish a position of
the energy centre of the pulse at the initial instant of time ¢ =0. Let us assume that this particular
point y, the collective variable (see e.g. Christ’s and Gervais’ articles in [126]), belongs to the Oth site
which is identified with the s = 0 interval y € A,.

In consequence, the 1-soliton is completely described by the following collection of the initial data:

#,(0)=o(y +sa)=¢,(y), m,(0)=,(0)= 7(y +sa) = m,(y)

E= j dH(B)x, 0= S H(B).(») =3 (). 9.10)

Here ¢o(y) = o(¥), mo(y) = m(y) and all the data tend to ¢(y) and w(y) respectively with |y| - c.
From now on, we shall simplify considerations by omitting the collective variable y in all the

formulas ¢,(y) = ¢,, m,(y) = m,, E =2 ,¥,. The uniform motion rule ¢(x — vt) = ¢(x, t) which holds on

the continuous level is now approximated by the following motion rule of the set of the initial data:

es()= ey, )=@(y~-vt+sa) = ¢.()=¢, .,

7 () =7 (y, ) =m(y—vt+sa) > nt)=m,_, 9.11)

what is simply the shift of the data along the chain, following from the influence of the neighbour
coupling, implied by the gradient term. We have thus separated on the classical level the nonlinear
geometry (shape) of the solution from the fully linear dynamics. Let us add that a similar procedure
can be repeated also in case of the n-soliton solutions where the number n of collective variables is
necessary, for more details see [95].

Let now the quantum chain be given, where in the single site approximation a sequence of
independent quantum pendula appears, together with a corresponding single-site basis. We shall try to
translate the classical data and motion rule to the quantum lattice.

Let us begin from the question of statistics. Because each site of the lattice is occupied by a single
quantum pendulum whose spectrum is positive and nondegenerate, if we pretend to describe the line
of quantum pendula, the Pauli exclusion principle should govern its behaviour: the occupation number
of each (s, n)th state of the lattice is either 1 or 0. s, n means that the nth energy level of the quantum
pendulum is occupied at the sth site.

In consequence the single component Fermions should appear on the quantum level. Because, as
we know from the previous section there is not immediate to have a reasonable correspondence
between the classical and Fermion level, we shall formulate all the results for the subsidiary mediating
Bosons and then, in the sense of the weak excitation limit, the transition to the final Fermion variables
will be performed.

Let us denote by E,, E, the energies of the two lowest stationary levels of the quantum pendulum.
We assume to have mapped each plane pendulum, whose energy ¥, does not exceed E,,;, = E, — E,,
into a non-excited, hence occupying the ground state E,, quantum pendulum. This receipt is motivated
by the naive hope that such energies cannot be quantized, and play in the theory the rdle of an
unessential noise. Now, the question of interest there becomes an energy sharing in-between the
quantum pendula of the net energy E of 1-soliton, which we consider as the net in the sense of the
renormalization by a subtraction of the ground state energy from the total energy at each site of the
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lattice. We expect E to be approximated by the sum of quantized portions E; ,,

Sup, > {E¢.n— Ej}=E. 9.12)
’ (s, )
Because E is a macroscopic value, the equality in fact holds. The 1-soliton pulse has a finite energy
value, what if combined with the requirement (9.12) clearly requires at most finite number of quantum
pendula to be simuitaneously excited. Note that the free field techniques, especially the Fock space
methods, can be used by virtue of this argument: Fock space vectors are the linear combinations of
states which in a finite number of entries only (the product states) differ from the vacuum state.
With each single lattice site let us now associate the subsidiary Boson field ¢,, whose lattice Fourier
expansion:

1 { * (iqu ) ( ikw )} v,
= = ag expl—s)ta.expl ——s|=¢, + ¢, 9.13
¢ VvV % k €Xp Vv k €Xp v ¢ ¢ ( )
allows to introduce the corresponding creation and annihilation operators:

fay, az*]- =8y

[aw, a;]- =0, alg=0 for all k. 9.19)
In the above the normalization constant V = dim{(s, n)} for the set of pairs realizing the supremum in
(9.12), and k enumerates the finite set of degrees of freedom (energy levels of pendula reproducing the

1-soliton pulse). The quantum numbers k are defined by the initial 1-soliton data, if to define the
appropriate correspondence rule; by the use of the coherent state methods:

If)= exp{ ; fead }QB -exp{- [fIF(1/2)}

1 + ik _ ik
=y 2 e () +fi e (575 O
Let us notice that putting f, = ¢,, we get
(¢ldsle) = ¢ (9.16)

We can expect the existence of the proper &, such that (¢|®,|¢) = m, however for this purpose we must
realize the solitary dynamics in the quantum chain.
In the single-site approximation the form of the energy operator immediately follows:

H, =Y a:‘{lvz € exp[ikvz(s - s’)]}as,, H=> H, 9.17)
s’ k s

where €, must still be properly defined.
A total energy operator for the 1-soliton reads then:

H=Y afae. 9.18)
k

The solitary evolution rule on the classical level implies:

t=nalv

e()=p(ytsa—vt) 2 o, (t)=¢@,-n

=L2{cp+exp(-—i—k£n)exp(&s)+ 'exp(i—k—7—7n>ex (-lk—ws)}
MERVAE A v AR v Ry
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so that:
+ + ik
o (t = %) =@ exp(—l—‘}—rn). 9.19)

In consequence, for t = nafv

H()= g af(Ha (e (9.20)
implies:
(p|H()le) = (¢|H|p)= E. (9.21)

On the other hand:
H=Y H, .22
k
and (¢|H,|e) = (¢|H,(t = na/v)|e).

If now to require simultaneously:

2 kws 2 ks
H,=—= ), #H cos—, H,=—— ), H . cos— 9.23
Vv VE,; Ty Vv Vzk Ty 0.2
then the correspondence rule ¥, = (¢|H,|¢) establishes the following connection between the classical
and quantum energy data:
E . -E,= %k/¢:¢l:- 9.29)

To get a quantum image of the 1-soliton evolution there is useful to know that, if the quantum gradient
term is taken in the form [128]:

D..=Dn—m)= 2—;_- f dk - k? explik(m — n)]

-

a—0>D’— -V8(x—y) (9.25)
then an immediate quantum lattice analogue of the space translation operator can be given:
. i ik ik
P=-i % 1,.D,,.¢.., II, = _—\/1_72,} {ak exp(l—‘:-r n) —ay exp(— 7" n)} - ko (9.26)
Do =5 [ dk- kexplikm—ml, (L, 6] = =i,
so that:
exp(iP,) - ¢, exp(=iP,) = ¢, 9.27)

exp(iPvt) - @, exp(—iPvt) = ¢, () = bp—ve > Pm—n:

t=nalv

Obviously, in the sense of the correspondence principle (9.27) is the quantum image of the 1-soliton
evolution rule, what seems at the first sight to contradict the ordinary expectations that an energy
operator H should play this role rather (¢|¢,,—.|¢) = @
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Let us in this place prove that the energy operator of the just constructed ‘“quantum soliton”
cannot be a correct generator of the solitary time translations. For this purpose there is enough to
notice that H obeys the restrictions of the Borchers theorem [132]:

Given a one parameter group U, =exp(—iHt) where the generator H = ¢ >—. Denote F, =
U,FU, " for any operator F. If there is a pair of projectors E, F such that for |¢| < ¢, EF, = 0, then for
any t€R', EF, =0.

Let us remark that the solitary evolution rule:

t—— t=nalve,(H) — ¢,_a(t) (9.28)

can be equivalently described by the motion of the localization volumes (sites) while the 1-soliton not
evolving at all:

As _)As—nj‘ps(t)_—) ¢s—n(t)' (929)

In the operator language it needs to associate with each A, a corresponding projector E,,.

Let us consider the three sites A, A,_,,A,_,. Then, obviously E,, - E,, ,= 0, and one needs at least
finite time interval |t|=€ to get E, ,U,E, U "' #0, where for |t|<e, 0= E, _,UE,U" holds. In
consequence, for neither time ¢ we can get the required transition:

A, —> A=A, (9.30)

if the positive evolution operator is used. In the connection let us notice that the correct evolution
operator — Pv for the quantum image of our 1-soliton is manifestly not positive.

The above arguments justify, in a little bit sophisticated way, the independence of the single sites
of the lattice for all times, like this appearing if the gradient term is absent in the Hamiltonian. Does it
at all exclude the long range correlations for any class of positive Hamiltonians?.

The above considerations suggest that together with the collective shift operator P, one should
introduce a collective velocity operator Q, which in case of 1-solitons is not proportional to P; as in that
case PQ would be AP, and hence positivet if A > 0.

The last step in our considerations is now to make a transition to Fermion variables, which should
appear by virtue of the built-in Pauli exclusion principle. The most convenient here, though obviously
not unique, tool seems to employ the weak excitation limit concept of the previous sections, and then
the map:

1F¢s1F = \I’s
IFHIF = HF
1zP1g= Pg 9.31)

which realizes the translation of our construction of the “‘quantum soliton’ to the Fermion language.

10. Appendix: Functional integration (eq. differentiation) methods in quantum field theory

Here we shall concentrate on a particular domain of applications of the path integral methods in
quantum theory, namely on the theory of the so called functional power series and arising in it the
theory of functional representations of the canonical algebras: CCR and CAR respectively. The

t In the particular case under consideration, the velocity operator should be a constant of motion, and its 1-soliton eigenvalue v enters — PQ.
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review of topics is based on the papers [74-76,27-29], see also [72,73]. Hilbert spaces of functional
power series were introduced into physics by V. Fock, as early as 1934, and were investigated since
that time by many authors, including in this number quite abundant mathematical literature of this
subject [72].

We are especially interested in their application in connection with Fock space methods, with
special account of Fermions and Bosons.

Let us denote by K a Hilbert space defined by the scalar product (@, 8), and let us assume that
there exists an involution @ > a in K Ya, B, satisfying & = a and (a, B) = (&, B).

We can define in this case a bilinear form in K as (a, B): = (&, B). The scalar product, bilinear form
and involution in K induce the corresponding notions in ¥, = K®":

(fmgn)’ (fﬁ):=<{m g-'l>’ fﬂ—_ﬁf_.;l (10'1)
(.f-" =fn’ (fn’gn>= <fm g-n>;fm g’l E %n)'

Consider now the space & of sequences {f,}.en (f. € #,, n =0, 1,...; ¥, = C) satisfying the condition

= W< (10.2)
where |1l = V{f,, £.)
g=U=Un}nEN: fn E %n’ "f"<w}= r@o %n' (10‘3)

An arbitrary element f, of %, = K®" can be represented as a sum of terms which are invariant with
respect to the irreducible representations of the symmetry group, acting in the nth tensor product of
Hilbert spaces. With the help of the Young’s idempotents Y,, we can write:

fo=2 Yof, (10.4)
Y
where from the various Y, of particular interest for us will be the two:
1 1
S=i 2 Pn A= X (1P, (10.5)

being the symmetrizing and antisymmetrizing operators. The sums are extended over all permutations
P, of n elements. Young’s operators have their duals Y2 among themselves, e.g. S, = A%, A, = S5.

Let us now introduce the inversion operators P, in ¥, interchanging the indices of the kth and ith
element of the tensor product K®". Let further E, be a bounded operator in ¥, satisfying the
relations:

Ey=E, E,=E,

P.E,=—-E,P,. (10.6)
It follows from (10.6) that E> is a projector, which realizes the following decomposition of ¥,:

=X, D %X,

¥,=E:¥, H:=(01-EH%, : (10.7)

If to take into account the Young’s decompositions:

# = Y XD Yoo (10.8)
Y Y
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then by the basic property of E,:
Y, #,=Y,.E:¥,, Y. #.=Y.1-E)¥%,

E’Y,=Y,E> (10.9)
E, is an automorphism of %, consisting of the isomorphisms Y %\ Y, %! what implies:

A XS, %)

Efr=fs,  Eufa*=fa" (10.10)
We are basically interested in the E,’s possessing the additional property

EIA %, = A H,>AX>=0 (10.11)
which allows to consider the map:

AH. o S,%,,  Efr=fc  Efi=fl (10.12)

The simplest examples of E, are found in [27].
The operator:

E, = 2 Q- RQee, . .6,Q  -®éE, (10.13)

defined by the eigenfunctions {e;, ® - - - ® e,} and the eigenvalues €, ;. E, is an example if K is
separable, and{e; @ - - - ® e, }is an orthonormal set in ¥, corresponding to the orthonormal set {¢;} in K.
In addition we need €, to be the totally antisymmetric Levi-Civitta tensor with €, = 1for i,# i,
(rrs=12,...,n;r#s)and €, _, =0 otherwise.

Another example is the operator with the integral kernel:

E, (x,, y,) = 0(x,)8(x, — y,) ... 8(x, — ¥,) (10.14)

which in case of the greater than one number of the internal degrees of freedom in theory goes over
to:

Ex(t ya) = 00Xy, oy by 1Yy -3 V) = 806 = ¥0) - 80K = Ya)Bus, - - - B (10.15)

In the above o(x,, ..., x,) = o(x,) is the previously introduced Friedrichs-Klauder sign function.
Above study of the symmetry structure of the nth tensor product is immediately generalized onto
%, so that in the symmetric and antisymmetric cases we have:

g5 = néo S, = ,.@o %' @ SHY) = F @ F

g = @ A%, = ea (AKX D AXY = F (10.16)
Fo= '@0 SH,  Fh= éo AX.  (i=1,2)

Fr=0> 5 o Fs.

Let us consider now the corresponding Hilbert spaces of functional power series (generating
functionals) which are defined as mappings V: K 3a = V(a) € C in the following way:
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S s S, y/8 - S|
BYK) = B*={V*: v "2\/,1"”"’“)’ Vil <]

BAK) = B —{VA VA) = (B0, a™, |V ||<oo} (10.17)

2 \/n'
v = Z_O IRl (IVAP= 20 loal?, v, €.

The first definition is the conventional one in the symmetric case, the second definition is the
generalization to the antisymmetric case. In this last connection see also [73].

Given a series
o | n
V(a)= % —\/m(vm a),

we construct the series:

V(m +n)!

n!

(8ms VN @) = 2 (Vs ") (10.18)

obtained from V(&) by differentiating each term in this series m times according to the formula:
(g, &%) V(@) =lim e {V(@ +eg) ~ V(@) (10.19)

where a, g € K, e €ER.
One can prove [75] that (10.18) is equal to the mth derivative of V(a) so that we can interchange
the summation and differentiation:

(8m, d™Ida&™) V(@) = (gm, V™Na). ‘ (10.20)
We have here the isomorphism of B* and B's:

Bls = {VIS: Vls(&) — 2 \/ln s —n) "vls"<w} (1021)

Thus B* C B® and we can specialize the results proved in the symmetric case, to the antisymmetric
case by putting everywhere v = E,v2. The operator E, can be omitted in all scalar products due to
the properties (10.10) which make (v,, g,) invariant with respect to E, if at least one of the elements in
(v,, g,) belongs to .. Indeed:

Uo=Ew, g =E.gw 0.€H,> (v, 8= (&n Eiv,) = (Vn, 80)-
In particular: ‘\
(Eyon, Egn)=(v2.8n),  (E.w.5 E,g:% = (v, 8.5 (10.22)

This shows that the theory of Hilbert spaces of functional power series, which is originally developed
for pure symmetric coefficient functions v, works as well in the antisymmetric case, where all scalar
products containing symmetric functions, can be replaced by the corresponding scalar products of
antisymmetric functions.

The scalar product in the Hilbert space of functional power series can be written formally in
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several alternative ways, which explicitly exploit path integration methods:

(V, V)= (v, 0,) = V(d/d@) V'(@)] -0

- [ Vi@ V@ exp(-llal) d(atV'm = [ ox)ix) dxtVEm) (10.23)
where:
fd(v%)=fd<\/;_ﬂ)fd(\/%>; @= \/—(x+1y) F€K, xy€EK, (10.24)
Jo(G5)ver=tim [t [ v(E xe)
x € K,

K is the Hilbert space defined at the beginning of this section, and K, is the corresponding real Hilbert
space (x=(a+a)/V2=%F€K, (x,x)={(x,xY=2(a+d o' +a), |af=2(x>+|y]>), {e} is an
orthonormal set in K,: (¢, &) = (e, ¢,) = 8, and K, 3x =3 x¢;, x; ER).

In the last expression in (10.23):

e(x)=2 F(vnx")= f A(x, @) V(a) exp(~|la|) d(a/Vm), (10.25)
where v, are the coefficients of the expansions for V(&) (in the same way (x) corresponds to G(&)),
J(v,, x™) are the Hermite functionals defined by:

J(0,, X" )———\/I—exp(—zﬂx” )exp{—— <&d— di>}(vn,x") (10.26)

and (d/dx, d/dx) = (1,,,d*/dx®) where 1,, is the unit operator in K,. The kernel A(x, @) of the integral
in (10.25) is the generalization

A(x, @) = exp{~z|x|* ~ 3 (& @) + (x, @)} (10.27)
of the Bargmann operator [72] to countably dimensional spaces. The Hilbert space of the functional
power series can be considered as a carrier space of the algebra of operators in it, defined by the
double functional power series:

AG @)= S e (g @"2™) (10.28)

= Vn'm!

whose action as operators from %(K) into #(K) is given in accordance with:

AV)@) = V(@)= # (2 @ 00, &)

=A@ 32) VPl = [ A@ V@ expi-ID a( ). (10.29

To establish a connection of the developed above formalism with the Fock space, let us first notice
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that (10.29) induces the following multiplication law for operators:

(AB)(d’ a) = 2 #"W (z (ank’ bkm)’ dnam>
nm . . k

_d _ _ _
= A(&1-)BG, ;-0 = [ 4GB, @ expt- Iy d(\/—y—) (10.30)
Y T
so that introducing the double series:
- —_— 1 - m
A&, a) = 2m Vo (Ap, @"a™) (10.31)
connected with (10.28) by the relation:
A(a, a) = A(a, a) exp(a, a) (10.32)
we can express the multiplication law (10.30) in terms of (&, )
(A,A)d @) = exp(a, @) - (@, a)(¥)do(d, @) = :of, (&, %): .o, (&, d—%): exp(d, @) (10.33)
where:
A& )W), @) = 154 (d « +—(-1—)'.sd (@ a) = (@ a)exp{(i —a—)}d (@ a) (10.34)
JAN 2 PAS o2 e B S ot] d&-z, 1\ da’d& pAS 2 .

and :o(a, d/d@): means that in the series (10.31) « is replaced by d/da in such a way that d/d& stands
always to the right of & (similarly in :(a, a + (d/da):).

For d(a,a)=1,(Ag=1, A;p= Ay = A;, = - - - = 0) we obtain the unit operator 1; with the kernel
- - 1 -n n
1s(d, @) = exp(d, a) = X -5 (@",a")
(1gV)(a) = V(a). (10.35)

Note that the coefficients in the expression (10.31) for the unit operator are of the form A,,, = 8,m1um
where 1, is the unit operator in K®™: (1,,,,, a"a™) = (@™, a™).

The next simple operators after unity are the operators represented by double series (10.32) where
A{a,a) is a first order polynomial. There are two such independent operators: the annihilation
operator a(f) and the creation operator a(g)* given by the kernels:

a(f)(a, a) = exp(a, a)(a, f)
a(g)*(a, a) = exp(d, a) - (f, @) (10.36)

of certain operator valued elements of K, which we shall denote by a and a*.
One easily derives the commutation relations:

[a(f), a(@)*](a, a) = (f, g) exp(d, a) > [a(f), a(g)*]_ = (f, &)1& (10.37)
[a(f), a(g)] (&, @)=0

and:
{a(f)* ... a(f)*Na, a)=exp(a, a) - {(a,f,)...(a f.)} (10.38)

{a(f) ... a(f)Ha, @) = exp(@, a) - {(f1, @) ... (f,, @)}
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Furthermore:
:A(a*, a)(a, a)=exp(a, a)d(a, a) = Aa, a) (10.39)

which enables us to express every operator with a kernel A(a, @) of the form (10.31), (10.32) in terms
of creation and annihilation operators. In (10.39) :f(a*, a): is defined by the equation:

1

. * [ —_— ®n _m

:A(a*, a): Zm v (A a*"a™). (10.40)
Similarly, one can express every element of #(K) in terms of creation operators:

V@)@ 0)= T (1 a*)(&0) = V(@) (10.41)

~ Vn!

In particular, if v, = f*/Vn!, f € K we obtain the set of so called principal vectors or coherent states:

exp(f, @) = exp(f, a*) (&, 0). (10.42)
Evidently a(f)v, =0, v, € C and f, (if normalized) is to be considered the vacuum state.:

V(@)= (V(a*)vo)@),  exp(f, a) = (exp(f, a*) - vo)&) (10.43)

what shows that each element of #(K) is obtained from the vacuum by repeated application of
creation operators. Together with relations (10.39) they establish the connection between the Hilbert
space B(K) of functional power series and the Fock space #;.

The triple {a*, a, Qg = v,,|ve] =1} we call a functional representation of the CCR (canonical
commutation relations) algebra #(K) = %5.

If now to define more complex operators:

_ | - n
b(H*(a,a)= En: m(al E.,,fE.a")
- _ 1 f=n n
b(f)(a7 a) - 2 —';_' (fa Em E1+na ) (1044)
one gets the following formulas, see e.g. [25, 26]
(v b*)(d, @) Z (0@ Ep, By pa"™")

(vln b*k)(&’ a) = 2 _T (&k+nEk+m vkEna") (1045)

(v b**) (W, b)), @) = 2 @B wiEi 0"
where w; denotes the element w;, with inversed order of indices. The calculation of b - b* gives:

b)(a.35)b @G alls-0= 3 1 <faEEd—d;r——>§L

m '(7-1+mEl+m’ gEmam)l ¥=0

-3k L (fa"E, Ay E2,.gE. =3 L (fa"E,A,.., gE.a") (10.46)

=(f8) 2 L@, Ea"-3 m(aE gfEr '™
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so that the canonical anticommutation relations for b and b* follow at once:

[b(f), b(2)*1.(&, @) = (f, @)1K(d, @)
[(b(), b(g)a,a)=0

1@ @) = 3 (@, E2a") 3 [60), b(@)*], = . 9l

[b(f), b(g)]. = 0. (10.47)

Together with the identity b(f)v, =0 we have defined the triple {b*, b, Oy = vy, |vo| = 1} which we call
to generate a functional representation of the CAR (canonical anticommutation relations) algebra. The
corresponding carrier space for the representation is selected from B(K) = %5 by the use of its unit
operator Fx = 1:%5 C %p.

A formulation of functional formulas in the operator language is here immediate, by analogy with
the symmetric case. Any vector from %5 can be generated by the use of series of normal products of
creation and annihilation operators. The functional representation formula in the general case reads:

~ 1 ngm = 1 1 ~n+k +k
. * . = * = — m
:A(b*, b):(a, ) Zm ”!m!(Anm,b bY@, a) Zm ’nm!zk‘,k!(a Epiio AnpEmsra™ ™)

(10.48)

where m indicates that the order of the corresponding indices has been reversed.
All the important results of section 3.1 were proved by the use of functional representations.
One can here easily check that really:

:F(b*, b): = : exp(—(a*, a))- >, WI__WZ %(amf,.,gamm a** gty (10.49)
nm . - k .

and further:
:F(b*, b): = : exp(—(a*, a))- F°(a*, a): (10.50)

where f., = 0.f.m0,. is a symmetric function with respect to permutations of variables inside
groups(n) and (m) respectively, but antisymmetric with respect to permutations from (n) into (m) and
conversely.

The Projection Theorem:

1z F(a*, a):15%x = F(b*, b). Fx (10.51)
needs then the proof of the following identity:

Vk+m)! _xin
Ek—k! (e

RO b:VI@) =S e  TusnfgDesm) (10.52)

> \/(k; m)! gk

needing in fact a simpler identity (a sequence of them):

2
’ 0k+n”nfnr:t"m”k+m”k+m)

= (1 F(a*, a): V)(@) = 3 \/;1%_'

—k 2 —k
(Cl +n’ 0k+nanfnT0mUk+mvk+m) = (a +ﬂ’ a'k+nfnrltvk+m)' (1053)

In this place one must notice that the integrations symbolized by the sign of the bilinear form (., .)
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include a non-zero counterpart from these symmetry group decomposition terms of functions which
are totally symmetric in the group k + n of variables.

Denoting A(n, m) the antisymmetrization operator of the product o, - g,, of sign functions, we
immediately have:

OnfnOm = Sym{a,,o,,f,,,_,l} + other decomposition terms
= famA(n, m)a,0,, +o0.d.t. (10.54)

In consequence:

fomOkam = {or. A, M)0G Ot m }f umVicrm + 0-d-L. (10.55)
Quite analogously:

TicrnfamVicrm = {OksnAlN, m)o-,,o-,,,akm}o-kﬂ,f,,,z,vkm +o.d.t. (10.56)
which proves (10.52) and hence (10.51).

As an application of the Projection Theorem one can prove that operators 1ga(f)lg, 1ga(f)*1
satisfy the canonical anticommutation relations in ¥z = 1:%;.
More details can be found in [76].
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