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The Fock space for the fermion field can be identified with the Fock space for 
the boson field, provided the overall numbers of internal degrees of freedom are 
the same. As a consequence, the respective free field Hamiltonian systems are 
equivalent (dual): the four-component neutrino model is thus equivalent to the 
doublet of independent ("electric" and "magnetic," respectively) Maxwell fields, 
which are quantized in the Coulomb gauge. This statement arises on the field 
theory level, and seems to make doubtful the claim that realistic photons can 
be constructed from (bound) neutrino pairs: each (anti)neutrino degree should 
be represented by the photon-type ("electric" and "magnetic," respectively) 
degree of freedom. 

1. M O T I V A T I O N  

An o ld  p r o b l e m  o f  the  neu t r ino  theory  o f  l ight  has been  recent ly  revived 
(Ara tyn ,  1983; Lu ther  a n d  Schotte ,  1984; Micke lsson ,  1985) and  even 
p u r s u e d  (Lu the r  and  Schot te ,  1984) to the  no t ion  o f  p h o t o n - n e u t r i n o  dua l i ty  
[ the subt i t le  o f  Luther  and  Schot te  (1984) states:  neut r inos  f rom pho tons  
and  vice versa] ,  which  is a cu lmina t ion  o f  the a p p r o a c h  o f  Bloch,  Jo rdan ,  
Kronig ,  H a l d a n e ,  and  Luther  ( and  others)  to the  desc r ip t ion  o f  Fe rmi  
systems in te rms o f  bosons .  

The cons t ruc t ion  o f  Lu ther  and  Schot te  (1984) refers to m o m e n t u m  
space  la t t ices  (pe r iod ic  finite box  in conf igura t ion  space)  and  thus the  b o s o n  
or  f e rmion  c rea t ion  ( ann ih i l a t ion )  ope ra to r s  are  re la ted  to discrete  phys ica l  
degrees  o f  f r e edom (modes) .  A ser ious  p r o b l e m  whose  analysis  in Luther  
and  Schot te  (1984) is not  ye ry  de ta i l ed  is connec t ed  with the inf in i te-volume 
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limit (i.e., continuous mode distribution). The trouble seems to arise from 
the very recent demonstration of the boson and fermion Fock space 
unification (see, e.g., Garbaczewski, 1985a, but also Garbaczewski, 1985b). 

A much less important point is that the photon-neutrino duality of 
Luther and Schotte results in splitting the bosons into two independent 
potentials. One can be identified with the standard ("electric") Maxwell 
potential, while the other is not the dual one in the well-defined Weinberg 
(1965) sense. Hence, its relationship to electromagnetism is not that obvious. 

Coming back to the above-mentioned Fock space unification issue, let 
us emphasize that in Aratyn (1983) and Luther and Schotte (1984) the Fock 
representations of the CCR and CAR algebra are used, and for the notion 
of duality it is essential that the vacuum state is common for both. Some 
time ago a general theorem was proved on the relationship of such rep- 
resentations (Garbaczewski and Rzewuski, 1974; Garbaczewski, 1975). 
Quite recently it has been strengthened by the boson-fermion Fock space 
unification (rigorous) proof (Hudson and Parthasarathy, 1986; Garbac- 
zewski, 1985a). Since the field theory case is finally what is of interest in 
Luther and Schotte (1984), the conclusions about photons as neutrino 
composites must not be inconsistent with Hudson and Parthasarathy (1986) 
and Garbaczewski (1985a). 

Our anlysis from the very beginning will be performed on the field 
theory level, and its starting point will be the second quantized version of 
the four-component neutrino theory. It is to be contrasted with Luther and 
Schotte (1984), where the whole of the analysis was made for the model in 
a finite box, hence corresponding to the discrete momentum distribution. 

The boson-fermion relationship we have in mind from the start is very 
different from the traditional "fusion" route, since each single fermion 
degree of freedom will find its respective boson image and conversely. In 
particular, if we apply it to field theory models in Fock space (the space-time 
dimension or spin choice is immaterial here), we arrive at the following 
observation (Garbaczewski, 1985a): 

Each local Fermi field theory model, if quantized by means of the Fock 
representation, admits an equivalent pure boson realization (fields may 
violate the local commutativity condition on the boson level). If adapted 
to the standard Fermi field Hamiltonian in its diagonal form of, say (Bjorken 
and Drell, 1965; Lee, 1981), 

f HF = Y~ d3pEp[b*(p,s)b(p,s)+d*(p,s)d(p,s)] 
$ = •  

[b(p, s), b*(p', s')]+ = 8~,~(p -p ' )  = [d(p, s), d*(p', s')l+ (1) 

b(p,s)lO):d(p,s)[O)=O Vp, s 
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the construction of Garbaczewski (1974, 1975) automatically leads to the 
conclusion that in the very same Fock space ~ [in connection with the 
Fock space identification issue see, e.g., Hudson and Parthasarathy (1986) 
and Garbaczewski (1985a)] we deal as well with the Bose system 

HB= Y, f d3pEp[B*(p, s)B(p, s)+D*(p, s)D(p, s)] 
s = •  d 

[ B(p, s), B*(p', s')]_ - ~Js~,6(p -p')  =- [ D(p, s), P*(p', s')]_ 
(2) 

B(p, s)[0) = 0 = D(p, s)[0), Vp, s 

B*(p, s)lO) = b*(p, s)10), D*(p, s)[0) = d*(p, s)]0) 

which is equivalent to the previous Fermi system in the following sense: 

U,~l,/,) = H,~I,/,) Vl,/,) ~ ~ c ,~  
(3) 

exp(iHBt)l~) = exp(iHFt)l~) Vl,/,) 
Let us emphasize that in the above we deal with diagonal Hamiltonians 
and that in the nondiagonal case the fermion partner obeying (3) cannot 
be found for all boson models. 

Also see, e.g., the detailed study of analogous phenomena for interact- 
ing models in 1 + 1 dimensions (Garbaczewski, 1983, 1984). 

If we specialize Ep to the case of mass-zero particles Ep = Ipl, the 
identities (3) provide us with the most general solution to the problem of 
representing the four-component neutrino Hamiltonian in the Hilbert space 
of  the Bose system. The reverse problem of  representing the Bose Hamil- 
tonian in the fermion Hilbert space is solved by (3) as well. 

It is a priori impossible to reconcile the ansatz of "fusion" = neutrino 
theory of light (fermion pairs superposing to a boson) with (3), where each 
fermion degree of freedom finds its respective boson analog. Though this 
ansatz is motivated by the need to reconcile the spin-�89 and spin-1 transforma- 
tion properties of one-particle states, it is inconsistent with the continuum 
field theory identities (3), whose origin is investigated in Section 2. 

Since the identities (3) hold unambiguously, it is our aim to understand 
the physical meaning of the related boson degrees of  freedom: in fact, we 
are strongly motivated by the paper by Luther and Schotte, so that we 
expect them to be related to electromagnetism. 

At this point we turn to the classic papers (Weinberg, 1964a-c, 1965) 
on the transformation properties of  fields and states as well as on the 
construction of relativistic fields while a physical (helicity) information 
about particle states is supplemented by the spin specification. The analysis 
of  the quantization of gauge fields and of  the role of the weak local 
commutativity (Strocchi, 1967, 1970) is extremely useful in this respect. We 
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were struck by the fact that the monograph by Itzykson and Zuber has no 
description of the results of Weinberg's and Strocchi's papers in application 
to massless fields, and the Gupta-Bleuler formalism is left as the only 
candidate. The main results of this paper are listed in the conclusions. 

2. FOCK SPACE UNIFICATION FOR FERMIONS AND BOSONS 

We outline the aspects of Garbaczewski (1974, 1975, 1985a) and Hud- 
son and Parthasarathy (1986) that underly the identities (3). One must be 
warned that the situation becomes more complicated if we pass to interacting 
fields: then it is not true that all boson models allow for a pure fermion 
reconstruction, while the converse still retains its validity (see, e.g., Garbac- 
zewski, 1985a). Any construction of fermion (CAR) algebra generators falls 
into the framework established in Garbaczewski (1974, 1975). Namely, we 
have shown that certain homomorphisms of the nth power space K | can 
be exploited to produce Fock representations of the CAR algebra in the 
Fock space of this for the CCR (boson) algebra. Effectively, the fermions- 
from-bosons program was accomplished there. We have the Fock space 
carrying the representation of the CCR algebra: 

[b(f) ,b(g)*]_=(f  g)lB 

[b(f),b(g)]_=O (4) 

b(f)[0) = 0 Vf~ K 

where K is the test function space and (f, g) denotes the scalar product in 
K. The analysis of Garbaczewski (1974, 1985) demonstrates that in ~ a 
Fock representation of the CAR (fermion) algebra is induced such that its 
generators obey 

[a(f) ,a(g)*]+=(f g)lF 

[a(f) ,  a(g)]+ = 0 (5) 

a(f)JO) = 0 Vf~ K, a(f)*10) = b(f)*10) 

In pysical terms this means that the Fock vacuum is common for both 
representations, and that the overall number of internal degrees of freedom 
for fermions and bosons is the same (and is determined by the choice of 
K). Let K =O1N L2(R3), which corresponds to the number N of internal 
degrees of freedom. On the basis of Garbaczewski (1974, 1975) (compare, 
e.g., also Garbaczewski, 1984, 1985a, b), it is easy to check that each 
n-particle fermion state in the boson Fock space has the following realization 
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(the hom omorph i sm  of  K | must  be specified accordingly):  

a ( A ) * ' ' '  a(fn)*10) 

= ~ ' ' '  d3k, ' ' '  d3k,f~l(k,)  ' '  "f~ (kn) 
a l = l  a n = l  

a * , ( k l ) . . "  a*o(k~)10) (6) 

= ~  d 3 k l " "  f d 3 k n f ~ t ( k l ) ' " f ~ " ( k ~ )  

x t r ( a , ,  kl; a2, k2; . . .  ; an, k , ) b * ( k , ) " "  b*~ 

where,  obviously 

[be(k) ,  b~(p)]_-= 3 ~ 6 ( k - - p ) l B  

[a~(k) ,  a~(p)]+---- t$ , ,~ t$(k--p) lF  

a,,(k)10) = b, , (k)[0)= 0 Va,  k 

a*( k )lO) = b*( k )lO) (7) 

a * , ( k l ) "  " a* (k,,)lO) 

= o-(o~, k , ; . . .  ; a , ,  k , ) b * , ( k l ) . . ,  b*n(k,,){O) 

In the above,  t r ( a l ,  kl; �9 �9 ; an, kn) is the Fr iedr ichs -Klauder  ordering sym- 
bol, taking the value 0 or +1: 

~(a~(~), k ~ ( G . . .  ; a~(~), k~(n) = ( - 1 )  ~ 
(8) 

(a, k), # (a, k b Vi, j 

The symbol  vanishes if any pair  (a,  k) of  labels appears  more  than once. 
To unambiguous ly  define the meaning o f  the permuta t ion  ~r we adopt  the 
convent ion o f  l inear ordering:  (a,  k) < (a ' ,  k') if  a < a '  or  ol = a ' ,  kl < k~, 
or a = a ' ,  k(1) = k~), k(2 ) < k~2), or a = a ' ,  k(n = k~l), k(2) = k~2), k(3) < k~3), 
k = {ko)  , k(2), k(3)} C R 3. Quite analogously  to (6), the n-particle boson state 
in ~g can be given both  in terms of  boson and fermion generators:  

b( f , )* .  . . b(A)*10) 

.~- ~ N  [ d 3 k l  . . O [ d 3 k n f l l ( k l )  . , . f : n ( k n ) b ~ t ( k l )  . . . b ~ n ( k n ) l O )  
,1 

a 1 , - . .  ot n 

x [~r(,~x, G ; - - .  ; '~,, k ~ ) b * , ( k 3 "  �9 b*.(k~)][O) 

= ~N f d 3 G . . . f d 3 k ~ f ~ , ( k , ) . . . f : f f k n ) . c r ( a , , G ; . . . ; a n ,  k~) 
ot I , . . .a n 

x a *  (k,) . . . a* (k.)lO) (9) 
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In the above formula we made use of  the fact that the contributions 
from sets ( k ~ , . . . ,  k,) on which the symbol o- vanishes are of Riemann- 
Lebesgue measure zero (Garbeczewski, 1985a; Hudson and Parthasarathy, 
1986); hence we could safely insert ~r 2= or. or. The antisymmetric n-point 
function 

~t n . - -  a l ' " o ~  n . , f~ ' (kO'"  " f ,  (k , ) .  o'(o~1, k~ ; . . . ,  a , ,  k,) -f~ntisym(kl,.. k,) 

upon multiplying by o-, is turned into a symmetric function which respects 
the Pauli principle [i.e., vanishes if any pair of (a, k) labels appears more 
than once], and conversely. For general Fock space vectors the following 
formula holds: 

If) e 

I f )  = 2 Y~ y N d3k, "'" d3k . f  % ...... " ( k , , . . . ,  k.) 
n~O Otl,...ot n 

x a*,(kl) �9 �9 �9 a*o(k,)10) 

~ ~ N  f f d 3 k l . . , f d 3 k  n 
n=o Otl ,.,.~o~ n 

• [ f f  . . . . . . .  . ( k , , . . . ,  k.)o'(a,, k , ; . . .  ; a., k.)] 

• b * ( k O " "  b*~ (10) 

and it is an easy exercise to verify that the (diagonal) operators 

HF = Y d3kEka*(k)a~(k) 
o ~ = 1  t 

(11) 
HB = Y~ d3kEkb*(k)b~(k) 

o L = I ~  

satisfy the identities 

HF]f) = HBIf) Vlf  ) ~ ~ c 
(12) 

exp(iHFt)lf) =exp(iHBt)lf) "r ~ Y( 

[compare, e.g., (3)]. 
In connection with the formulas (12) and (3), which imply the iden- 

tification HB -= HF on any domain that is chosen in common for the Bose 
and Fermi problem Fock space, one may raise the issue of whether the two 
Hamiltonians HB and HF do indeed describe the same physics. The experien- 
ced statistical physicist would immediately object against the identification 
of  boson and fermion free energies. Moreover, the correlation functions 
that are used to determine the model are obviously different, depending on 
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the choice of  the boson or fermion statistics. Even worse, there exists an 
interesting example of the boson-fermion relationship (Schick, 1968) in 
which the free fermion Hamiltonian (energies of  the form p2/2m) is replaced 
by the boson Hamiltonian, which in addition to the bilinear Tomonaga 
term involves a trilinear interaction piece, to be viewed as a small per- 
turbation. 

All this would seemingly contradict our previous analysis. However, 
the situation is not that bad: 

1. The identities (3) and (12) pertain to models with continuous (or 
almost continuous) energy-momentum spectrum, which is not the case in 
standard statistical physics considerations. A good example is just the model 
studied in Schick (1968), where the number N of  fermions with spin �89 is 
placed on a ring of finite radius, so that a discrete set of modes arises. 

2. As usual with the boson description of  Fermi systems (irrespective 
of whether we use a fermion pairing idea or not) on a momentum or 
configuration space lattice, the replacement of the fermion by the boson 
Hamiltonian amounts to a certain approximation scheme: it is meaningful 
only on a restricted set of states. These restrictions can be imposed to select 
a subset of  Fermi states of  the boson system (Garbaczewski, 1985b). But it 
may as well happen, and it does in Schick (1968), that the two Hamiltonians 
are put into equivalence only on a restricted set S of states of  the Fermi 
system itself: the boson representation of  the fermion Hamiltonian is then 
confined exclusively to S. 

3. Though we were interested in the continuum mode distribution, 
there is an apparent link between the momentum space lattice studies of 
Luther and Schotte (1984) and Schick (1968) and ours. Namely, we can 
always pass to the variety of  lattice approximations of the continuous system 
once given [Schick's (1968) model would be one of them] Provided the 
continuum limit can be approached smoothly, the differences between 
distinct lattice approximants can be disregarded in the appropriate (large 
site or mode number in the finite volume) regime. 

We now give a more detailed description of point 3. Let the free boson 
field theory model be given in 1 + 1 space-time dimensions: for concreteness, 
one may take the c = 0 case of the nonlinear Schr6dinger field (Garbac- 
zewski, 1985b). Then the canonical generators 

[B(k) ,  B*(p)]_-= ~ ( p - k ) ,  B(k)JO)=O Vk; k, p c  R 

induce a sequence of lattice approximants: 

bs = A-~/2 I x~(k)B(k) dk (13) 

where xs(k) is a characteristic function of the set z~, ~ R whose length equals 
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A. We denote by Y6B the boson Fock space. We introduce a projection P 
in ~B: 

P=IIp~ 
s 

(14) 
p~ =: exp(-b*bs): + b*: exp(-b*bs): b~ 

We observe that 

where 

HB=E ekb*bk-> PHBP =Y~ ekO'~(r{ = H~=Y. eka*ak (15) 
k k k 

Pb*P= + o-~ , Pb~P = o'~ 
[o-L ,r~]+ p ar,]_=O, s # t ,  [cr]-, + = 

(16) 
+ ~ ( 1  + - = - - 2 0 " j o r j )  a ~s or s j 

[as, a*]+ = t3stP 
Consequently, the spin-�89 Pauli operators and the corresponding (via Jordan's 
map) Fermi ones can be consistently introduced on the proper subspace 
P~B = ~V of YgB" Here 

a * . . -  a*lO) = %.j,~j+,... o-~1o) 
= g j c , . j b j ~ ' ' "  b*lO) (17) 

For sequences of indices with noncoinciding entries, ej,...js is the completely 
antisymmetric Levi-Civita symbol, which takes values 0 or +1. 

If we notice that 

P=~Ps=:exp(-~b*bs):+~b*:exp(-~t b*b,):b, 

' ( r ) +-- ~, b'b* :exp - ~  b*br :btbs+" �9 " (18) 2!s~l 
then the formal passage from A to 0 (see, e.g., Garbaczewski, 1985a) gives 

P= P~x ~ :exp[- I dk B*(k)B(k)]: 

+f  dkB*(k):exp[-f  dpB*(p)B(p)]:B(k)+... 

= E 1 d k , .  �9 �9 d k ,  B * ( k , ) .  �9 �9 a * ( k . ) [ ~ ( k l , . . . ,  k , ) ]  2 
n=0 

x : e x p [ -  I dpB*(p)B(p)]:B(kO...B(k,,)=lv (19) 
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where 1F is a continuum field theory operator (the operator unit of the Fock 
representation of the CAR algebra in the boson Fock space) known from 
our earlier studies of relationships between fermions and bosons (Garbac- 
zewski, 1985b). 

In the above, o - ( k l , . . . ,  kn) is a completely antisymmetric symbol, a 
good example being provided by 

c r ( k l , . . . ,  kn)= 1-[ [ O ( k i - k j ) - O ( k j - k i ) ]  (20) l<--j<i~n 
where O(k) is the Heaviside function. 

The relevant feature of 1F is that although it is a projection in the boson 
Fock space ~B, it is in fact trivial, and can be identified with the operator 
unit 1B of the boson algebra, so that 

P~a  = o~Fc o~B ) 1FO~B = ~ F =  ~a  (21) 

which implies the unification of  the boson and fermion Fock space (Garbac- 
zewski, 1985a; Hudson and Parthasarathy (1986). Namely, the boson Fock 
space is spanned by vectors 

(n!)~/~ . . . ,  

• B*(kl) �9 �9 �9 B*(kn)[O) (22) 

If  we take account of  the fact that each n-point wave function can be 
decomposed as f =  tr2f+ ( 1 -  tru)f, where the second term is different from 
zero on the set of  Lebesgue measure zero in R", we find 

[ f = ~ n ~ I d k I ~  dkn{f(kl,...,kn)o"(kl.,.o.,kn)} 
x o-(k , , . . . ,  k , ) B * ( k , ) . . .  B*(k, )10)  

--  n ( h i )  1/2 dkl'', dkn{f(k,,...,kn)o-(kl,... ,k.)} 

• A*(kl) �9 �9 �9 A*(k.)]0) (23) 

[A(k), A*(p)]+ = 8 ( k - p )  

A*(k)lO = B*(k)lO), A(k)IO) = 0 Vk  ~ R 

In the above the Fermi generators {A*(k), A(k)} were introduced, which 
is allowed by Garbaczewski and Rzewuski (1974) and Garbaczewski (1975) 
(see also Garbaczewski, 1985a, b): the same state vector thus describes the 
boson and fermion cases in Wa. The symmetric or antisymmetric wave 
functions are merely the different coordinate representatives of  this vector, 
depending on the particular choice of the boson or fermion basis in ~'a. 
When A goes to zero, the proper  subspace P~B = ~s of ~B i n  fact extends 
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to the whole of YgB (one may as well say that YgB collapses to YgF) and 
differences between distinct boson versions of the free fermion model on 
a lattice can be disregarded in this regime. 

3. REVIEW OF SYMMETRY PROPERTIES: 
CONSISTENCY CHECKS 

We begin by stating that all the basic notations, including conventions 
for Dirac gamma matrices, are standard (Bjorken and Drell, 1965; Itzykson 
and Zuber, 1980; Lee, 1981) in the present paper. In Luther and Schotte 
(1984) nonstandard conventions were used, which makes a difference if we 
turn to explicit transformation formulas. 

Compared with Weinberg (1964a-c, 1965) and Lee (1981) we make 
one departure, by making use only of the explicit helicity parametrization 
s = +1 with spin value considered separately (Weinberg and Lee use +�89 or 
+1 labeling). Let us introduce the following notation for the boson operators 
related to the four-component neutrino problem: 

(D*(p, 1 {a*+ia*2"~ , 
D*(P):\D,(p,+)))  : - ~ a , _ i a , ) [ P )  

o p, +,) 1 ( . : : )  
\D(p, =-~ a,+ (P) 

(24) 

n*(p) = \n*(p, \ 8 " -  

1 B(p)=(B(P'+l)  =--~(;:-ifl2"~" " 
\ n( p, +i[32] tp ) 

where 

[a,(p), a*(q)]_ ~ 8ijS(p - q) =- [/3i(p),/3*(q)]_ 

[a~(p),/3f(q)]_ = 0 (25) 

ai(p)10) =/3~(p)10) =0, Vi, p 
and the boson equivalent of the neutrino Hamiltonian reads 

/40 = • [ d3p[B*(p,s)B(p,s)+D*(p,s)D(p,s)].lpl (26) 
s : •  g 

Our problem now is to demonstrate that within the Hamiltonian formalism, 
when supplemented by the boson-fermion duality observation (3), Ho 
describes both spin-�89 (Fermi) and spin-1 (Bose) particles for the mass-zero 
case. The state (Fock) space is here common for bosons and fermions. For 
this purpose the knowledge of transformation properties and field construc- 
tions catalogued in Weinberg (1964a-c, 1965) is crucial. 
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To facilitate further discussion (we in fact anticipate the final con- 
clusion), we shall admit that in the Hilbert space Yg of the four-component 
neutrino problem, in addition to the neutrino fields, we can consistently 
define two independent four-potentials (not fields in Weinberg's ter- 
minology), which are quantized according to Weinberg's strictly physical 
(helicity) procedure (see Weinberg 1965; Strocchi, 1970). 

1. The Hilbert space is equipped with a positive-definite metric, and 
only the physical (helicity plus or minus) states are allowed to arise in it. 
Then the analysis of the Poincar6 group representations follows the standard 
pattern. The Fock representation of the CCR is used. 

2. The Lorentz condition O~A ~ = 0 is imposed on the potential A~ as 
an operator identity. We assume the same with respect to B~. 

3. The fourth component Ao of the potential is required to be identical 
to zero (the same for Bo), which results in the manifest Coulomb gauge. 

As is well known, in this formulation potentials lack manifest covari- 
ance and do not satisfy weak local commutativity, which is, however, the 
price to be paid if the purely physical state space is admitted. In the 
Gupta-Bleuler formalism the set of physical states cannot be dense in the 
(indefinite metric) Hilbert space. 

According to Weinberg (1965), m = 0 ,  spin 1 theory allows for two 
possible choices of the potentials for the Maxwell framework. They differ 
with respect to parity and time reversal. For the normal "electric" potential 
A~ we have 

PA~(x)P -1= -A~(-x ,  t) 
(27) 

TA"(x)T -1= -AU(x, - t )  

while for the abnormal "magnetic" potential 

PB'(x)P -1 = B~(-x, t) 
(28) 

TB'(x)P- '= B~(x,- t)  

The magnetic potential is known not to couple charged currents. For charge 
conjugation we have as usual CA"(x)C - l=-A€ and CB'(x)C 1= 
- B ' ( x ) ,  so that the CPT transformation of both potentials is the same. 

We adopt the following definition (/3* and/3 's  arise if we replace A" 
by B~'): 

f d3xexp(ikx) ,, 
a , (k )  = [ - ~ ] ~ e t x ,  A). []klA(x)+iA(x)] 

A = 1, 2 (29) 
I d3x exp( -  ikx) 

~* (k ) =  [2[k1(2~.)3]~/2 e(k, A). [IklA(x)-i,A(x)] 
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which, upon adopting the convention 

e(-k ,  1) = e(k, 1), e(-k ,  2) = -e(k ,  2) (30) 

implies that the operators for the circularly polarized radiation 

et*(k, +) =~[a*~(k)+iet*(k)]'--D*(k, +) 

et*(k, - )  = 1 let l*(k) - iet*(k)] - D*(k, - )  

(31) 

fl*(k, +) = ~22 [fl*(k) + i3"2(k)] - B*(k, +) 
. i  

[fll*(k) - ifl*2(k)] "- B*(k, - )  ~*(k; 

transform according to 

Pete(p, s)P -1 = -et #(-p,  - s )  

Pl3#(p, s)P-'  = ~#(-p,  - s )  
(32) 

Tet#(p, s) T - t= -et#(-p,  s) 

r~ #(p, s)r-1 = ##(-p ,  s) 

while 

Cet #(p ,s )C- l=-c~#(p ,s )  
(33) 

c 3 # ( p ,  s ) c  -1 = - /3#(p,  s) 

Obviously, C, P, and T are symmetries of the Hamiltonian (26) irrespective 
of whether we relate operators B*, B, D*, and D to spin-�89 or spin-1 particles, 

[Ho, C1] = 0 = [no,  P,]-  = [Ho, T1]_ 
(34) 

[/4o, C,/:]_ = 0 = [Ho, P,/2]- = [Ho, T1/2]- 
The subscript 1 or �89 refers to the choice of the transformation properties 
for the same operators B*, B, D*, and D. 

For our later purposes we observe that Ho also displays another invari- 
ance connected with the map 

AZ(x) --> + B~(x) (35) 

which seems to be rooted in the dyality (duality) symmetry of electro- 
dynamics with magnetic charges (Cabibbo and Ferrari, 1962; Rohrlich, 
1966; Han and Biedenharn, 1971). 



Boson-Fermion Duality in Four Dimensions 1205 

Though it is an academic exercise to check that standard symmetries 
of the spin-~ mass-zero (in fact, discrete symmetries display the same 
property when the mass of the Fermi field is nonzero) obey (34), it is, 
however, worth indicating how the spin-�89 and spin-1 transformations of the 
same operators are related. Namely (spin-�89 label refers to spin-�89 transforma- 
tion rules) we have 

P1/2D*(P, s)P-(:2 = -~?eD*(-p, - s )  = ~?ePID*(p, s)P? 1 

P1/2D(p, s)P~]2 = -~l*pD(-p, - s )  = 71*pelD(p , s )P[  1 
(36) 

P1/2B*(p, s)P-~]2 = rl* B*( -p ,  - s )  = ~? *pP, B*(p, s) P-~' 

P,/2B(p, s)P1]2 = ~?pB(-p, - s )  = rlpP, B(p  , s)P'I 1 

which differs by a phase factor It/el = 1 from the spin-1 transformation 
formulas. 

Analogously for the time reversal we have 

T1/2D*( p, s ) T1]2 = [ -exp  i |  s) ] TiD*( p, s ) T ( '  

Ta/2D(p, s) Ti-/~2 = { - e x p [ -  iO(-p,  s)]} T1D(p, s) T ;  1 
(37) 

T~/2B*(p, s) T1)2 = [exp iO(p, s) ]T~B*(p, s) T-[ ~ 

TI/2B( p, s)Ti-/lz = {exp[-iO(p, s) ]} T1B(p, s )T? ~ 

Here exp[- iO(p,  s )+  iO(-p ,  s)] = 1. 
With respect to the charge conjugation we have 

C,/2B(p, s)C~:2 = ~7~D(p, s) 

C,/2B*(p, s)C[/~ = r/*D*(p, s) 
(38) 

C1/2D(p , s)C;/2 = ~?* B(p, s) 

C1/2D*( p, s)C;)2 = ~?cB*(p, s) 

which means that up to the phase factors, spin-l /2 transformations are 
generated by spin-1 transformations combined with the duality mapping of 
potentials A • --> + B ' .  

Conventionally the real distinction between spin 1 and spin �89 is 
attributed to the explicit spin factor which enters the transformation for- 
mulas with respect to rotations. Indeed, there is merely a phase difference 
(as in the case of discrete transformations), since 

UI/2( A ) B*( p, s) U1-/12(A) = (IApl/ l p l) 1/= 

x exp[�89 A)].  B*(Ap, s) 
(39) 

Ua/2( A ) B( p, s) U~-/~2(A) = (IApl/ I PlY/2 
• exp[-�89174 A)]- B(Ap, s) 
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and D * ( p , - s )  transforms like B(p, s), while D ( p , - s )  transforms like 
B*(p,s): 

Uw2( A ) D*(p, - s  ) U~-/12(A) 

= (Impl/lpt) '/2 exp[-�89 A)], D*(Ap, - s )  (40) 

Passage to spin-1 transformation rules amounts to keeping the same transfor- 
mation rule (39) with s = +1 replaced by 2s for both the electric and magnetic 
cases. 

It is also useful to know that 

H~ = U,/2(A)Ho U[/~2(A) 

= U,(A)HoU[I(A) 

= Y. [ d3plAp][S*(Ap, s)B(hp, s )+D*(Ap,  s)D(Ap, s)] (41) 
$ 2 •  d 

i.e., [Ho, HoA]-= 0. We thus have an explicit proof that apart from the 
equivalence of Hamiltonians, the transformation properties of spin-1 and 
spin-�89 type lead to outcomes differing in the phases. However, it is not our 
aim (in contrast with what the standard neutrino theory of light demands) 
to get the same transformation properties for photon relatives of neutrinos. 
The general Weinberg analysis demonstrates in fact that from the same set 
of operators we can construct massless fields corresponding either to spin 
1 or spin �89 which reside in a common Hilbert space, and whose dynamics 
is governed by the same (Bose-Fermi equivalence must be invoked at this 
point) Hamiltonian. This means finally that our Hamiltonian (26) has in 
fact two formally distinct but in all respects equivalent realizations: in terms 
of the relativistic spin-�89 field describing the mass-zero four-component 
neutrino, and in terms of the doublet of electric and magnetic Maxwell 
potentials, which in our case are introduced as independent operator quan- 
tities, [A ' (x ) ,  BY(y)]_ = 0. 

4. CONCLUSIONS 

1. The Fock space ~ for the four-component neutrino and the two 
(magnetic and electric) species of Maxwell field is the same. The Hamil- 
tonian Ho of (26) is common (via Bose-Fermi duality) for both systems, 
provided we identify boson operators B#(p, +),D#(p, • with operators 
[3 # ( p, +), a # (p, +) for circularly polarized radiation (magnetic and electric, 
respectively). 

2. The corresponding Hamiltonian simultaneously governs the 
dynamics of two formally distinct fields (which can be constructed in 
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following the Weinberg recipies), the spin-1 and spin-�89 fields, which, though 
displaying different transformation properties, have precisely the same 
physical content. 

3. In accordance with Weinberg's rules to construct relativistic fields 
for the case of  spin �89 m = 0, the left- and right-handed neutrino operator 
b(p, +) and (or) B(p, • refers to the left- and right-handed "magnetic" 
photon, which does not couple to charged currents. The antineutrino corre- 
sponds here to the standard electric photon. 

4. It is incorrect to say that neutrinos are constructed from photons 
or photons from neutrinos. As massless particles in the above framework 
they are in fact identical. 

5. What is the deeper physical meaning (if any) of the above results 
we are not competetent to debate. The same concerns the existence or 
nonexistence of the right-handed neutrino (Barut, 1984). The most appealing 
feature in the above is the fact that the magnetic potential B"  plays a 
distinguished role and allows for the identification of the "magnetic" photon 
(so far never introduced) with the neutrino. The fact that it does not couple 
to charged currents is very attractive in this context. 

6. In our second-quantized approach two independent operator-valued 
potentials arise, and there is no way to express one potential in terms of 
another. If  it would have been possible, we would have reduced the problem 
to the first-quantized level, when the potentials are simply classical objects. 
The potentials can then be related, which is the case in the tensorial 
description of neutrinos (Penney, 1965) or in constructing the spinor rep- 
resentation of  the Maxwell equations (Moses, 1968; Takahashi and Okuda, 
1983). An analogous situation is encountered in Aratyn (1983), where one 
departs from the antisymmetric tensor fields. 
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