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Abstract: The traditional Gaussian framework (Wiener process as the “free
noise”, with the Laplacian as noise generator) is extended to encompass any
infinitely divisible probability law covered by the Lévy—Khintchine formula. It
implies a family of random environment models (of the fluctuating medium)
governed by the generally non-Gaussian “free noises”. Since the so called rel-
ativistic Hamiltonians |V| and /—A 4+ m? — m are known to generate such
laws, we focus on them for the analysis of probabilistic phenomena, which
are shown to be associated with the relativistic quantum propagation once an
analytic continuation in time of the corresponding holomorphic semigroup is
accomplished. The pertinent stochastic processes are identified to be spatial
jump processes.

The Schrodinger equation and the generalized heat equation are connected
by analytic continuation in time, known to take the Feynman-Kac (holomor-
phic semigroup) kernel into the Green function of the corresponding quantum
mechanical problem. For V = V(z),z € R, bounded from below, the genera-
tor H = —2mD?A + V is essentially selfadjoint on a natural dense subset of
L?, and the kernel k(z, s, y,t) = [exp[—(t — s)H]](z,y) of the related dynamical
semigroup is strictly positive. The quantum unitary dynamics exp(—iH¢) is a
final result of the analytic continuation.

As repeatedly emphasized [1, 2, 3, 4, 5], any temporal evolution that is an-
alyzable in terms of a probability measure may be interpreted as a stochastic
process. In view of the Born statistical interpretation postulate for quantum
mechanics, the analytic continuation in time induces a class of probability mea-
sures, namely, consider p(z,t) = |¢(z,t)|? as the density of a probability measure
associated with a given solution ¥(z,t) of the Schrodinger equation. Then, it is
possible to address the problem of that stochastic dynamics which would be
either (i) measure preserving or (ii) induce the time evolution of the measure
proper. Keep in mind that the Schrédinger equation itself is not a genuine partial
differential equation of probability theory; rather it is the Born postulate which
embeds the unitary evolution problem into the probabilistic framework.
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A simple illustration of the analytic continuation in time is provided by
considering the force-free propagation, where the formal recipe gives rise to
the equations of motion (one should be aware that to execute a mapping for
concrete solutions, the proper adjustment of the time interval boundaries is
indispensable):

104 = —=DAY — 8,0, = DAG,

041 = DAY — 0,0 = —DAG | (1)
it —1.

Then
Y(z,t) = [pl/2 exp(iS)] (z,t) = /dz'G(x -z’ (', 0) ,

z — /)2
G(z — &',t) = (4niDt)~Y/? exp [— —(—m)—t—)—] ) (2)

6.(z,t) = / da'k(z — o', £)0. (<", 0) ,

"2
Ble—z' ) = 1/2 (=)’
(. —2',t) = (4xDt)"/* exp [ i ,

The description in terms of the time adjoint pair of equations is not accidental
and reflects the Markov property of probabilistic solutions of the associated
Schrodinger problem: find an interpolation between the given pair of boundary
(for the process on a finite fixed time interval) probability distributions.

Strictly positive semigroup kernels generated by Laplacians plus suitable po-
tentials are very special examples in a surprisingly rich encompassing family.
First of all, the concept of the “free noise”, normally characterized by a Gaus-
sian probability distribution appropriate to a Wiener process, can be extended
to all infinitely divisible probability distributions via the Lévy-Khintchine for-
mula. It expands our framework from continuous diffusion processes to jump or
combined diffusion—jump propagation scenarios. All such (Lévy) processes are
associated with strictly positive dynamical semigroup kernels.

Remark: Apart from the wealth of physical phenomena described in terms of
Gaussian stochastic processes, there is a number of physical problems where the
Gaussian tool-box proves to be insufficient to provide satisfactory probabilis-
tic explanations. Non-Gaussian Lévy processes naturally appear in the study
of transient random walks when long-tailed distributions arise [7, 8, 9]. They
are also found necessary to analyze fractal random walks [10], intermittency
phenomena, anomalous diffusions, and turbulence at high Reynolds numbers
[7, 12, 11].

Let us consider Hamiltonians of the form H = F(§), where p = —i{V stands
for the momentum operator and for —o0 < k < +oo, F = F(k) is a real
valued, bounded from below, locally integrable function. Then, exp(—tH) =
fj:: exp[—tF(k)]dE(k),t > 0, where dE(k) is the spectral measure of p.
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Most of our discussion will pertain to processes in one spatial dimen-
sion, and let us specialize the issue accordingly. Because (E(k)f)(z) =

k
7;—” [ exp(ipz) f (p)dp, where f is the Fourier transform of f, we learn that
+oo .
exp(=t)] £2) = | [ exp(—tF()AERS| (2) =

k
T | [ exetie)fo)ip| dk = 3)

— 00

+o0

# / exp | —tF(k)

+o0
712_; / exp(—tF (k) exp(ikz) f (k)dk = [exp(_tp(p))f(p)] (z)

where the superscript V denotes the inverse Fourier transform.
Let usset k; = 712—1r[exp(—tF (p))], then the action of exp(—tH) can be given

in terms of a convolution: exp(—tH)f = f * ki, where (f * g)(z) := [p9(z —
2)f(z)dz.

We shall restrict consideration only to those F(p) which give rise to positivity
preserving semigroups: if F'(p) satisfies the celebrated Lévy—Khintchine formula,
then k; is a positive measure for all ¢ > 0. The most general case refers to
a contribution from three types of processes: deterministic, Gaussian, and an
exclusively jump process. We shall concentrate on the integral part of the Lévy—
Khintchine formula, which is responsible for arbitrary stochastic jump features:

+o0

F(p) = - / [exp(ipy) -1- %] v(dy) 4

— 00

where v(dy) stands for the so—called Lévy measure.

The disregarded Gaussian contribution would read F(p) = p?/2. In this
case we know in detail how the analytic continuation in time of the Laplacian
generated holomorpic semigroup induces a mapping to a quantum mechanical
(since the Schrodinger equation is involved) diffusion processes [5, 2, 3].

Our further attention will focus on two selected choices for the characteristic
exponent F(p), namely: Fo(p) = |p| and Fiu(p) = /p? + m? — m,m > 0, where
we have chosen suitable units so as to eliminate inessential parameters. (The
relativistic Hamiltonian is better known in the form /m2ct + ¢2p? — mc? where
c is the velocity of light.)

The respective Hamiltonians (semigroup generators) Ho, H,, are pseudod-
ifferential operators. The semigroup kernels kY, k& in view of the “free noise”
restriction (no potentials, will be defined in below) are transition densities of the
jump (Lévy) processes regulated by the corresponding Lévy measures vo(dy),
vm(dy). It is instructive to notice that as in the case of Gaussian derivations
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(1),(2), the pseudodifferential analog of the Fokker-Planck equation can be in-
troduced. Namely, as a consequence of [exp(—tH)p](z) = p(z,t) and in view of
the identification F(p — —iV) := H we arrive at

Fo(p) = 0:p(=,t) = —|V|p(=, ) (5)
Fo(p) = 0:7(0,8) = — [V/=B +m? — m| 7(s, 1) ()
respectively.

Although the pseudodifferential generator of the semigroup implies that the
Fokker-Planck equation is no longer exclusively differential but an integro—
differential equation, each solution p(z,t) in the present case is nevertheless
a solution of a partial differential equation of higher order. Specifically, the re-
spective partial differential equations are of the second order, see[4]. Our two
semigroups are holomorphic, hence we can replace the time parameter ¢t by a
complex one ¢ =t +is, t > 0 so that exp(—oH) = [, exp(—cF(k)) dE(k). Its
action is defined by

lexp(—cH)] f = [(fexp(—a'F)] Y f*ks . ' (7

Here, the kernel reads k, = 712—"[exp(——a'F)]V. Since H is selfadjoint, the limit
t | 0 leaves us with the unitary group exp(—isH), acting in the same way:
lexp(—isH))f = [fexp(—isF)]Y, except that now ki, := 712-;[exp(—isF)]V in
general is not a measure. In view of unitarity, the unit ball in L? is an invariant

of the dynamics. Hence density measures can be associated with solutions of the
Schrodinger pseudodiferential equations:

Fo(p) = i0(z, ) = |V|¢(=,1) (8)

or

Fon(p) = idy(z, 1) = [,/_A ¥ m?— m] ¥(z,1) 9)

provided with the appropriate initial data functions ¥(z, 0).
An obvious consequence is that the corresponding partial differential equation
of the second order takes on a familiar relativistic form

Fo(p) => Oy(z,t) := (—O + LDo)yY(2, 1) =0 (10)

while after setting v(z,t) = J(x,t) exp(imt), we arrive at the Klein—Gordon
equation: :
F(p) = (O 4+ m?)(x,t) =0 (11)

where the D’Alembert operator O = —A+ A, replaces its Euclidean counterpart
—0g.

We have thus reached a point, at which our major question can be precisely
stated:
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What are the stochastic processes consistent with the probability measure
dynamics p(z,t) = |¢(z,t)|?, determined by the pseudodifferential equations (8)
and (9)?

We have chosen two rather special pseudodifferential counterparts of the
Laplacian guided by two reasons: (i) their similarity on analytic grounds (the
same criteria [13] for the existence of the bound state spectrum if summed with
suitable potentials, (ii) the claim of Ref. [14] that the pertinent stochastic process
in the mass m > 0 case actually displays the Markov property.

If the Markov property would hold true for the relativistic Hamiltonian gen-
erated dynamics, we would be able to repeat almost all steps of the previous,
Schrodinger picture, quantum dynamics analysis [1, 2, 3]. However, the situation
is not that simple, and the argument of [4] excludes the Markov property, in all
nonstationary situations, in a flat contradiction with general statements by De
Angelis [14].

Let us introduce some probabilistic notions, which will tell us how to work
with pseudodifferential operators. We shall notice that for explicit computational
purposes, the Cauchy generator |V| is much more suited than the m > 0 rela-
tivistic Hamiltonian. It is a real disadvantage when dealing with Lévy processes
that rather limited number of concrete examples is available, in contrast to the
wealth of the general theory.

The Lévy-Khintchine formula tells us that the action of the Hamiltonian
H = F(—iV) on a function in its domain can be represented as follows:

yViz)
14 42

#1)@ = - [ [+ - 160 - D] vty (12)
R

It is important to observe that for the “free noise” processes whose semigroup
generators are |V| and /—A + m? —m we do know explicitly their kernels (tran-
sition probability densities) and the involved Lévy measures, as well as about
the extension of the Feyman-Kac path integral construction of the semigroup
kernels to these particular Lévy processes [13], in case of arbitrary space dimen-
sions. Therefore we feel free to use the Feynman—Kac kernel notion instead of
the semigroup kernel.

For the Cauchy process, whose generator is |V|, we deal with a probabilistic
classics:

R e e = A
0<s<t
{exp [ipX (t)]) = / exp(ipz)p(2, 1) dz = exp [-tFo(p)] = exp(—|p|t)
R

The characteristic function of k%(y, s, z, t) for y, s fixed, reads exp[ipy—|p|(t—s5)],
and the Lévy measure needed to evaluate the Lévy—Khintchine integral reads:

. |1 d
vo(dy) = ltlllgl [?ko(o, 0,9, t)} dy = _yz (14)

Y
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In the case of the relativistic generator \/—A + m2?—m, formulas determining
the stochastic jump process are much less appealing:

(exp [ipX(D)]) := exp [~tFn(p)] = exp [—H(v/p? + m? —m)|

p(z,t) = %ti:\/_f——(%g Ki(my/z? +t?) (15)

[exp(—(t — )P (=iV))] (z — y) = k™(y, 5, z,t) := p(z — y,t — 5)
V() = oI (mly)dy

where K;(z) is the modified Bessel function of the third kind of order 1.

We are interested in acting with the pseudodifferential generators H =
F(—iV) on functions in the exponential form (recall the familiar Madelung pro-
cedure in the Gaussian case) f(z,t) = exp &(z,1):

(H exp &)(z) = — / [exp P(z+y) — expP(z) — ﬂ%%)g@] v(dy) =
R

2 @ a9

= owe(z) [ [exp(@(a+1) - #(a) - 1
R

where &'(z) = V&(z). Since (HP)(z) = — [R[®(z + y) — &(z) — y&'(z)/(1 +
¥?)]v(dy), we can make a safe rearrangement of (16):

(H exp @)(z) = exp &(z) [(HQ)(:::) - /(exp Ppy — 1 — @,y)v(dy)] (17)
R

8oy 1= 0(s +3) - O(a)

In application to the pseudodifferential dynamics i0;v(z,t) = (H¥)(z,t)
with 9 = exp(R+15S), one easily derives [4] its implications for the real functions
© = exp(R+S5) and O, = exp(R — S); plus a trivial extension from H to H4+V
situations.

Remark : Experience [15, 2] with the Gaussian (standard Laplacian gener-
ated) noise proves that the Madelung substitution ¢(z,t) = exp[R(z,t)+iS(z, t)]
would associate with the Schrodinger equation a pair of time adjoint generalised
diffusion equations where the Feynman—Kac potential (time dependent in the
general case) equals 15[2Q(z,t) — V(z)]. Here Q(z,t) = 2mD2%“1’71—£i(a:,t)
and V(z) is taken as an external conservative force potential. Let us em-
phasize that V(z) actually was the Feynman-Kac potential of the dynamical
semigroup prior to the analytic continuation in time procedure. The mapping
V(z) — 2Q(z,t) — V(z) is an effect of the analytic continuation in time, as
manifested on the level of the associated [2, 3] Feynman—Kac kernels.
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In view of (17), the pseudodifferential Schrodinger equation i0;(z,t) =
H(x,t) implies the following time evolution of the Madelung exponents:

OtR=HS — / [exp(Rzy) sin Spy — Szy] dv(y)
R

0,S=—-HR + /[exp(Rzy) cos Szy — 1 — Rgyldv(y) (18)
R
where H = F(—iV).
By employing (17) with respect to p*/2 = exp(R), we arrive at:

1/2
= %11’7-2— = HR - / [ex0 (Rey) = 1 = Rey] dv(y) (19)
and hence:
0,S=-Q+ /exp(Rzy) [cos(Szy) — 1] dr(y) (20)

R

The same procedure can be repeated for & = exp(R+.S) and O, = exp(R —
S), which implies:

0:0=HO+ 0O [——QQ +/ exp(Rey)[— sin Sgy + cos Spy +exp(Szy)—2] dv(y)
R |

(21)
010y =—HO,+6, [2@—/exp(ny) [sin Sy +c0s Sgy +exp(—Szy)—2] dv(y)

R j

In contrast to the Gaussian case [15, 2], equations (21) do not take the
form of a time adjoint pair, unless some additional restrictions are imposed on
the Madelung exponent S(z,t) (notice that we have restored time dependence,
skipped before for convenience). An obvious demand is S(z + y,t) = S(x,t)
for all y,t, and any fixed z. But then, equations (21) would manifestly refer to
the stationary (measure preserving) random dynamics, governed by the pair of
equations:

8,0 = HO — 2Q0

which are mutually time adjoint. Hence they would fall into the Schrédinger
problem framework[2, 4] with a trivial implication that the measure preserving
process is Markovian. This however cannot be a property of the “free” dynamics
since we need external potentials to secure stationarity. Let us therefore make an
essential amelioration by performing the previous analysis for the case i9;9) =
(H + V)9 with V = V(z). Then, the stationary system of equations would take
the form:

80 = HO - (2Q + V)0 (23)
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at@* = —H@* + (2Q + V)@*

which upon substituting S(z,t) = Et, where E is a constant, yields a pseudod-
ifferential version of the Sturm-Liouville problem:

Hp'*(z) - 2-}%{;5/3 + V(z) - E} PMz) =0 (24)
¢
__Hp(=)
V) =B ==y

to be solved (for a chosen value of E) with respect to the square root of the
probability density p(z), once the external force potential V(z) is selected.

This problem has its Gaussian counterpart in the study of the measure pre-
serving dynamics [2] , and in the present context it can be solved by invok-
ing those potentials for the original pseudodifferential Schrodinger equation, for
which the bound states (i.e., stationary solutions) have granted the existence
status. The relevant analysis has been carried out in the studies of the relativis-
tic stability of matter [13]. In addition we know that in the stationary case, the
Feynman-Kac path integral generalization to Lévy semigroup kernels is avail-
able.

However, the Markov property cannot [4] automatically be attributed to the
nonstationary dynamics, as described by (21).

The probability density p(z,t) (respectively p(z,t)) was a fundamental en-
tity in our previous considerations: in fact, providing the time evolution of the
probability measure for the whole time interval of interest, so that the transition
probability densities could be sought for [4].

In the Gaussian case we dealt with the temporal evolution of the probability
density given in its traditional Fokker-Planck form appropriate for Markov dif-
fusion processes [2, 3]. In connection with the pseudodifferential (“free noise”)
dynamics, we address an obvious extension of the previous notion to a class of
jump processes. We shall extend the usage of the name Fokker-Planck equa-
tion to any first order in time differential equation determining the space-time
properties of p(z,t) or p(z,t).

Let us investigate the time developement of p(z,t) = 0(z,t)6.(x,t), where
0(z,t), 8+(z,t) come out as solutions of the temporally adjoint pair of equations

of the form
6,0 =HO-V8 (25)

0.0, = —HO, + V0,

with a Feynman-Kac potential V. Then, in view of (17) and 8 = exp(R + S),
6. = exp(R — S), we get an evolution equation for the probability density:

0¢p(z,t) = 0. (z,t) (HO)(z,t) — 0(x,t) (HO)(z,t) = (26)

/ [—0,.,(17, 08(z -+ 3,1) + 0z, 00u(z + 8 + 26(e, OV S(e, O ey | dv(1)
R
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Following the traditional recipes when dealing with Lévy measures [6], let us
consider an open neighborhood of the origin |¢| < 1. Instead of integrating over
all possible jump sizes, let us integrate over jumps of size |y| > ¢ > 0). The
removal of this lower bound as ¢ — 0 will eventually amount to evaluating the
principal value of the integral. In case ¢ > 0, we can safely remove the compen-
sating term including y/(1 + y?) from the integral, and restrict considerations
to the contribution from the first two terms only.

Our purpose is to establish a connection with the conventional theory of
jump stochastic processes, as developed in [16]. Integrating over a Borel set
ACR,z €A we get:

/ do / [0 (2, 8)0(z + 3, £) + 0z, )0 (2 + 3, )] di(y) =

A lyl>e

Ja [ xa@) 70 5 4 g6+ 28 v = )

R Isll>e

/ dz p(x,1) / 9(;(+ ltl t) [xa(z+y) — xa(z)] dv(y)
lyl>e

where we interchanged the order of integrations, and made appropriate adjust-
ments of integration variables (z — z — y and y — —y), while exploiting the
property dv(—y) = —dv(y) of Lévy measures; x4() is an indicator function of
the Borel set A C R, equal to 1 when z € A and 0 otherwise.

In the present case we deal with a Markov process with transition probability
densities given for arbitrary time instants: 5(z,t) = [, p(y, s, 2,t)p(y, s)dy, s <
t. By invoking the standard wisdom about jump Markov processes [16], and ex-
ploiting limy |, p(y, 5, A, t) = xa(y), for any Borel set A C R away from (—e¢, +¢),
we can define the jump process running with jumps of size |y| > ¢ > 0. It should
be viewed as an approximation of the original stochastic process governed by
(26), with the initial data p(z,0) common for both:

07440 = [aet AP+ 0a) [ i) @8)
B [yl>e€
where .
ozt 4) = lim = [p(,,4,) = xa(2)] =
[ 8 o) - xatoll ), (29)

lyl>e

(o) a(t) = / 5(2,1) [2VS(z, )] da

A
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Here g(z,t, A) > 0 for all z which are not in A, in agreement with [16]. We
have also introduced a pseudodifferential counterpart of the current velocity field
v(z,t) = 2VS(z,1), previously attributed to diffusion processes where the prob-
ability conservation law (a continuity equation in another lore) 6:p = —V(vp)
plays the réle of the Fokker-Planck equation.

Notice, that in the particular case of 8(z,t) = 1 for all z,¢, and V = 0,
Eq.(26) reduces to the “free noise” situation covered by the traditional Fokker—
Planck equations Then, q(¢,z,4) = f]y|>e[XA("’ +y) — XA(:L')]dV(y), while R =
~8, P = exp(2R) = 0. implies (v) 4(t) = ~p(z,t)|’ where [a,b] :== A C R.

Now, let us address the Fokker—Planck equation for the pseudodifferential—-
Schrodinger dynamics case, which we consider in the form analogous to (26); see
also (1) for comparison:

W0y = HY+ Vo (30)
0 = —Hyp — Vi
We te-emphasize that to define the probability density p(z,t) = |¢(%,t)|? one

actually employs solutions of the time adjoint pair of Schrodinger equations.
In view of (30), the pseudodifferential continuity equation follows:

dupl(z,t) = =i [z, H(HD@, 1) — P, OEHDE D] = (D)

_i/ [_J(x, (= +3,1) + (2, )%(e + 1,8) + 2ip(2, )V S(z, 8) 7 yyz] )
R

Our next step is a repetition of the procedures behind (27), which implies:

Oip(z,t) = / [21 [¢(z, )d(z + y,1)] + 2p(2, )V S(=, t) ] dv(y)
R

4
/ dz / 27 [¢(z, t)d(z + y,t)] =

A lyl>e

dz / xa(®)2p'(z,t)p *(z + y,1) sin[S(z,t) — S(z + y,1)] dv(y) =
R lyl>e (32)

1/2(4
[ ptaas [ EoEED dntste ) - (e, 0] e +1) — xa(e) o)

R fy|>e

where I[f(z,t)] stands for an imaginary part of a complex function f(z,t). So,
a counterpart of (28) reads:

0 4,8) = [ ala,t, A)pdla, O+ (0)a(0) / o) 69

R ly|>e
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where, however

(a1, A) - '/ z[%(*—’j)”] bz +9) - a@ldv(e)  (34)
yi>e

no longer can be derived from transition probability densities of the process, as
in the previous discussion, because in general our process is not Markovian [4].
At least in the case of nonstationary dynamics, the only transition probability
density which is at our disposal connects an initial instant of the evolution with
any later one. In fact, we might even not be sure that ¢(z,t, A) is a well defined
probabilistic object, because of the presence of sin[S(z + y,t) — S(z,t)] in the
integrand. At this point an observation of [14] helps. Namely, in view of the
identity:

/ dz ] (e + 1, (2, )] [xa(e + 1) — xa(@)]dv(y) = 0 (35)

B Jyl>e

valid for Borel sets A C R, which are away from (—¢, +€), we can always pass
from (32) to the rearranged form of (33):

)= Z | |t vl 7 [0

|| beate +9) - xa@) v

(36)
implying that ¢(z,t, A) is positive for all z which are not in A, as should be the
case [16].

In fact, our Fokker-Planck equations involve exclusively the integral term on
their right-hand-side:

0740 = et Dpla,)ds ()
R

Oipe(4A,t) = /q(x,t,A)pe(z,t)da:
R

where an overbar distinguishes between probabilistic quantities characterising
different families of stochastic jump processes before and after an analytic con-
tinuation in time of the given holomorphic semigroup. respectively. Let us em-
phasize that the above simplification occurs only in the |y| > ¢ > 0 jumping
size regime. The real role of the two spurious, in the present regime, terms is to
compensate the divergent contributions from the Lévy measure when the prin-
cipal value integral ¢ — 0 limit is considered; then the standard jump process
theory does not apply. Anyway, those two terms are irrelevant for any ¢ > 0,
irrespectively of how small ¢ is.

More detailed analysis and a number of extensions of the described formalism
can be found in the original publication [4], while a discussion of the Gaussian

(Wiener measure generated) case and this of the Schrodinger interpolation prob-
lem in Refs. [1, 2, 15, 3, 17].
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