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Abstract. We establish relationships between Bose, Fermi and spin-f systems on lattices 
of arbitrary dimension and arbitrary but finite size which are defined to live in the (common) 
state space of the boson system. The underlying systems display an essential affinity by 
being described by precisely the same form of Hamiltonians, which are the polynomial 
functions of canonical operator variables: boson, fermion or spin-f variables, respectively. 

For large enough, densely populated finite volume lattices it entails the computation 
of partition and correlation functions for lattice fermions in terms of bosons only. Albeit 
an approximation, its accuracy increases as the continuum limit is approached. 

1. Motivation 

The main motive for our investigation is the recent paper [ 13 which together with the 
preceding one [2] attempts to develope the mapping of free fermion systems on arbitrary 
lattices into systems of spins. The idea behind it was that of mapping fermion 
(anticommuting) degrees of freedom into the boson (commuting) ones, which by itself 
has a long history and quite a variety of realisations (see, e.g., [3,4]). In [ l ,  21 it has 
been limited to the replacement of fermions by spins which are not bosons in the strict 
sense of the word. Moreover, as usual when the generalised Jordan-Wigner map is 
in use, the resulting spin Hamiltonians display a complicated non-local structure, 
which is due to the lack of the natural site ordering in higher dimensions. Monte 
Carlo computations with fermions on a lattice, despite being developed into the 
self-contained domain of searching for less computer time-consuming procedures [ 51 
have not as yet reached the stage of efficiency with respect to its primary goal, i.e. that 
of computing the energy spectrum of the given system for not too small lattices. 

The main difficulty arises here from the use of anticommuting variables (Grassmann 
algebra elements) which traditionally enter the game when Fermi systems are studied 
via Monte Carlo methods. Since the commuting variables are associated with bosons, 
it is not a purely academic exercise to study mappings from fermionic to bosonic 
models which automatically involve a passage from the Grassmann Monte Carlo to 
the standard Bose Monte Carlo techniques, this was our goal both in [3,4] and in 
more recent papers [6,7]. The underlying fermions-to-bosons passage according to 
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the recipes of [ 4 , 6 , 7 ]  always induces a spin-: system which is related to the Fermi 
system under study. Hence it pertains to the analysis of [ l ,  21. 

Our main goal in the present paper is to reveal connections between the formally 
distinct boson, fermion and spin-: versions of the same polynomial function, a good 
example being provided by the quadratic Hamiltonians Ilk b): y k b k ,  Elk a): y k a k ,  
I$ U: yku; where ( yk)  is the N x N Hermitian matrix, by  stands for bosons and 
a,  for fermions, while U: represents Pauli level raising/lowering operators at each 
site. Extensions to the simplest (density-density) interacting models are straightfor- 
ward. The particular choice of the lattice dimension and size is irrelevant. 

The underlying three model Hamiltonians, denoted by HB, HF and H l 1 2  respectively, 
can be defined to live in a common Hilbert space 2fB. We demonstrate that on a proper 
subspace of ZB selected by the projection P :  2fF = P Z ,  the following operator identities 
hold true: 

where r is a unitary transformation in XB. 
By using the argument of the boson and fermion Fock space unification which is 

valid in the continuum [8-101 we arrive at the conjecture that in a finite volume, with 
the growth of the site density, i.e. lowering the lattice spacing, it makes sense to 
disregard differences between the observable features of the Hamiltonian systems HB, 
H F ,  Consequently we may freely pass from the boson to fermion or spin-; degrees 
of freedom and the reverse, since they can be viewed as different manifestations of 
(almost) the same physical situation. 

This means that for densely populated finite lattices, properties of the fermion 
systems should satisfactorily reproduce (approximately) those of their pure boson 
relatives and on the reverse. 

In connection with the above reversibility claim a warning is necessary that, in 
general, the reverse route does not apply, as explained in reference [lo], namely, all 
fermion field theory models (not only in the case of Fock representations of the 
canonical algebra) admit boson equivalents, while the reverse statement is invalid: not 
all boson models allow for a pure fermion reconstruction. This feature seems to offer 
an explanation of the issue raised by a referee of this paper, which is worth mentioning 
to avoid interpretational problems or erroneous results while applying our discussion 
in concrete calculations. 

While boson and spin systems are expected to be similar (spin-4 systems correspond 
to hard core bosons), they are usually different from fermion systems. The main 
difference is that the first two types of systems may show a (non-Fock) ground state 
with long-range order, such as, for example, the superfluid state with breaking of gauge 
symmetry for bosons or the magnetically ordered state of the X Y  model. These ground 
states occur for infinite systems. For finite systems (and we consider the finite volume 
which, both on a lattice and in the continuum, implies the use of Fock space methods) 
there is no such long-range order. However, in the continuum limit, for large enough 
systems-one should expect, and this is the purpose of this work, to use it for Monte 
Carlo methods-that the features associated with the long-range order of boson and 
spin systems begin to show up and consequently fermion systems are allowed to behave 
differently compared with boson and spin systems in this limit. 
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2. Quadratic Hamiltonians 

Let us consider the finite d-dimensional lattice, where d stands for positive integer. 
Let n be the site label n = ( n , ,  n 2 , .  . . n d ) .  In principle n , ,  n2, n3 can be viewed as space 
coordinates while the remaining labels indicate the internal degrees of freedom. Let 
us consider the Fock representation of the CAR algebra with generators 

[an, a*,]+ = Snm 
[an, amI+=O=[a:, a:]+ (2.1) 
an10) = 0 V n. 

Let the Hermitian operator which is quadratic with respect to { U : ,  an} be given by 

where summations extend over all possible labels n, m. We adopt the following linear 
ordering convention in the set of site labels n: 
n < m  if n , <  m ,  or n, = m , ,  n 2 < m 2 ,  o r . .  . o r  n ,  = m , , .  . , , nd- ,  = m d - l ,  nd < md (2.3) 
which allows us to replace the n labelling by the standard linear one 

N 
HF= 1 a ~ W S , a l .  

s ,r=1 
(2.4) 

N denotes here the overall number of distinct site labels. We shall not impose any 
restrictions on the matrix W except for its Hermiticity: WFl = Wl,. 

Let {bT, b,, 1 s s s N }  be the generators of the Fock representation of the CCR 
algebra: 

[bs, bT1- = S*, 

b,10) = 0 VS 

[b,, b,]- =O=[bT, 671- 

where the notation 10) is kept the same for bosons and fermions due to reasons to be 
clarified below. The boson Fock space constructed about the vacuum 10) we denote XB. 

Let us introduce the boson analogue of the operator (2.4): 

Inspired by our previous investigations [4,6,7] we introduce the following projection 
operator in XB: 

N 

P = n  P, 
, = I  

Ps=: exp(-bTb,):+hT: exp(-bTb,): b, 
with the obvious properties 

P :  XB+ PX,= XFC XYP, 
PbTP=u: 
Pb,P = U ;  

(2.7) 
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By adopting the standard Jordan-Wigner construction we make the following iden- 
tification of the fermion operators in the boson Fock space: 

It allows us to represent the fermion Hamiltonian HF in ZB and in particular in its 
proper subspace XF, together with H I l z  = PHBP. 

By inverting (2.9) we can always rewrite the spin-; lattice Hamiltonian in terms of 
fermion variables, but the resulting formula (see [ l ,  21) will in general not preserve 
the functional form of Hl l2 .  The notation HF is exclusively reserved for the fermion 
version (2.4) of the boson or spin-f Hamiltonians under study. 

The Fock representation of the CAR algebra generated by (2.9) is defined in the 
whole of XB but has a non-trivial irreducible component on X9,= PXB only. Vectors 
which are not elements of XF are annihilated both by a: and a,. 

By virtue of (2.7)-(2.9) we can make the Hamiltonians HB, H F ,  H l l r  operate in 
XB, which includes the Fermi states in X F =  PXB. It is easy to check that the basis 
vectors in ZF are 

(2.10) 

where c ~ , , , , ~ ,  = 21 or 0 is the completely antisymmetric Levi-Civita tensor. 
Hermitian operators (2.4) and (2.6) become diagonal once the matrix W is 

diagonalised. It can be achieved by means of the N x N unitary matrix U which gives 
rise to the appropriate linear transformation of canonical generators 

(2.11) 

Notice that since fermions operate in XF the corresponding operator unit is P: 
PXB = %?F. 

Transformation U is supposed to diagonalise HB and HF. Hence 

(2.12) 

and 

(2.13) 
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It is obvious that the eigenvectors of HF do belong to the previously introduced ZF: 

A : .  . . ATlO)= ~,,,  . , . ~ s J T a ~ .  . . aXl0) 
11 1s  

= ~ l l l . .  . ~ s l , ~ J l  l s b : .  . . b;JO). (2.14) 
11 l s  

However, in general it is not so in the case of boson eigenvectors: 

(2.15) 

because the coinciding pairs of indices are not eliminated from the summations. 
A comparison of (2.14) and (2.15) with (2.11) shows that, in contrast to {b*, b}  

and { a * ,  a } ,  the generators {B* ,  B }  are not related to {A*,  A }  by means of the procedure 

Nevertheless, since the representations of the algebras we deal with are always 
determined up to a unitary transformation, we have a guarantee that for the just 
introduced Fermi generators {A*,  A }  it is possible to select a unitary transformation 
r in XB 

rB:r-l= E: r lo) = 10) (2.16) 

such that the procedure (2.7)-(2.9) can be adopted to pass from { E * ,  E }  to { A * ,  A } .  
For this purpose replace {b*, b }  by { E * ,  E } ,  P then should be replaced by P ’ =  
P( b* + 6*, b + E )  and finally {a* ,  a }  by {A*,  A } .  Since the arena for our investigation 
remains unchanged, it is XB, we realise that 

(2.7)-(2.9). 

. . . i f l o )  = A: . . . AflO) (2.17) 

where 

%?F = P%B = P’x9,* P’ = Pa (2.18) 

Let us emphasise that P = P (  b*, 6) while P’ = P (  E*, E ) .  Since the transformation r 
is unitary in XB we can write 

rb;r-I = d;. (2.19) 

Because of (2.15) and (2.17) 

E : .  . . 6TlO)= U I j l . .  . usJs6;. . . 6210) 
j l . . J s  

= 
U,jl . . . U s j . ~ j I  jsb: * . . b;\O) 

/I Jr 

which determines the action of r in XB. 
After accounting for (2.19) and (2.17) we realise that 

f i g = r H ~ r - ‘ = E  6tws,6,=c E k 6 z E k  
S. 1 k 

conserves the projection P’ = P in XB: 

[ G B ,  PI- = 0 

(2.20) 

(2.21) 

(2.22) 
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and thus 

(2.23) 

The boson Hamiltonian fiB has Fermi states, which are eigenvectors common with HF. 
Let us recall that due to (2.8) we have 

PHBP = H1/2 (2.24) 

but P does not necessarily commute with HB, while it does with fiB. Consequently 
the two Hamiltonians _HI/* and H F ,  despite arising in ZF from the 'same' boson 
Hamiltonian (HB and HB, respectively) do not seem to have very much in common. 

Let us also observe that by departing from P = P ( b * ,  b )  we can introduce in xB 
another projection 

(2.25) I? = rpr-' = ~ ( 6 * ,  6 )  
selecting another (different from 2,) proper subspace %'F = PXB of 2 f B .  

Obviously then 

(2.26) 

to be compared with the previous formula 

P f i ~ p  = H F .  (2.27) 

The domain for HF is P x B  = 2 f F  while the domain for f i l l2  is &fB = gF where gF = rxF. 

Since fiIl2 admits its corresponding fermion realisation, we thus have two distinct 
fermion systems which can be related with fiB: one is H F  which preserves the functional 
form of the Hamiltonian. The other is the one replacing fill* after passing to fermion 
variables. 

Remark. The difference between HB, HF, H l 1 2  once we attempt at the diagonalisation 
of HB, HF is a bit annoying in the context of our previous investigations [6] where 
the one-dimensional cyclic problem was studied: 

The procedure (2.7)-(2.9) entails 

N 
PHBP= -J  C (u:u;+~+ u:+~u;) = H i / *  

E = l  

N 

= -J  C (a ;a ,+ ,  + aT+la,) 
s = 1  

i.e. precisely 

H F = P H B P =  H1/2 

to be contrasted with the previous analysis. 

(2.28) 

(2.29) 

(2.30) 
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Nevertheless the same problem as before arises in connection with the eigenvectors 
of HB which do not necessarily belong to XF = PXB. It is due to the diagonalisation [6]: 

(2.31) 

After passing to unitarily transformed bosons { i t ,  6,) we can recover the projection 
P’ = P (  b* + 6*, b + E) which gives rise to 

(2.32) P’XB = %F = PXB 

PfiBP = HF = = PHBP. (2.33) 

It means that while computing the matrix elements of PHBP in XF we can diagonalise 
the respective matrix by passing to PfiBP. This is just the case in the boson approxima- 
tion problem considered in reference 161. 

and hence consistently to 

3. Boson approximation of Fermi systems on a lattice: the boson-fermion Fock space 
unification argument 

The analysis of Q 2 indicates that, though a spin-f lattice system can be related to HB 
by adopting the spin-f approximation concept P H B P =  Hllz, it may not be of much 
use with respect to the fermion problem arising in XF via PfiBP = HF, rHBr-l = f i ~ .  
Consequently there is no apparent way to extend the boson approximation arguments 
of reference [6] to describe basic features of the fermion model HF in terms of the 
boson one HB. 

However, the situation is not that hopeless. Let us admit that our lattice systems 
are in fact the lattice approximations of some continuum field theory models (such 
problems as the fermion species doubling we leave aside since, if arising, they would 
be shared by bosons as well). In such a case we must account for an explicit dependence 
of all quantities on the lattice spacing A. To simplify our task we shall work in a finite 
volume so that passing with A to 0 means to increase the site number from N to 
infinity. It guarantees that we shall remain in the Fock space after taking the limit A + 0. 

Our problem is now how the previously discussed lattice systems would behave 
under such a limiting operation. Unfortunately we are not as yet able to keep things 
under control from the strictly mathematical point of view (with respect to the smooth- 
ness of the limiting procedure). Consequently we shall use rather intuitive and partly 
formal arguments, though a piece of strict mathematics will be used below. For further 
simplification, let us assume that the initial discrete labels of (2.1) refer to the space 
lattice only. Then let us admit 

[+(x),  +*(Y)l- = 8 Y 2 - J )  (3.1) 
[+(x), 4 4 Y ) I -  = 0 

where xs(x) is a characteristic function of the set As in R 3 ,  while As is a cube of the 
volume A3 centred about the point x,. 
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To introduce the Hilbert space X F  = PX, we need a projection P which is product 
of single site projections P,. No assumptions about any specific site ordering are 
necessary as long as we do not explicitly pass to fermions. Hence 

P =  , = I  n P,=: exp( -; b * b , ) : + x  S br :exp( -; b l b , ) : b ,  
N 

+- 1 1 bTbT :exp( -; b?b,):b,b,+.  . . .  
2! S f ,  

If now we pass formally with A to 0 we observe that 

(3.2) 

= f I dx, . . . dx, c$*(x,). . . 4*(x,,) :exp( - I d;d*(z)4(z)}: 
,=o n 

x 4(x1) ‘ .  4(x,)[L+(x,, . . . , % ) I 2  (3.3) 

where l F  is a continuum field theory operator known from our earlier studies of 
relationships between fermions and bosons [4,8]. In the above [a(x, ,  . . . , x,)]’ takes 
the value 1 except when any two x indices in the sequence coincide, when the squared 
Friedrichs-Klauder symbol vanishes. Consequently in the boson Fock space 8, 
spanned by vectors 

we deal with a continuum relative of P which has all the features of the projection as 
well: 1:= lF,  1; = lF. However, as long as the standard Lebesgue-Riemann measure 
is used to give a meaning to the expression (3.4) we encounter the rather striking 
phenomenon of boson and fermion Fock space unification on the contiuum level [9, 101. 

Indeed 

I 1 I f ) = x y  I d3x1. .  . d3x, [ a ’ + ( l - ~ + ~ ) ] f ( x , ,  . . . , x , ) ~ * ( x , ) .  . . q!~*(x,,)[O) 
, J n .  

(3 .5 )  

provided we observe that 
(i) ( 1  - a2)f is non-zero on the set of Lebesgue measure zero in R ” ;  hence its 

contribution can be omitted in ( 3 . 9 ,  see [9, lo]; 
(ii) the Fock representation of the CCR algebra induces the Fock representation of 

the CAR algebra in X ,  such that the corresponding fermion and boson generators are 
related [8, 10,4] precisely as in (3.5): +*(x) = +*(4*, 4, x). 
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Since by departing from (3.4) we would have obtained 

(3 .6)  

accounting for (3.5) leads to the conclusion that l F  effectively coincides with the 
operator unit l B  of the boson algebra: 1FI f )  = 1 f ) .  This observation is rather striking 
because it implies that while approaching the contunuum limit we are in fact extending 
the non-trivial proper subspace P X B  = X F  of ZB (on a lattice) to the whole of XB (in 
continuum). 

Let us now recall that on a lattice we have dealt with the identities 

PGBP = HF PHBP = Hl/2 (3 .7)  

where fiB = rHBr-I and r is a unitary transformation in XB. If we adopt formally 
our previous argument while passing to the continuum we obtain P +  l F =  l B ,  then 
(3 .7 )  should be replaced by the following identities in ZB: 

I 

HB= HF H B  = H l / 2  (3 .8)  

where continuum versions of previous lattice operators arise in (3 .8) ,  and AB = r H J - l  
where r is a corresponding unitary transformation on the continuous level. 

By virtue of (3.8) the continuum limits of HF and H l l z  are related by the unitary 
in XB = XF transformation r, i.e. if we would have redefined H l 1 2  in terms of fermion 
variables { $*, $} we can write 

(3.9) 

Hence, as long as we intend to develop the working approximation schemes for fermions 
in terms of bosons, we arrive at the conclusion that; once in a finite volume but with 
a high site density, differences between the lattice problems HB, HF, H l i z  can be 
disregarded. They describe almost the same (while on a lattice) phenomena. 

At this point let us raise the challenging problem of investigating the properties of 
the lattice partition Tr exp( -PHB), Tr exp( -PHI,,) and correlation functions while 
making explicit their dependence on the lattice spacing. In the absence of analytic 
tools the Monte Carlo specialists are the proper addresses of this challenge. In 
particular, in contrast to the Fermi case, the boson computations allow for studying 
the large site numbers. The challenge can be pursued further since the convergence 
of correlation functions for corresponding boson and spin-f lattice systems once we 
vary A is worth investigation. (Compare, e.g., also [ 6 ]  where another procedure for 
approximating 

HB(d* ,  d )  = HF(&*, 6) = H1/2($*, $). 

in terms of HB was proposed.) 

Acknowledgments 

The present paper was initiated during my visit to the Department of Physical Science 
of the University of Turku, Finland. I would like to thank Professor Jarmo Hietarinta 
for this opportunity. The paper was finished during my visit to Madrid and I would 
like to express my warm thanks to Professor Antonio F Rafiada for his generous 
hospitality. 



3390 P Garbaczewski 

Appendix. Uses of the two-level approximation: an illustrative example in (1 + 1) 
dimensions 

In the course of our investigations extensive use was made of the spin-f approximation 
concept, which amounts to replacing each boson degree of freedom by the respective 
two-level (spin-f) degree. Technically it was realised by means of single-site two-level 
projections p s ,  P = n S p s  so that PHBP = Hl12 could have been related to H B .  Since 
the Jordan-Wigner transformation replaces Hl12 by the pure fermion problem it 
amounts to associating the Fermi problem to HB. Generally it is not at all apparent 
how to extract the HIl2 contribution from the partition function Tr exp( -PHB), unless 
some additional prescriptions (like that of 0 3) are adopted. The situation would 
greatly simplify in the case of 

[ p, HB]- = O j T r  eXp(-PHB) = Tr[ P exp(-PHl12)] 

+Tr{(l-  P) exp[-P(l- P)HB(l - P)]}. (‘41) 

It may however also happen that the non- Hl12 contribution is not relevant at all and 
that the following identity holds true: 

Tr exp( -PHB) = Tr P exp( -PPHBP) 

= Tr exp(-PH,,d (A2) 

for lattice systems themselves and hence without any reference to the previous boson- 
fermion Fock space unification argument. To demonstrate that (Al )  is possible, we 
shall follow reference [ 111, mainly its 0 4. The one-dimensional spinless fermion lattice 
model 

[cs, cT1+ = a s ,  l s s s M  

upon denoting 

af =t(a:+ia:) a b  = t(  a: - iaf ) 

and using the Jordan-Wigner transformation: 

admits a reformulation in terms of (free boundary conditions are adopted) 

t 2t 
f U V 

= -2; ( W:V:+, + W’;U’:+, +-u:u:+, --U:  
21 
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The evaluation of the partition function proceeds by studying its Trotter approximations 

M 

N = C n i  
i = l  

('47) 

z(z, 1 )  =- 1 cos-exp( 27rln z cos?). 
M M 

Let us get rid of the minus sign problem and replace Zm by the subsidiary formula 

Let us here observe that, except for the restriction on the sum over possible partitions 
of the particles, ('48) is identical to the mth approximation of the partition function 
for the pure Bose system. Namely we have 

2: = Tr[exp(-Pfi,/m) exp(-Pfi2/m)]" ('49) 
and 

Tr[ P exp( -PPG, P / m )  P exp( -PPf i2P /  m)P]'" Zfl;llZ = ('410) 

where 

and 

fi' = v bTbsb51b,+l  
s 

stand for the boson kinetic energy and potential, respectively. The projection P is 
precisely the product of two-level projections of ours and introducing it is the same 
as saying that there is a hard core interaction that prevents two particles from occupying 
the same site. For the complete projected boson Hamiltonian the corresponding Trotter 
approximation is 

In general we have 

2, # 2:2 # z: # z y  (A12) 

= i , ,  contributions die out, we arrive but due to the fact that in the m + m limit all 
at 

lim Z, = Iim z:'= lim z:"~= lim z!. 
m-m m-m m-m m-cc 

('413) 

Thus in the limit m +a the subsidiary model and the projected one give rise to the 
same partition function, and as long as the computation of the partition function is 
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of interest for us, we can even make the identification of the models, albeit the operator 
identities 

HB = Hl/2 

HB = A = A, + A2 
exp(iHBt) = exp(iH,,,t) 

are invalid in general. One must also be aware that in higher dimensions the minus 
sign trick does not apply and, e.g., the two-dimensional spinless fermion model does 
not admit the analogous procedure [ 113. 
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