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Abstract. We link the recently proposed unification of the boson and fermion stochastic
calculus with the general problem of boson-fermion equivalence (duality, reciprocity, etc)
for quantum fields. Even if via the Fock construction the common Fock space for bosans
and fermions can be introduced, it still does not allow for the unrestricted boson-fermion
equivalence for field theory models. All local fermion field theory models thus have boson
equivalents (violating the weak local commutativity condition for space dimension three).
The reverse statement is not valid: not all boson models admit a pure fermion reconstruction.

1. Fermion fields in the boson Fock space according to Hudson and Parthasarathy

The quantum analogue of the theory of stochastic processes and stochastic differential
equations is the theory of stochastic integrals and differentials with respect to basic
operator processes. For its construction Fock representations of the ccr [1] and car
[2-4] algebra were used, thus resulting in the boson and fermion stochastic calculus
respectively.

In a recent paper [5] fermion annihilation and creation processes were explicitly
realised in the boson Fock space as functions of the corresponding boson processes.
The inverse construction of boson processes from the fermion ones is realisable as
well, thus leading to the identification of the boson and fermion Fock space.

We denote by & the boson Fock space over the Hilbert space h = L*(R.), and the
representation of the ccr algebra is generated by operators:

[b(s), b*(s")]_=b(s-+")
[b(s), b(s")]-=0=[b*(s), b*(s")]- (1.1)
b(s)o=0 Vse R, fioe .

The differential form of the boson annihilation process is dB(s) = b(s) ds and upon
introducing the appropriate reflection process J = J(s), s€ R, the fermion processes
can be introduced in % such that

dF*=JdB* dB” =J dF* (1.2)
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where
dF(s)=a(s)ds
la(s), a*(s)] = 8(s ~s")
La(s), a(s")]. =0=[a*(s), a*(s")],
a(s)gy=0 VseR, yye #.

Let A(n, t) denote the set {(s,,...,s,)€[0, 1]": 035, <$<...<s,<t}. Lemma 4.1
in [5] states that boson and fermion processes of strength ¢, ¢ € L. (R.,), are related
by the following formulae to their differential versions:

(1.3)

F3() ... F§ ()= I det(¢i(s;)) dB*(sy) ... dB*(s,) o

An,t)
(1.49)
BZ‘,,(I)---BL(I)#’IFJ per(¢i(s;)) dF*(sy) ... dF*(s.)do
An,r)
where
perC= Z []l C,',,.(,')
e (1.5)

det C= Z ("1)” H C,',.,(,')
i=1

TES,

for the n X n matrix C.

The stochastic integrals in (1.4) can be converted to the Lebesgue integrals, so that
the familiar field theoretic expressions for Fock space vectors arise:

F3(1) ... Fi,,(t)lﬂo:J det(¢(s5;))b*(s,) ... b*(s,) ds, . . . ds,
A(n.t)

(1.6)
Bi.(’) s Bﬁ,,(‘)‘/’o"“J‘ per(¢i(sj))a*(sl) c.a*(s,)dsy ... ds, ¥,

A(n,t)
A straightforward consequence of (1.6) is theorem 4.3 of [5] which identifies the
fermion and boson Fock space, and allows for the conclusion that the existence of

unitary stochastic evolutions driven by fermion and gauge noise is thereby reduced to
an equivalent boson problem.

2. Representations of the CAr generated by representations of the ccr in Fock space:
boson—fermion duality or non-duality? ‘

Since in the above the cAr and ccr algebra generators in the boson Fock space have
a common cyclic (vacuum) vector, the construction of [5] automatically falls into the
framework of [6, 7] which provides a universal solution to the problem of embedding
the CAR algebra in the (bicommutant of) ccr algebra on the level of Fock representa-
tions. It is thus also connected with the idea of the boson-fermion equivalence for
field theory models: the two independent and, in fact, inequivalent lines of research
should be mentioned here, that following Skyrme [8-11] and that arising from [6, 7]
and continued in [12-16].
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In connection with the Fock space notion let us emphasise that commonly the same
name is attributed to two a priori distinct spaces: the Hilbert space of Fock vectors of
the form (1.6) which we denote % and the Hilbert space of sequences of n-point
functions #. These sequences stand for coordinates of Fock space vectors in the
occupation number basis. By virtue of the above fermion and boson Fock space
unification, the choice of the boson basis would give rise to symmetric functions, while
that of the fermion basis would give rise to antisymmetric functions. However they
are merely different representatives of the same Fock space vector.

At this point the general study of [6, 7] intervenes. Once a Fock representation of
the ccr algebra over K (in general, K = L%(R™ )) is given, it automatically induces a
Fock representation of the car algebra in the boson Fock space, which (we cite the

1
main theorem of {7]) ‘acts irreducibly on the following subspace of F=%F,: Fz=
Do ELS,K®™, %, =0 S,K®", K°=C. Here we have an orthogonal decomposi-

1 2
tion Fp=F; @ F,, S, denotes the symmetrisation operator in the nth tensor product
space K®" E2 is a projection in K®", and its square root E, has the property to
convert the antisymmetric functions into the symmetric ones:
E,(A,K®")=E¥S,K®")c S,K®" (2.1)
and conversely, provided the symmetric function gets no contribution from (1-—
EZ)S,K®".
It means that in terms of (Fock) function sequences, fermion Fock space can be
identified with a proper subspace of boson Fock space having a non-trivial orthogonal
2
complement %,. This complement makes a real distinction between the Bose and
Fermi cases, unless it is trivial (it happens due to the special nature of the test function
space and some peculiarities of the construction in [5]). It is the main purpose of this

comment to reveal the role of this complement when proceeding to the study of concrete
field theory models.

Let us make the following choice of K = L*(R,) and let the integral kernel of E,
be given as follows [17]:

En(si,eossai iy ) =0(s1, ..., 8,)8(s,— 1)) ... 8(s, — 1) (2.2)
where (s — t) symbolises the Dirac delta, while o(sy,...,Ss,)is the Friedrichs-Klauder
[6] totally antisymmetric (sign) symbol:

U(sw(l),---,sn(n))z(_l)" 5 #S; (2.3)

where 7 denotes a permutation of indices. If for any pair of labels we have not satisfied
s;# s; the symbol o equals 0. Upon exploiting the form (2.2) of E, the following
expression arises for the n-particle fermion vector in the boson Fock space:

a(fi)*... a(ﬁ.)*dfﬁj ds,... j ds. fils1) .. Sa(s2)o(s1, ..o, 8)0*(51) . .. B*(s0) o
b(f)*... b(f..)*!llo=J- ds,... J' s, fi(s1) ... fu(8,)b*(s51) ... b*(s0)

a(fi=a(f1) =J’ ds f(s)a(s)
0 ' (2.4)

[a(f),a(g)*]+=J’ f(s)g(s)ds [a(f), a(g)ls =0

0
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[b(f),b(g)*ng0 f(s)g(s) ds [b(/), b(g)]-=0

a(fN)o=0="b(f)yso Vfe L0, 1]= Li(R,).

All integrations are carried out with respect to the Lebesgue measure. Hence if we

specialise considerations to the n =2 case (extensions to arbitrary n are straightfor-
ward), we arrive at

a(fl)*a(fz)*d’o:J' ds, J ds, fi(s)fa(s) o (sy, sz)b*(sl)b*(sz)llfo
ZJ. ds, dsZ.fl(sl)fZ(SZ)b*(sl)b*(SZ)d/O

+J' ds, ds, fi(s))fo(s2) o (s, Sz)b*(sl)b*(sz)‘l’o- (2.5)

The contribution .‘s, _,, dsy ds, from the set of Lebesgue measure zero has been omitted
(we made use of such omission possibilities in our model studies of [13,17,19]). Let
us mention that Klauder was the first [18] to publicly state that, due to the Lebesgue
measure involved, the fermion and boson transition amplitudes can be identified.

In the second term we have s,<s, and hence o(s,,s,) =—1. If now we change
the variables s, & 5,=f, _ > [,.-., and consequently f,(5,)£2(s2) = £,(s,)f2(5,) we find

a(fi)*a(f2)*o = I dsy dsa(fi(s1)fa(s2) = fi(s2)fa(5:)b*(50)b*(52) o

$1<s2

=I ~ ds; ds; det(fi(5))b*(s)b*(s52) 4o (2.6)

which is precisely one of the Hudson-Parthasarathy formulae. The other one arises
due to

b{f1)*b(f2)* Yo

=] ds, J' d52f1(sl)fz(sz)b*(sl)b*(sz)‘l’o

,

= ds, ds,(f,(s))f2(s2) +f1(52)f2(51))b*(sl)b*(sz)‘ffo

Js<s;

r

= ds, dsz(fl(sl)fz(sz)+f|(52)f2(51))‘7(51 , s)lo(sy, sz)b*(sl)b*(sz)]wo

Js<s;
r

= ds, ds; Per(fi(sj))a*(sl)a*(sz)l//o 2.7

J 5 <s;

provided we observe that o(s,, s;) =1 because of 5,<s, and omit the contribution
from sets of Lebesgue measure zero. We have thus demonstrated that the unification
of the boson and fermion stochastic calculus by Hudson and Parthasarathy involves
what is in effect the special case of our CAR = CAR(CCR) construction [6,7].
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The use of Lebesgue measure guarantees a complete identification of boson and
fermion Fock spaces not only when K = L*(R,) but also in the case of K =@ L*(R")
as well. However, one must keep in mind that Fock space vectors determine the
corresponding function sequences up to contributions from sets of Lebesgue measure
zero. If these contributions are not taken into account while passing to the study of
field theory models, quite serious problems are apparently encountered. Recall that
Fo =P S, K" = Fy® Fy and the Fy=@)2(1- E2)S,K®" piece is cancelled
in the Fock construction which maps function sequences into vectors:

{fulsry oo, s> 1H=Y J' ds; ... j ds, [, (51, ., S )b*(s)) ... B*(s, )40 (2.8)

However, what happens if we act upon such vectors by operators? To clarify the
situation we shall discuss one paradigm example of the concrete field theory model
we have studied before [17] in search of mechanisms of the fermion-~boson reciprocity:
the non-linear Schrodinger field in (1+ 1) dimensions, with a repulsive potential (now
a configuration space variable appears instead of the previously used time variable
s € R). The spectral solution for the Hamiltonian:

H= ~%J dx ¢¥é, +3c I dx p*(x) ¢ (x)

[o(x), p(¥)*].=8(x-y) [o(x), ¢(y)]-=0 (2.9)
d(x)y=0 Vxe R
is looked for in the Fock space ¢(x)¢,=0Vx e R. According to our previous analysis

(we omit the contributions from sets of Lebesgue measure zero) the n-particle vector
acquires the following form:

d(f)*... ¢(fn)*¢o=J dx, ... J dx, per(fi(x;))o*(x1) ... ¢*(x,) o (2.10)

X, <..<Xx
"

1

If one would perform H of (2.9) naively upon (2.10), we would realise that on all
Fock space vectors (vary n) the interaction term identically vanishes, thus reducing
the non-trivial model to the free field case which is known to arise in the ¢ =0 limit
(free boson) or ¢~ o (free fermion).

By virtue of the boson and fermion Fock space unification these two free field
models are equivalent (comparle, e.g., [16]) since the free boson Hamiltonian acts

invariantly in any domain 9 c %g. .

, Itis not the case when 0 < ¢ <0, since then the proper domain for H is = F®
Fy: :

lf>=j dxl “Ew I dxnf(xh araely xn)¢*(xl) o ey ¢*(xn)d/0

H|f)=J‘dx1 ... J dx,,{(-—% z": Vf+§ Y 8(xi—xj)>f(x,,...,x,,)} (2.11)
j=1 i)
X¢*(x;) ... ¢*(x) o

shows that for the study of spectral properties the solutions of the eigenvalue problem
(H.f)(x1, ..., %) = Ef(xy,..., x,) , (2.12)

1
are necessary and the many-body Hamiltonian H, non-trivially mixes % and ¥ in F5.
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At this point let us recall that the standard (Gel'fand- Neumark Segal) reconstruc-
tion procedure by using the car algebra would give rise to the 97,, piece only ( 9'3 is
closed). If we agiopt the ccr algebra reconstruction we would arrive at Fy = J'B(-B 5‘3

and obviously F; is beyond the reach of the previous (CAR) procedure. It clearly
demonstrates that not all boson models allow for the pure fermion reconstruction (the
reverse is always true); even if we pass from %y to the Fock space ?6’

[t is impossible unless the boson Hamiltonian acts mvanamly in .%,, 1.e. commutes
with the projection on this proper subspace of %, = 93(-9 99. Then contributions from
2

F3s can be eliminated as irrelevant and the boson-fermion duality makes sense, albeit
onthe level of the relativistic field theory, the requirement of weak local anticommutativ-

ity for fermions would necessarily lead to the violation of weak local commutativity
for the related (dual) bosons.

Remark 1. The situation in continuum is entirely different from this for the lattice
systems (even infinite), since the lattice analogue of the construction [6, 7], see €.8.
[13], involves a decreasing family of projections in the Fock space for the Bose system
and its proper subspace of Fermi states is always accompanied by the non-trivial
orthogonal complement, whose contributions can never be neglected: it is a subspace
of the Fock space # itself. Consequently there is no way at all to give a fermion
reconstruction of the Bose system (the reverse is always true) unless a restriction to

the appropriate subspace is imposed, see also [20], or irreducibility of representations
abandoned.

Remark 2. For each Fermi system an equivalent Bose one can be found {(irrespective
of what is the spacetime dimension adopted). By virtue of the fact that the total set
of exponential vectors (coherent states) spans the domain for equivalent Bose and
Fermi systems, the standard tree approximation methods [13] allow us to attribute an
unambiguous meaning to the notion of the classical relative for the Fermi system,
which is a c-number (commuting function ring) field theory, unpleasant news for those

field theory pragmatists who seriously claim that the classical level for Fermi fields is
Grassmann algebra-valued.
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