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Summary:

We explore the probabilistic aspects of the quan-
tized Coulomb-Kepler problem in the (extremally) semi-

classical regime.
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1.Statement of purpose:Departing from the stochastie mechani-
cs model for the condensation of planets out of a protosolar
nebula one arrives at the Schr¥dinger equation for the central
problem.To explain how elliptic Kepler trajectories arise in
this setting,we investigate the semiclassical regime of appro-

priate wave packets.The stochastic mechanics motivations fol~-

low from (1'3’34'36'28'29),while the relevant semiclassical

analysis is related to (4-33),

2 ,Paradigm case, the Coulomb-Kepler problem and Gaussians.
The Coulomb-Kepler problem both in its classical and

quantum versions is a standard text-book companion of the har-
monic oscillator in any descriptiom of basic physical concepts.
It is a part of folk-lore that everything relevant has been
said and nothing relevant can be added to the issue. The situ-
ation is however not that obvious.

As is well known(zo)

the Wilson-Sommerfeld quantization
rule, in case of the Coulomb-Kepler problem incorporates contri-
butions from both circular and elliptic orbits (although the
circular orbits suffice for the understanding of the spectrum).
It is however somehow overlooked that Schrddinger’s claim "wave
groups can be constructed which move around highly quantized
Kepler ellipses and are the representation by wave mechanics of
the hydrogen electron", until recently has not received an adequa_
te attention. This gap in the understanding of the fundamental
model was the reason of a renaissance in the study of semiclas-
sical features of the quantum Coulomb-Kepler problem(21_34).

Our own interest in the subject can be motivated as fol-
lows:

(i) Nelson's stochastic mechanics links the time develop-
ment of quantum states with this for the appropriate stochastic

(3diffusion) processes. A better understanding of the physical

meaning of this stochasticity should be arrived at while passing



to the semiclassical regime., The analysis of the issue is far
from being complete, apart from the numerical study of(2’3).
Recently the correspondence limit of the sample path of Nelson’s
mechanics for the wn,n—1,n—1 orbital was shown(34) to converge
in the L2 sense to a classical trajectory (circular Kepler orbit).
There is a close relationship of this investigation with our
own(28_30) search for elliptic Kepler orbits in the framework
of stochastic mechanics.
From another standpoint‘32’33) the classical limits of quantal
probability distributions (W - 0 at constant energy) were stu-
died and the corresponding classical ensembles introduced. In
particular classical orbits for a statistical beam undergoing
classical Coulomb scattering were derived in this way, see
also(31).

(i1) The stochastic model for the orbits of planets and

(35,36,34) is based on the Schrddinger type equation

satellites
for the central problem. Being in principle capable of providing
the segregation of matter mechanisms, with respect to the imple-
mentation of realistic classical motions, it could be linked

with the circular orbit prediction of(zz) only.

However, one must be able to explain how stochastic mechanics

leads to the coplanar elliptic orbits, consistent with Kepler’s

third law of planetary motion.

The discussion of the circular case can be found in(34) with the
qualitative argument that the accretion of matter by the diffu-
sing planetesimal makes the diffusion coefficient 52=M/m(t) to
diminish with the growth of time. As a consequence the Nelson

diffusion should converge to a Keplerian orbit.



(iii) Since Gaussian wave packets are particularly useful
for the study of semiclassical features of the quantum motion

(6-11,22,26-30) (37:38) e get confronted with the

,see also
problem of how to reconcile the classical time development of
coherent state labels

a = {a,H_} = {&,HC}, (2.1)

with the time dependence of coherent states. In general(6)

|ast) = exp( - % Ht) |a) # |a(t))

(2.2)

H,y = (af:H:|a)

(o]

where a(t) is determined by (2.1).

This problem we encountered before(28-30) but it is implicit

as well in(27)

The comparison of the time evolution of coherent states to this

a classical particle would have in the same potential, has been

(7,10)

the subject of analytic estimates (# » 0 regime) in while

(38)

a numerical analysis of the issue was attempted in in slight-

ly different context. Since generally the coherent states of in-
terest fail to obey the exact Schrddinger equation, the main

(30)

goal of the recent paper was to investigate the accuracy with
which they can be viewed to approximate true solutions. Since

we refer to the central problem, let us mention that we use the
Gaussian states, although the |x| -» 0 singularity would apparent-
ly lead to difficulties. We are motivated by the semiclassical

21,22
£(21,22)

analysis o and we account for the fact that the semi-
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classical wave must be concentrated around a classi-
cal trajectory, which never crosses the origin. It is a reaso-
nable working assumption to exclude the ball of the size of
the nucleus surrounding the singularity of the potential from
considerations.
In the next section,motivated by(5QQe shall discuss this appro-

ximation in more detail., Albeit disregarding the spreading ef-

fects (which may be significant in the narrow tube along the
VKepler orbit(zzn we find the approximation satisfactory in the
proper parameter regime (mass and minimal distance from the cent-
ral body, while on the orbit).We emphasize at this point that

a mathematical correctness of the standard § + 0 prescription

not always is physically clear : it is inevitable to identify
proper physical quantities, with numerical values sufficiently
large compared to }H (which is kept fixed as a universal constant)

to arrive at a physically sound picture.

The parameter implementing the semiclassical regime in below
will not be ¥ but the (large) mass parameter.In case of reali-
stic masses spreading effects do not matter on time scales
equating the age of the Universe ,

3., Non-spreading ("frozen") coherent states as approximate so-
lutions of the Schr8dinger equation in case of the Coulomb-
Kepler problem

Inserting the wave function
VE D) =¢(x,t) exp i S(X,b) (3.1)

tothe equation

X _ I ->
i 5 = (— Loa+ V(x))w (3.2)
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we arrive at:

{% + H(-g%,xi,t)]¢ £ (-iu)[%% + % VSUp + E%qms} - %M:o
i
(3.3)
Let us investigate what would have happen if we choose:
0%, 8) = (2m0)"3/4 exp{— = & - 6(t))2]
(3.4)
S(x,t) = S_ + B(t)+(X - 8(t) +

(e}

(B(08(r) - HE(#),8(1))dr - 3 Hot

+
ot

where 6(t), ﬁ(t) are classical solutions of Hamilton equations

generated by the Hamiltonian

32

H(Q,B) = + V(Q) (3.5)

A
2m
We denote 5(t=0)=60, ﬁ(t=0)=§o.

(3.4) implies that:

ot 20
99 _ _ 1 -
axi = 3G (xi Qi)¢ (3.6)
2
3 d
Bxs =B g = 0
i 9X’;
i
- _ 9H 1
and because of Q.= =— = — P, there holds:
i P m i

d 1 1 -
fg+ﬁvs Vot o 6AS = O (3.7)
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Therefore the imaginary part of (3.3) disappears.

Taking into account the formula:

B_BE -8 - B0+ B - HELY - Fhe -
= BE -0 - HBSY - 3 ho (3.8)
B (2, x,t) = B(B,0 + (%-0),0) =
(Bx
- H(3,3,t) - B0 + o((%-8)?)
where
> > 2 -> > 3 BV(Q)
0((x-0)%) = V(x) - VIQ) - ] S5 (x3-0,) =
i=1 %1
3 2 ; (3.9)
1 3°VI(Q)
= 7 2R (x.-0.) (x.-0.) +
2 i,3=1 BQian i =i J =3
3 3
1 3~V (Q)
b o —2 Y (x -0 (x,-0.) (x, -0 )+
3t i,3ik=1 agp00400, ¢ b 3 T TRK
N
while
A =5 (= (-2 - 3eE,0) (3.10)

we find that the left-hand-side of (3.3) produces the term

2
L(x,t) = [0((2—6)2) - B x - 6)2]¢(x,t) (3.11)

which is the measure of inaccuracy with which w(§,t) solves the
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Schrédinger equation.

Let us investigate the case of the central potential
Vix) = —l%| where A=Ze2 in case of Coulomb problem, while
A = ymM for the Kepler case.

For all |x| 2 a > 0 , a finite it is easy to verify that:

L [ - 8 - x - 00’ (3.12)

L]

Consequently (3.11) reads:

L = - @ R L LEE - -0 (3.13)
Q
L] 2,5 2.2 [ T % - %2 ]
5 me”~ (X-Q) } eXPL - '4? (x - ) J

Our inaccuracy estimate will pertain to the semiclassical regi-

> >
me. For say |x-Q[<0,1 Q we have:

(x - 6)2‘= x2 4 Q2 - 20xcos(X,Q) =
(3.14)
= X2 + Q2 - 20x = (x =~ Q)2
so that:
L(X,t) = - (2mg) 374 [5 Lix-0?+ In?ix-0? ]
x Q2 2
(3.15)

exp [- j% (x - Q)2 ]
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Because the maximum of the function (x—Q)zexp[— j% (x—Q)z] at
its points X, 2=Qi2/3 equals 4oe_1, upon Yo<<Q we can write
r

x Q. Furthermore if |x-Q| = 0,1 Q then there holds

1,2
- LG s 2ra) A ( 2107 %mw20210_2) exp(— %0210‘2\

(3.16)

We are interested in the semiclassical features of the system,

hence admitting Q to be of the macroscopic size we realize that

(3.16) is very small (the exponential damping}. Denoting X=X; 5
14

we arrive at:

- L%, Z,t)E(ZﬂG)_3/4 (% . %mu)z age™! -
' 0

= aq2m "3/4 1G04 (-‘% + 3 mm2> (3.17)
Q

The frequency w is a free parameter, which can be appropriately
adjusted. Minimizing (3.17) with respect to w and accounting

for o=}f /2mw we find:

A C1/4 ]

u(w) = + = Mw
Q3 2
ww =gt (- &0 dn) -0 (3.18)
0
u (w) = %% w20 J% + %%Inw_1/4 2 0

©

the minimum being reached at w-= (%)1/2Q-3/2 when



- LGy pet) - (g )1/4[1% (%)'1/2 VI

0
(3.19)
+ In (% )7/8 Q—21/8] o /4y 1/8,7/8,-21/8
Hence
|L(x,t) | < n'/4 n71/8 p7/8 4-21/8 (3.20)

If we consider |x—Q|>>40 , then L(;,t) is negligibly small in
virtue of the damping factor exp{— ?%(x—Q)Z} n the above esti-
mate W depends on time through the classical trajectory Q(t).
To be a proper (time independent) frequency parameter it needs

a proper fit of Q min (we equate it to the major semi~axis of

the ellipselinstead of Q(t). Then w =<%)1/2 Q;iéz,and the Kep-

ler period for motions on elliptic orbits does arise, Now:

2 1/4 -1/8  7/8 _-21/8
[L(x,t) | s K m A Qnin (3.21)
A = ze? A YmM
Coul Kepl

After accounting for the exponential term, we realize that our

inaccuracy measure makes essential contributions in a close sur-

rounding of the classical trajectory. It is amusing to observe

that the estimate (3.21) gives account of the three regimes exp-

loited in the study of the semiclassical features of the hydro-

1/4

gen problem. Namely the # factor refers to the W -+ 0 regime,

-1/8 -21/8
n

the m factor refers to the m >« case, while Qmi factor

is related to the 1l,n+« regime studied in(21’22).

Both in the Coulomb and Kepler case the combined effect of m
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large, Qmin large (while keeping the very small K fixed), is

capable of giving rise to essentially classical features of the

guantum motion.

Let us emphasize that apart from the discussed inaccuracy measu-
re, it is the width of the wave packet 2v2¢ which is a proper

measure of how classical the guantum motion is.

Let us examine the meaning of our estimates for the realis-
tic examples of the electrostatic and gravitational potentials.
In case of the hydrogen atom, for the choice of the classical

orbit (Rydberg atoms) Q(t) 2 10"%m there holds

L&, | s 10 24 am3 %, w = 1040717 (3.22)

while the wave packet width in each of the coordinates

Mx = 2/75 = 2.10"4[m] (3.23)

(22) for the

proves that on a short time scale only (see e.g. at
analysis of spreading times, while at(24) for the description

of Rydberg atoms and their life-times) the semiclassical éicture
is reliable.

Notice that the gravitational motion of the Earth around the Sun

corresponds to the Gaussian with

L, | s 2-1072[am?y 0 w= 107°%s™ "] (3.24)
where however:
_ =26
Ax. = 2/75 = 107%%[m] (3.25)
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to be compared with (3.23).

Consequently we are capable of constructing approximate solu-
tions of the Schrédinger equation, which display basic features
of the classical motion of the mass point representing the Earth
around the point-like Sun.

The corresponding coherent state certainly does not reflect any

realistic triggering (fluctuations) of the Earth trajectory, but

rather an extremely narrow tube of nearby classical orbits.

Notice that the characterization of the pure Coulomb case

> 1/4 _-1/2 _7/8 . -21/8
LEe ]| su'/4n a”/ Qmin/
(3.26)
= _ (W \1/2 _ 1/2 _-1/4 -1/4 _3/4 2
20 -= \mw = h m A Qmin s A = Ze
is different from this of the pure Kepler problem:
> 1/2 _3/4 7/8 .-21/8
[L(x,t)| s H /2 o3/ (v 7/ Qmin/
(3.27)

- yl/2 -1/2 -1/4 _3/4
vZo =} m (yM) Qnin
It is amusing to observe a striking correlation between m and
Qmin for planets of the solar system which is reflected by the
numerical values of the upper bound for |L(§,t)] and the

width 2v2¢ .

These values read respectively:

Mercury |L(X,t)|s2 1072 V25 = 2,2 10728
Venus 4,5 10°% 10726
Earth 1,7 1072 16720

-3 26

Mars 10 4.3 10



Jupiter 1L(x,t)lg1,7 1072 1,9 10727
Saturn 1,44 1072 0,56 1026
Uranus 5,7 107 2,4 10726
Neptune 2 107° 3 10728
Pluto 4,8 1077 4,7 10727

Even in this extremal regime we still deal with Gaus-~
sians, and Nelson’s approach induces sample paths of the
(classically controlled }JWiener noise,Albeit mathematically
acceptable , this picture does not seem to be physically
correct:it was the planetary dust which was the reason
of randommess in the time evolution of the planetesimal,
The accretion of matter cannot last indefinitely, since
there is a finite amount of dust accessible, Moreover,
with +the time passing,the no-where differentiable sam-

ple trajectories should be in principle replaced by pie-
cewise differentiable with a finite number of random dist-
urbances in a finite time interval , which get eventually
transformed into everywhere differentiable ones,when the-
re is practically no dust around the planet.
(41)
Would it amount to the jump process approximation of the
diffusion process ?
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