
INFORMATION - Is There Anything Where Nobody Looks ?

Piotr Garbaczewski, University of Zielona Góra

Random data collection on the quantum abuse (often heavy) of the clas-
sical terminology:

QUANTUM −→ mechanics ←− CLASSICAL

state of the system

measurement

groups

chaos

dissipation

Brownian motion

(non-commutative) geometry (commutative)

probability

communication

computing/computer

cryptography/algorithms

information theory

data processing

statistics

Cramér-Rao inequalities

Fisher information/state estimation

information and entropy

QUANTUM −→ entropy and uncertainty ←− CLASSICAL
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An incomplete list of quantum political/quasi-religious parties, some
in statu nascendi:

- Bohmians
- Everettians
- Consistent Historians
- Quantum Probabilists
- Spontaneous Collapseans
- Transactionalists
- Contextual Objectivists
- Einselectionists
- Entanglers/Teleporters ?
- Information Science Theoreticians ?
- Algorithmic/Cryptography Magicians?

Some ”APPETIZERS”: (feel provoked, that is right !)

(*) quant-ph/0205039; ”Quantum Mechanics as Quantum Information”
(C. A. Fuchs),
(**) ”Quantum States: What the Hell are They ?” (Fuchs’ home page),
(***) ”How much Information in a State Vector ?” (Caves/Fuchs).

- Why information ? - ”quantum states are states of knowledge, not
states of nature” ≡ ”the quantum state is solely an expression of informa-
tion”; → going sectarian, see above ?

- ”Information about what ? - nothing more than the potential
consequences of our experimental interventions into the nature” (e.g. the
measurement); ;→ then what about Hawking’s ”Wave Function of the Uni-
verse” ?

- ”The whole structure of quantum mechanics may be nothing more
than the optimal method of reasoning and processing information”; →
then we must answer J. A. Smolin’s question ”Does Quantum Cryptogra-
phy Imply Quantum Mechanics ?”

⇓
- Plea: ”give an information theoretic reason !” to everything.
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DISREPUTABLE (?) AND POSSIBLY OUT-DATED VIEW:

back to state vectors

(*) (Penrose - ”The Emperor’s New mind”)

- ”When a system ”has” (is in) a state |ψ > there ought to be some
property in (of) the system that corresponds to its ”|ψ >”-ness”

(**) quant-ph/0312149; ”A probabilistic and information theoretic in-
terpretation of quantum evolutions” (Oppenheim/Reznik)

- ”An isolated system is represented in QM by a state vector that
conveys statistic predictions for measurement outcomes”

(***) ”How much Information in a State Vector ?” (Caves/Fuchs) -
again

INFORMATION THEORY START-UP

finite dimensional Hilbert space

quantum states ≡ density operators

classical (Shannon) entropy −→ quantum (von Neumann) entropy

- ”entropy measures how much uncertainty there is in the state of a
physical system”

⇓

- entropic (also called information-theoretic) uncertainty relations
for finite quantum systems (Deutsch, Maasen/Uffink)
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(*) ”Normal” way:

µ = (µ1, µ2, ..., µN) probability measure on a system of N points,

e. g.
∑N

j=1 µj = 1

Set: S(µ) = −
∑N

j=1 µj log µj

(base of the logarithm equals 2, but we recall that log b · ln 2 = ln b)

0 ≤ S(µ) ≤ logN

Shannon

↓

von Neumann

Take a finite quantum system (with a finite dimensional Hilbert space,
dimH = N).

Take ρ as the density operator with eigenvalues {p1, p2, ..., pN}

Set S(ρ) = −Tr(ρ log ρ) = −
∑N

j=1 pj log pj

(Have a nice day, you may begin your ”quantum information research”.)

(**) ”Abnormal” way: (no nice day any longer !)

1. Hilbert space dimension infinite, from the outset.

2. We insist on using the Shannon-type ”classical entropy” in the
manifestly quantum context, no mention (we are really sorry for that)
of von Neumann and his quantum entropy.

3. The principal notion is the information entropy for (absolutely)
continuous probability distributions and the entropic uncertainty
relations for observables with continuous spectra (originally named
”information-theoretic measures of uncertainty”).
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SHANNON ENTROPY −→ INFORMATION ENTROPY

Long message (n ”entries”); an ”alphabet” (N << n ”letters”);

µj, 1 ≤ j ≤ N - probability of the j − th ”letter” , µ = (µ1, ..., µN)∑N
1 µj = 1→

∫
ρdx = 1

⇓
S(µ) = −

∑N
1 µj lnµj −→ S(ρ) = −

∫
ρ(s) ln ρ(s)ds

Pedestrian argument (no trace of rigor, basically somewhat con-
trolled ”wishful thinking”):

0 ≤ −
∑N

1 µj lnµj ≤ lnN

Take an interval of length L on a line and the partition/grating unit

∆s = L/N

Define: µj
.
= pj∆s and notice that:

S(µ) = −
∑

j(∆s)pj ln pj − ln(∆s)

Try either to keep L constant or make L large, however in both cases im-
prove the coarse-graining precision ⇒ the ”alphabet” should be extended
by new entries, since N needs to grow.

Well, let us fix L and allow N to grow, so that ∆s decreases. Then:

0 ≤ S(µ) = −
∑

j(∆s)pj ln pj − lnL+ lnN ≤ lnN

⇓
ln(∆s) ≤ −

∑
j(∆s)pj ln pj ≤ lnL
⇓

S(ρ) = −
∫
ρ(s) ln ρ(s)ds

S(ρ) is our information entropy for the probability measure on the
interval L. Ultimately, in the infinite volume L → ∞ and infinitesimal
grating ∆s → 0 limits, the information entropy may be unbounded both
from below and above. Bad news ? Perhaps...
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INFORMATION ENTROPY (for pedestrians plus comments).

- Coherent state

ρ(x) = 1
[2πσ2]1/2 exp

[
− (x−x0)2

2σ2

]
⇓

S(ρ) = 1
2 ln(2πeσ2)

- Coherent state for the harmonic oscillator

We choose the probability density in the form:

ρ(x, t) =

(
2πD

ω

)−1/2

exp
[
− ω

2D
(x− q(t))2

]
where the classical harmonic dynamics with particle mass m and frequency
ω is involved:

q(t) = q0 cos(ωt) + (p0/mω) sin(ωt)
p(t) = p0 cos(ωt)−mωq0 sin(ωt).

We readily get dS/dt = 0, although ρ = ρ(x, t) and the information
entropy density −(ρ ln ρ)(x, t) show up a non-trivial time dependence.

- Free quantum dynamics for a Gaussian wave-packet

Take

ρ(x, t) =
α

[π(α4 + 4D2t2)]1/2 exp

(
− x2α2

α4 + 4D2t2

)
. (1)

In this case, the information entropy reads:

S(t) =
1

2
ln

[
eπ

〈
X2〉 (t)

]
〈
X2〉 .

=

∫
x2ρdx = (α4 + 4D2t2)/2α2

The information entropy (≡ the localization uncertainty) grows loga-
rithmically with time.
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Side comment (i):
For more general probability distributions p(x) with a fixed variance σ we
would have S(p) ≤ 1

2 ln(2πeσ2). S(p) would become maximized if and only
if p is a Gaussian: p→ ρ.

Side comment (ii):
We shall address a general time-dependent setting. Before, by admit-
ting σ = σ(t), we gave a number of examples for time-dependent infor-
mation entropy S(ρt) (c.f. free quantum evolution, in the non-quantum
context a good example is the free Brownian motion).

Side comment (iii):
Recall the Fourier transform for normalized Schrödinger wave functions,
together with the notions of position and momentum representation
wave packets.
Given an eigenfunction ψ(x) of the energy operator, we denote (Fψ)(p) its
Fourier transform. The corresponding probability densities follow:

ρ(x) = |ψ(x)|2 and ρ̃(p) = |(Fψ)(p)|2.

Denote:

Sq = −
∫
ρ(x) ln ρ(x)dx and Sp = −

∫
ρ̃(p) ln ρ̃(p)dp

There holds the entropic uncertainty relation (Bia lynicki-Birula/Mycielski)
between two forms (position and momentum respectively) of the informa-
tion entropy:

Sq + Sp ≥ (1 + ln π)

Note:
(i) How to handle momentum entropies for systems confined to the interval
or the half-line, c.f. ”Canonical Quantization and Impenetrable Barriers”
(P. G. + K. W., 2003), and Majernik/Richterek (1997; infinite well infor-
mation entropies).
(ii) In case of more than one space dimension, an extra factor d (dimen-
sionality) should precede (1 + ln π).
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RANDOMNESS, ENTROPY AND INFORMATION - extras

An inherent feature of any random phenomenon is that a result of its
observation cannot be predicted a priori (i.e. before observation)”

(*) IfX is a discrete random variable taking values xi with probabilities
pi, i = 1, 2, ..., N , the quantity

S(X) = −
∑

pi log pi

is called the Shannon entropy of a discrete random variable or the en-
tropy of the probability distribution (p1, ..., pN).

- The logarithm log has base 2 → the unit of entropy is called a bit
(binary digit)

- The natural logarithm ln has base e → the unit of entropy is called a
nat (natural)

Note: If X takes infinitely many values x1, x2, ... with probabilities
p1, p2, ..., then the entropy S(X) is not necessarily finite.

(**) For a continuous random variable X with values in x ∈ Rn and
the probability density ρ(x) one usually defines the entropy of a continuous
random variable (called the differential entropy of X) as:

S(X) = −
∫

Γ
ρ(x) log ρ(x)dx

where Γ ∈ Rn is the support set of X. One may also denote S(X)
.
= S(ρ).

Note:
- In the discrete case, the entropy quantifies randomness in an absolute
way.
- In the continuous case (there is no no smooth limiting passage from
the discrete to continuous entropy), the entropy cannot work ”as it is” as
a measure of ”global” randomness.
- However the difference S(ρ)− S(ρ′) of entropies characterizes the differ-
ence in randomness encoded in the functional form of ρ and ρ′.
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INFORMATION ENTROPY DYNAMICS: pedestrian examples recalled

- Coherent state

ρ(x) = 1
[2πσ2]1/2 exp

[
− (x−x0)2

2σ2

]
⇓

S(ρ) = 1
2 ln(2πeσ2)

- Coherent state for the harmonic oscillator; D = ~/2m

ρ(x, t) =

(
2πD

ω

)−1/2

exp
[
− ω

2D
(x− q(t))2

]
⇓

σ2 =
D

ω
→ dS

dt
= 0

- Free quantum dynamics for a Gaussian wave-packet

ρ(x, t) =
α

[π(α4 + 4D2t2)]1/2 exp

(
− x2α2

α4 + 4D2t2

)
.

⇓

σ2 → σ2(t) =
α4 + 4D2t2

2α2 → dS
dt

=
4D2t

α4 + 4D2t2

- Squeezed state of the oscillator (atomic units)

σ2 → σ2(t) =
1

2

(
1

s2 sin2 t+ s2 cos2 t

)
- Non-quantum example: free Brownian motion; D = kBT/mβ

σ2 → σ2(t) = 2Dt

9



DYNAMICS OF INFORMATION: Information entropy production

We consider time-dependent probability densities ρ
.
= ρ(x, t)

Take for granted that there holds (we consider space dimension one) :

(1) the Fokker-Planck equation for the diffusion-type process (best
- Markovian):

∂tρ = D4ρ−∇ · (ρb)

with a suitable (? !) forward drift b = b(x, t) of the gradient form b = ∇Φ.
D is a diffusion constant with dimensions of ~/2m or kBT/mβ.

(2) By introducing:

u(x, t) = D∇ ln ρ(x, t)

we can write
v(x, t) = b(x, t)− u(x, t)

⇓
∂tρ = −∇(vρ)

i.e. the continuity equation.

Now the information entropy, typically is not a conserved quantity.

S(t) = −
∫
ρ(x, t) ln ρ(x, t) dx

⇓
(with boundary restrictions that ρ, vρ, bρ vanish at spatial infinities or fi-
nite interval borders)

dS
dt

=

∫
[ρ (∇ · b) +D · (∇ ρ)2

ρ
] dx
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Remembering that v = b+ u and u = D∇ ln ρ, we have:

dS
dt

=

∫
[ρ (∇ · b) +D · (∇ ρ)2

ρ
] dx

m
DṠ .

= D 〈∇ · b〉+
〈
u2〉 = −〈v · u〉

m
DṠ =

〈
v2〉− 〈b · v〉
⇓

”Thermodynamic” formalism

Set formally (adjusting dimensional constants):

b =
F

mβ

Exploit j
.
= vρ and F = −∇V and set D = kBT/mβ.

Notice that:

dS
dt

=
dSprod

dt
− dQ

dt

where:
dSprod

dt
.
=

1

D

〈
v2〉 ≥ 0

stands for the information entropy production, while:

dQ
dt

.
=

1

D

∫
1

mβ
F · j dx =

1

D
〈b · v〉

may be interpreted as the heat dissipation rate.
Note:

kBT Q̇ =

∫
F · j dx

Furthermore, assume that V = V (x) does not depend on time and define:

j = ρDFth

with:

kBTFth = F − kBT∇ ln ρ
.
= −∇Ψ
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With

kBTFth = F − kBT∇ ln ρ
.
= −∇Ψ

consider:
Ψ = V + kBT ln ρ

⇓
〈Ψ〉 = 〈V 〉 − T S ′

where S ′ .= kBS.

Minor surprise:
(1) < Ψ > stands for theHelmholtz free energy
(2) < V > stands for the (mean) internal energy

⇓
(ρV v needs to vanish at the integration volume boundaries).〈

Ψ̇
〉

= −kBT

∫
Fth · j dx = −(mβ)

〈
v2〉 = −kBT

dSprod

dt
≤ 0

As long as there is an information entropy production, the ”Helmholtz
free energy” decreases as a function of time towards its minimum. If there
is none, the ”Helmholtz free energy” reamins constant.

Note: In the above there was no explicit phase-space input nor reference
to the standard statistical mechanics/thermodynamics. The temperature
T is an artifice as well.

CONCLUSION: Is there anything where nobody looks ?

?

Thank you for attention.
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