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We give a path integral reconstruction of two quantum problems: the Fermi oscillator and the
chiral invariant Gross-Neveu model. Integrations are carried out with respect to genuine (i.e.
c-number, non-Grassmann) paths, so that one is able to identify explicitly contributions of
the c-number classical models to the transition amplitudes of their quantized Fermi partners.
Stationarity *‘points” of the respective actions are verified to coincide with the classical trajectories:
of the classical oscillator and of the classical chiral invariant Gross—Neveu field.

1. Motivation

Simple Fermi systems if considered on a lattice usually allow a reconstruction
as the interacting (many-body) lattices of spins 3. A converse mapping is realizable
as well, and in 1+ 1 dimensions it amounts to making the Jordan-Wigner transfor-
mation from spins 3 to fermions or inversely. Since for spin-3 lattices it is of some
interest (computation of the partition function) to build a complete path integral
representation of the theory, one is tempted to invent at least a rough “path”
notion in the appropriate classical phase space of the single spinning system or of
the collection of them. In this connection we find it instructive to catalogue the
up-to-date variety of approaches.

(i) The most popular, say pragmatic, route is to construct path integrals not for
lattice spins 5 themselves, but rather for the related Fermi systems, and then in
terms of Grassmann algebra variables. Even if one starts from the lattice spin-3
system, take an Ising model as example, one finds reasonable a transformation to
Fermi variables, which is followed by the formal path integral representation of
such a “fermionized” system in terms of anticommuting (Grassmann) objects [1].
The computational reliability of this method is rather obvious.

(ii) On the other hand the semiclassical quantization procedure for the continuous
Heisenberg system [2] resulted in the introduction of the spin path integral with
respect to genuine (i.e. c-number, non-Grassmann) paths in the phase space of the
classical spin system.

The genuine c-number path notion is also inherent in the approach of [3-6]
based on the SU(2) phase variables, and making use [4-6] of spin-coherent states,
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these being well known in the many-body physics. The general method of [6] to
construct measures for spin-variable path integrals can be immediately adopted to
either a single spin-3 or to the many-body spin-3 problem (which in turn has an
equivalent Fermi realization to which the case (i) applies).

(iii) Attempts to introduce probabilistic ideas (and in this connection genuine
probabilistic measures) to the study of Fermi fields [7, 8] start from an appealing
assumption. Consider the classical harmonic oscillator problem, view its equations
of motion as stochastic differential equations (to realize, furthermore, Nelson’s
quantization procedure), and then add the information that one is considering the
two-level Fermi system instead of the ordinary quantum Bose oscillator. It results
in specifying the class of stochastic processes in which solutions of the would-be
classical oscillator equations of motion: Q =P, P=-Q are to be found. The
underlying processes are Markov processes g(¢) with values in Z,, which demon-
strates that except for the form of the equations of motion, the “classical’’ paths
of the (Fermi) system are completely unrelated to the Bose oscillator paths.

An analogous line is followed in [9], though in a different, Poisson process,
framework.

(iv) In papers {10, 11] which take inspiration from a much earlier [12] attempt
to describe Fermi fields in terms of c-number path integrals, the starting point is
an embedding of representations of the CAR (Fermi) algebras in those of the CCR
(Bose) algebras. This rather special realization of the so called ‘“bosonization”
recipes was proposed in {13}, see also [14], and allows for the use of the coherent
state machinery well developed in the Bose case. In fact one is able to relate the
classical phase-space notion known to be applicable to Bose systems with the
classical phase-space notion for spin-3 or Fermi systems, thus resulting in the
genuine c-number path integral representation.

Below we shall give an explicit description of how: (i) the classical oscillator
problem can be related to the Fermi oscillator problem, (ii) the c-number spinor
field theory model known as the chiral invariant Gross-Neveu model [15] can be
related to its well-known asymptotically free quantized Fermi partner. In both of
these cases we derive the c-number path integral representation of the quantum
Fermi models, which explicitly recover the “quantum meaning of classical (field)
theory” {16] for spinor systems.

2. Fermi oscillator
Our starting point is the simple Fermi oscillator defined by the lagrangian
7 3k - * * . d
L =ia*(t)a(t)—wa*(t)a(t) = a*(t) ta-w a(t), 2.1

which is completely described in terms of the CAR algebra generators (equal time
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variables omitted for simplicity):
[a,a*], =1, a*O)=|), ql0)=0, a*=0=a". (2:2)

Because we work with a Fock representation of the CAR algebra, there is an
apparent embedding of it in the Fock representation of the CCR algebra (take the
Schrédinger representation as an example)

(b, 6*]. =15, bl0)=0, —l_.—_b*"10)=|n), (2.3)
Vn!

provided we define
a*=b*:exp (—b*b):, a=:exp(—b*b):b. (2.4)

These operators though defined in the whole representation (Hilbert) space h for
(2.3) act non-trivially on a proper subspace hr of h only, with hg being spanned
by vectors |0) and |1) of the initial Bose problem. We have

[a, a*], = :exp (—=b*b): +b* :exp (—b*b): b =15, 2.5)

where 1y is a projection in h:hg = 1¢h.
Let us notice that the hamiltonian /g for the Fermi oscillator in the representation
(2.4) reads

he=wa*a =wb™:exp (-b*h): b, (2.6)

while this for the Bose oscillator would have the form:

hn=wb*b, L=Lg b*[ig—w]b. 2.7)

dr

Let furthermore |3) be a coherent (Bose oscillator) state for the Fock representation
of the CCR algebra

8) = exp (Bb* —B*b)|0) . (2.8)

As is well known, any bounded operator

B=Y K..b*b" (2.9)

nm

has its normal symbol, [19] given by

B=Y K..z*"8™ =(B|BIB). (2.10)

Then its functional representative (kernel) reads
B[B*,B]=B expB*B. (2.11)

The kernel of the infinitesimal operator U (4t) is of main importance in the
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derivation, [18], of the path integral formula for Tr exp (—iHT). We have
UnlB*, B1(A1) =exp (B*B —ih§ A1),  hi =(BlhslB)=wB*8, (2.12)

so that the (formal continuum limit) path integral representation of Tr exp (—ii; sl)
reads, [18]:

R T
In=Trexp (~iisT) = | [d81dB* exp j (1B (B ()~ wB (DB ()} dr

T

= J [dB]dB*]exp ij Lg(t)dt, (2.13)

4]

with the accuracy up to the normalization factor which reflects the choice of the
boundary conditions.

Knowing that the Fermi propagator Ur(At) can be represented in the Hilbert
space of the Bose oscillator, we can follow step by step the just described route.
Let us notice that:

Ue(At) = exp (—ihpAt) = 1g— ifigAt
=exp (—b*b): +bh*.exp (—b*b): b —iwAtb*:exp (—b*b):b,  (2.14)
so that the normal symbol for UF(At) reads

BIUR(AD|B) =exp (—B*B) +B*B exp (—B*B) —iwAtB*B exp (-B*B),

(2.15)
and consequently the infinitesimal kernel is
UrlB*, BI(Ar) =1+B*B —iwAtB*B
: B*B

— *® —
~(1+p*p)(1 twAt1+B*B)

. B*B
== * -

1+8 B)exp( ta)At1+B*B)
%

= exp ln(1+B*B)exp(—iwAtlfB[iB> , (2.16)

where 1n (1 +B8*B) replaces the 8*8 term of (2.13) while w3*B/(1+B*B) appears
instead of wh*b.

The formal expression for Tr exp ( —iheT) evaluated according to the Bose
oscillator recipe of [18] reads:

Tiaxpg _ *
Ir=Trexp (—iheT) = J [dB[dB*]expi J'O %@ det
T
L
= [ 1dp a8 exp f dri:ﬁ—f((t—%—(fj [dB1dB*] exp iS=(B*, B) .

(2.17)
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It is a c-number alternative for the usual Grassmann algebra path integral formula,
. [17], which though not of a comparable calculational simplicity, does involve
integrations with respect to the conventional c-number paths only.

Let us stress that the crucial difference between the Bose oscillator formula (2.13)
and the Fermi one (2.17) lies in the appearance of the “‘damping” factor 1/(1+8*B).
However it implies that the only set of paths which give comparable contributions
to both Ik and Iy consists of::

(a) solutions of the equation (i(d/dt) —w)B =0;

(b) all paths constrained to obey the restriction: |3¥8|« 1.

This is the sense in which we find it reasonable to discuss the relevance of the
classical c-number problem for the construction of its quantized Fermi partner.
The oscillator c-number problem does indeed manifestly contribute to the Fermi
oscillator amplitudes.

We may note that the condition for I to be stationary is

o _

58 0, (2.18)

resulting in
1+8%8)(i-w)8 =865 —w)8 2.19)
—w = A 4
de de /7
which in turn implies the conventional oscillator equations of motion.

Suppose now that we consider a countable sequence of non-interacting, ultra-
locality, Fermi oscillators

H? :Ek;HF(k) ,  He(k)=wb¥ exp (=bEby):bi,

bk:%lexk(x)b(xmx, [6(x), B*()]. =8(x —3) ,
), b()] =0,  b()0)=0, Vs, (2.20)

xx(x)=1, x € 4, 0 otherwise, § being the lattice spacing. If to take a coherent state
expectation value of H v

(BIHE|B) =Y wB¥Bw exp (—B¥Bx)

k

lB)=exp§kj(Bkbf —B¥b:.)|0), (2.21)

we find that upon letting § go to 0, the following relation appears:

(BIH?|B) =§ w8|B (x1)|* exp (=818 (x )i - (2.22)



326 P. Garbaczewski /| Quantum meaning of classical {field) theory

We can safely achieve the continuum limit § - 0 thus arriving at

(BIHHS) = w j dx|B(x)F = wliBI = (8IHalB) = Hu, (2.23)

where

HB=wJ.dxb*(x)b(x),

8)=exp [ dxlB()b %) ~B*IbIT0), (2.24)

which proves quite an interesting phenomenon in that while approaching the
continuum we can make disappear the difference between Bose and Fermi cases:
they correspond to the same classical model.

3. Chiral invariant Gross-Neveu model

Let us consider the classical c-number spinor model, which is described by the
lagrangian

L=yliy*s, —glo +imys)l, (3.1)
provided the auxiliary fields o, 7 satisfy the equations of motion
=gl  m=—ighysh, (3.2)
which can be summarized by considering the modified lagrangian
L'=L-3o’+n%), 3.3)

with the set o, 7, ¢, ¢ of independent classical{ fields. The corresponding equations
of motion describe the number N of massless Dirac fields in the external potential

iy“8. —glo+imys)li =0, i=1,2,...,N, (3.4)

to which the constraints (3.2) do apply.

A thorough study of the system (3.1), (3.2) is given in [15] by using the inverse
scattering techniques, for the case N =1 which is a free field, and the non-trivial
N =2 case. The soliton solutions were found.

If to admit that our spinor fields are not c-numbers but the Fermi operators

¥ =daalx), a==1, a=1,2,...,N,
[’,baa(X), d’;b (Y)]+ =8aB aab 8(x - Y) ] [waa (x)s ll’Bb()’)]+ =0 ) (35)

we arrive at the quantized chiral invariant Gross~-Neveu model, whose conventional
path integral representation [17, 20] would make use of the pseudoaction following
from the lagrangian (3.3) but under an assumption that all spinor fields 4, ¢ take
their values in the Grassmann algebra, instead of taking them in the commuting
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spinor function ring:

T+

Isz[da][dw]exp{—%i ” (c*+ 72 dr dx}IF(o-,vr),

0—a0

T+o00
Ie(o, m) = J [d¢]ldd]expi ” dt dxp[i3—g(o +imys)lp
0—oo
det[y°(id —glo + ims))]}N
det (% 4)

e(loc+ i7r'y5)}N
e(0) ’

= {I(O)

= {I(O)H (3.6)

where N is the number of color degrees and the e’s follow from the eigenvalue
problem

v[id —glo +imys))E =€, 3.7)

under an assumption that

f(xs t+T): _é(x, t)9 g(x +La t) =§(x’ t) ’

L being finite.
Let us now notice that the lagrangian of our model can be rewritten as follows:

L =ig* —[i*y 5o + gb*yolo +imys)p]=mj —H, (3.8)
with
m = iw* > H = lr//*[l‘YSax + gYO(U + 17775)](# ] (3'9)

where ¢, ¢* can be read out either as c-number spinors or Grassmann algebra
valued spinors, if H is to be viewed (more or less) classically, and as Fermi operators
in the quantum case. Then the ¢ *, ¢ are supposed to generate a Fock representation
of the CAR algebra, and this is the case when by using the “bosonization” recipe
of [13] we are able to translate the model to the purely Bose (CCR algebra)
language. The formulae arising are complicated, but they simplify if we exploit the
quadratic form of the hamiltonian, noticing that when it acts on the state vectors
what we must account for is not the anticommutativity property of fields at distinct
space points, but the Pauli principle. This follows from the projection theorems
(see especially theorem 4) of [10], where we have established the relation

1p F*, ¢): lp=F(*, 0): (3.10)

connecting the normal ordered operator members of the Fermi field algebra F (¢, Y)
and of the Bose field algebra, upon *‘bosonization” [13] of canonical fermions ¥,
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s, in terms of canonical bosons ¢ *, ¢. In our case the underlying projection formula
reads

He=1pgHplg = 1 *1giyso, + gyolo +imys)]1ed 1k, (3.11)

where the commuting operators 1x¢ * 1 appear instead of the originally used Fermi
ones. Because 1 is a projection in the Hilbert space of the Bose system, we have:

Hg=Hpg+1gHg(1-1p)+(1 —1g)Hglg+(1 —1p)Hg(1 —1§), (3.12)
which if applied to the Fermi vectors 1g|yr) = |¢) € ¥p gives
Haly) = Hely)+ (1 - 19)Hsly) . (3.13)

Assume that Hgl|i/) belongs to the range of the operator 1y as also |¢); this is the
case for our example, then

Hgly)=Hgly),  [Hp, 1gl-=0=> (3.14)
Trexp (—iHgut) = Trexp (—iHgt) + Trexp [—i(1 —1g)Hg(1 - 15)],

so that the Bose trace includes the Fermi trace as a well defined, but to be extracted,
contribution.

For Trexp (—iHgt) = Ig(o, 7) one has a conventional path integration formula
in terms of c-number spinor paths

Ig(o, m)=Trexp (—iHgt) = I[d(b*][dqﬁ] expiS(d*, ¢, 0, m),
L=¢[id—g(o+imys)lp ~3(c*+7?%). (3.15)

To compute the Fermi trace one can obviously use the Grassmann algebra methods,
and the result is well known, but it is quite instructive to investigate the relationship
between Iy and Ir on the c-number spinor level, like in the previous oscillator
example.

Let us recall that the ‘“‘stationary phase approximation’ concept amounts to
approximating the path integral {[d¢]expiS(¢) by the special value of the
integrand, namely by exp i§ with S=S(¢, 6S/8¢ =0). For the Bose integral we
would have

88 58S
56 0 pg > LA—glatimy)l=0. (3.16)

On the other hand Ig(o, ) itself should be viewed as an integrand in

I= J' [do [[drr] exp iSealo, ) = j [doJidr Us(o, ), (3.17)

which by the stationary phase argument can be approximated by exp iS.s with
8S.q/80 =0=2588.4/87. Since

0=—0

exp [iSen(o, w)]=exp [iS(¢*, ¢, gz 315* - 6%%)]
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we arrive at

88 8§ &85 &S
I =exp iS.q=exp [tS(qS* ¢,a,m;—=0= )]

(3.18)
56 5¢* .60 bm

but this implies that the underlying ¢*, ¢ do satisfy the original classical (c-number)
field equations of the chiral invariant Gross-Neveu model, i.e. as expected the
approximation is realized by the classical fields, as it should be in the Bose theory.

Let us fix a specific solution x*, x, ¢ = —gix, 7 = —igxysx, then by computing

I(o, m)[x* x]= J [do [dé *]exp (iS[cS*, ¢, o(x*, x), m(x¥, x)]) , (3.19)

one gives account of quantum fluctuations about the stationary phase solution, with
potentials being kept in their zero-loop order.

For the Fermi contribution I to I the stationary phase argument is not applicable
immediately. Let us however make use of (3.11). First let us notice that the

continuum theory level can be replaced by the appropriate (usual discretization
schemes do not seem to apply) lattice one

=g O) 1 (O i) 5 (0 —i)
_ _ = , 3.20
¥ (o -1 Y7\ o YT\ oo (3-20)

Hy(x) = 1p¢*[ivso, — gyolo +imys)ld 1e
=15[i (~¢T 32+ 3 dp1)
—go(@id1—d3b2) —gm(dTd2—d3b1)]lF,
He(x) > 15[i (¢ T (k)oada(k, a)a=o+ @ (k)dutp1(k, @)ao)
~ga (@1 (k)p1(k)~ @3 (k)ba(k)) —gm (BT (k)pa(k) — 5 (k)b (k)=
He(x)— Hr(k) = 1£Ha(k)1F,

where
810 =7 [ dews? ()= V5 87 (), e,
6% (k, a) \/ajdxxk(x)aﬁ (x +a),
2
= I1 {rexp (=47 (k)i (k)): + & (k) exp (=T (k). (k)): 1K)},

le=[T 1§, (3.21)

14
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with
1pg i (k)1p=1rgf (k)1 =0¥ (k)= (k) :exp (¢ F (k)pi(k)):,
1rghi (k)1e = 15 (k) 1§ =0 (k) = :exp (—¢ ¥ (k)i (k)): b:(k)
1p0aBi(k Vo -0lr = 8a 1idi(k, @)15,_0: =d.0u(k, @)ja 0, (3.22)

ok, ) = exp (—¢ T (k, a)gi(k, @)): ¢i(k, a) .
The above definitions allow for the following computation:
.07 (K)oik, a)ja=0:
=] (k) :exp (—¢7 (k)¢i(k)):
X dof:exp (¢ (k, a)pi(k, @)): ik, o )ha=0
= ¢ (k) :exp (—¢ 7 (k)pi(k)): dadi(k; @)ja~o
— ¥ (k) :exp (~¢ ] (k)i (k)): {[dap ¥ (k, @)o=0]: exp (¥ (k )ik ): &7 (k)
+¢ 7 (k) :exp (—¢F (k)i (k)): (Butpi(k, @))je 0} * i (k)
=& (k) :exp (&7 (k)pi(k)): doi(k, @)ja—0 , (3.23)

and for this it was necessary to have defined the kinetic term of the hamiltonian.
Consequently:

Hi= [ dxHi(x)> HE =3 Hiylk),
k
Hilk) = =i (k) rexp  ~ L 87 ()6, 060 ): upolk, @)oot i (k)

exp ( —L 67 ()6, (0) ): 2k, @)eco

—galo1 (k): exp (¢ T (k)p1(k)):p1(k)
— 3 (k): exp (—¢3 (k)da(k)): ¢2(k)]

—gr] 61 ®): exp (=S 67 ()1 ): dall)
~ 4% kyexp (~Z 67 (08, (0)): 6106 | (3.24)
The infinitesimal propagator for the discretized hamiltonian reads
Us (Ar) = exp (—iHE At) =[] (1E—iHE At)
k

=M1 Uk, 4r), (3.25)
k



P. Garbaczewski / Quantum meaning of classical (field) theory 331

so that its infinitesimal kernel is

U@ =[exy T k)60 (8]l 0%- itk an|s)

2
=I1{ I1 (1+BF (k)gutk)] - iaer )
k Li=1

Hcl:cl = -IBT (k)aaﬂZ(k7 a)|o(=0-"i3§c (k)aaﬂl(k, a)|a=0
—ga{B1 (k)B1(k) exp [B3 (k)B2(k)] B3 (k)B2(k) exp [BF (k)B:1(k)T}
—gm[BT (k)B2(k) - B3 (k)B:1(k)] . (3.26)

If now we exploit our assumption 6 « 1 (which anticipates letting § go to 0) we
arrive at

1+8F(k)B:i(k) > 1+8BF (x)Bi(x),  xedy,
exp (B7 (k)Bi(k)) > exp 8B (x)Bi(x) .

Then we have

2
Uz (A1) =] H [14+8B8F (xi)Bi(xi)]

k i=1

f1- iA16H i(x) }
[T [1+ 687 (xi)Bi(xx)]

== 1;[ [101+8B7 (xi)Bi(xic))[1 — iAtSH o (xi )]
~exp {5 £ 67 (x0)8(x0) ~ idi6H(xe) |

> exp [ def T 6% ()80 - iatH ()] (3.27)

provided we consider these 87, 8;’s only, which are discretizations of sufficiently
regular spinor trajectories

Bf(x)Bi(x)sA<o, AeR*  Vi=1,2, «xeR!, (3.28)

since then only can we safely neglect contributions from 887 (x)B;(x) as we made
in the above derivation.

Consequently as far as path integrations necessary to compute Tr exp (—iHEt)
are performed with respect to a subset of trajectories 87 (x)Bi(x) <A <00, the
corresponding contribution to Ir coincides with this to Is. The stationary phase
approximation then reveals the same classical spinor solutions of the chiral invariant
Gross-Neveu model field equations, irrespective of whether we consider I or If.

Let us emphasize that such a restricted continual integral cannot recover the
whole of I, since just the irregular trajectories forbidding the neglect of contribu-
tions from 887 (x)B;(x) quantally make a difference between the Bose and Fermi
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cases. But then we do not have a reasonable continuum limit and the only correct
path integral representation for Ir in terms of c-number paths is the lattice one.
One should realize that in any rigorous path integral computation the discretization
is in fact unavoidable.

The above observations have no relevance as far as the explicit standard computa-
tions are concerned on the Fermi field level, but seem to be of the foundational
nature, see e.g. [14, 21].

Our conclusion is that the classical c-number chiral invariant Gross-Neveu model
is quite a reasonable classical partner for the Fermi quantized chiral invariant
Gross—Neveu model, and there is a non-trivial relationship between both, contrary
to the belief that no deeper relationship exists.

I would like to express my warm thanks to Professors L. O'Raifeartaigh and J.T.
Lewis for their hospitality in Dublin. Discussions with Prof. L. O’Raifeartaigh and
Dr. T. Murphy were much appreciated.
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