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The canonical quantizations of field and action-angle coordinates which (locally) parametrize
the phase manifold for the same nonlinear field theory model (e.g. sine-Gordon and nonlinear
Schrodinger with the attractive coupling) are reconciled on the common for both cases state
space. The classical-quantum relationship is maintained in the mean: coherent state expectation
values of operators give rise to classical objects.

1. Motivation

In the modern field theory literature, it is rather common to consider classical and
quantum problems separately, and the old tradition that a physically relevant quantum
theory should (must?) contain a prescription for going over to the classical partner is
often neglected as an unnecessary complication. The reverse problem of the (canonical)
quantization of the once given classical theory becomes reduced to the formal replace-
ments of phase space variables by operators, so that the quantum meaning of classical
field theory! -3 effectively evaporates from the formalism.

There are many ambiguities inherent in passing from the classical to quantum
description* and reversly.® We shall pay a particular attention to the following points:

(i) When passing to the quantum picture a specification of the Hilbert space domain
for quantum operators is necessary and it is usually not contained in the quantization
prescription. It is our aim to maintain the classical-quantum relationship (in the mean)
which imposes the domain limitation to guarantee a proper classical image of the
quantum model.

{(ii) The quantization procedures are sensitive to the initial choice of coordinates on
the symplectic manifold, and usually are not invariant under general canonical trans-
formations. The passage from field variables to the action-angle coordinates may
strongly affect the arising quantum structure.

A particularly convenient playground for studying these issues is provided by
completely integrable modelsin 1 + 1 dimensions, and we shall confine our discussion
to the two classic examples: the nonlinear Schrédinger field with the attractive coupling
and the sine-Gordon field. Albeit specialized, the underlying analysis pertains to the
general theoretical foundations of the quantization of nonlinear fields.

As is well-known the action-angle version of the classically integrable model in
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addition to soliton coordinates includes the so-called radiation contribution. The
problem of quantizing the field, so that the action-angle problem gets quantized in the
state space of the quantum field simultaneously, has not received adequate attention
in the literature. Especially since we must reconcile the canonical quantization of the
field coordinates (Y, y*), (¢, IT) and this of the action-angle coordinates (g, p, T, m, @, @*),
(4,p,.Q, P, p,6, ¢, n) for the nonlinear Schrodinger and sine-Gordon field respectively.
A more detailed discussion of the problem is postponed to Secs. 3 and 5 of the present

paper.
2. Canonical Formalism for Classical Fields

2.1. Nonlinear Schrodinger field: Galilei invariance in terms of the scattering data
Our classical model is defined as follows

1 g
H= W |? — Z (Y * |dx,
L(z#l!ﬁxl 2I'//l ) x .

oy =y, = {¥(x), H},

(64 6B o4 ¢B
{4,B} = ‘J <5l/l*(x) SWx)  SYx) 6¢*(x)> e

We assume g > O i.e, the attractive case. The system is invariant under the action of
the extended Galilei group with generators®

M= ufhlllzdx,

P= J‘//*(—i‘//x)dX, K= —ﬂij*WdX, (22)

{M,H} = {M,P} = {M,K} = {H,P} =0,
{H K} =P, {P.K}=M.

M and 2MH — P? are the Casimir operators. The inverse scattering approach to this
system results in the following change of the local coordinates on the symplectic
manifold

(W’ l/,*) - (qb Di, T, My, q(k)’ P(k)), 1 < ) < N’ (23)

where

{‘11,1’1'} ={y,m} =¢y, {‘I(k),l’(k’)} = d(k — k),



Int. J. Mod. Phys. A 1987.02:223-248. Downloaded from www.worldscientific.com
by Prof. dr hab. Piotr Garbaczewski on 10/08/13. For personal use only.

Canonical Action-angle Formalism for Quantized Nonlinear Fields 225

@(x) = (2m)7'? JCXP(ikX) [—p(k)'*]exp[—iq(k)]dk

= {p*(x), p(y)} = id(x — y),
{o(x), (1)} =0 = {¢*(x), 0*(N)},

1
i(Pt = —"2;(pxx (24)

and

0A B 0A OB 0A 0B 3A OB
ABl =Yl ———m - —— == =
{ } zl:[(aql apl ap[ 6q[> (atl aml (3mt 6T1>]
J”f( oA 6B sA 4B )dx
dp*(x) dp(x)  do(x) do*(x))

M=Zmz+ujlwl2dx, P=;p;+frp*(—ifpx)dx,
[
2 2
(P _ 9 s\, 1 24
H”;<2m, 24#2’"'>+2uj"”"‘ %

K= _;ml% _Hjx,¢|2dx‘

@2.5)

Under the action of the extended Galilei group the respective coordinates transform
as follows

q(t") = q,(t) + vt + a,

pi(t") = pi(t) + mpv,
(2.6)
(') = (1) — vg(t) — 3v*t — 0,

m(t") = my(t),

hence each (g, p, 7, m) set of data gives rise to the free classical particle with a well-defined
Galilean position and momentum. Here m does not appear as the mass parameter but
plays the role of the action variable with 7 being the conjugate angle. The continuous
segments in (2.6) correspond to the radiation, i.e., the free field contribution to the
interacting problem. The time development of the soliton action-angle data reads
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P i g
qlza:’ pl=07 II——<W+82 !2>3

2.7

m, = 0,

while the radiation component obeys
. 1

Q= — 5 O (2.8)

U

It is useful to know that one can re-construct the soliton field ys(x) from the (g, p, 7, m)

data®
Y(x) = —%(%)mme)(p[i;%(px —mt — qp)]

x sech Bmg(x - q):l , 2.9)
where (2.7) implies
1 12 2 2
o= el (- o))
x sech {%mg[x — q(t)]} . (2.10)

P - gl p* ¢

Here q(t) = q(0) + —t and the notation k = —p, v = —{ ~— — —5m? | is commonly
m m mi{2m 8u

in use. Observe that (2.10) equals (2.9) provided we replace g, T by q(t), t(t) respectively.

2.2. The sine-Gordon field: Poincare invariance in terms of the scattering data
The field equation

m3 g1/2
6,2¢—6,‘2¢+-g—1551n(—n7¢)=0, m,g >0, (211)

exhibits” a manifest Poincare invariance, since the transformations
(t, a, 0') : ¢(ta X) - ¢’(t,a x,) = ¢(t7 X),

"= 9(t + vx) + b,
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x' = p(x + vt) + a,
y =cosho, v =tanho,
h=c=1 (2.12)

leave it intact. Here b is the parameter of time translations, ¢ is of pure Lorentz
transformations.
In the phase space V of the system, the Poincare group Lie algebra consists of

functionals
4 1/2
= 1J‘{Hz + @2 + 2_m_|:1 — cos(g—qS):l}dx,
2 g m

P= —J¢dex, (2.13)

K = —lfx{ﬂz + ¢ + gr_n:[l - cos(g—l/iqﬁ)}}dx,
2 g m

which with respect to the Poisson bracket

{A’B}=j[5,4 SB o4 OB ]dx 210

54(x) II(x)  OII(x) 6¢(x)
satisfy

{H,P}=0, {K,H}=-P, {K,P}=—H,
_ (2.15)
¢(x,1) = {¢(x,0), H}, TI(x,1) = {[I(x,1), H}.

The main result of the inverse scattering approach is that a mapping from the initial

data ¢(x), II(x) to the scattering ones implies the following change of the local
coordinate system

(¢(x)’ H(X)) - (qi9 P> Qh },l’ P> Hl: (0()(), T[(X)),
{9op;} = 6;={Qu P} = {p:. 6}, (2.16)
{e(x),n(y)} = 6(x — y),

all the remaining Poisson brackets are vanishing. Hence
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J0A 0B 0A OB 0A 6B 0B 04
AB =Y (- — -2 + — =
{ } ;<6q- op; Op; 8qj> 21:[(‘3Ql 0P, 99, 8P>

+ <6A 0B OB 6A>:| + J( oB 0B 64 )d @17
3p, 36,  op, 6, 5¢(x) on()  dg(x) onx)) 1

1
H =Y (P*+ M*'? + Y (P2 + M*(6))"* + Ej(nz + @2 + m*@?)dx
7 7

while

=Hs+Hb+HO’ (218)

P=Th+ TR [ro.dn
7 T

1
K= =Y (p} + M*)'2q; — 3 (P2 + M*(6))"*Q, — Jx(n + o + m*¢?)dx,
J 1]
M(6,) = 2M sin§,,
M = 8m?/g.

Let us emphasize the kinematic independence of the three sets of action-angle
variables in (2.18). The canonically conjugate pairs (p,q) describe a system of free
(noninteracting) elementary relativistic particles of mass M which are just sine-Gordon
solitons in the action-angle representation. The pair (¢(x), 7(x)) gives rise to the infinite
dimensional realization of the Poincare group, which coincides with this for the mass
m Klein-Gordon field (the radiation). The coordinates (P, 0, p, 8) correspond to the
so-calied breathing solutions, which with respect to

2(0) - Q'(t') =»[Q@) + vt] + a,

' =yt +0vQ@)]+ b
(2.19)

p't) = p(),
0'(t"y = 0(v),

behave like classical relativistic particles, but with too rich (four dimensional while
dimensionality two is required) phase space.
Let us mention that in terms of the scattering data (2.16) the one soliton field reads

By(x, ) = tan Lexp [EMH(X - q(t))] ,
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8 3
H=(p?+ M), ¢= +1, =—';—, q(t)=q+%t, (2.20)

while the breather has the form

de(x, 1) = %tan“ [(tan 9)sin [—m— <m~2¢(z) _ Px >

2M\ g tan 8
m -1
x {cosh [me(x - Q(t))]} , (2.21)
m? QP g )
here p = ¢ — = =2 . . :
where p . ¢ tan 0’ {4,0} " If we insert (2.20) or (2.21) to (2.13) the result

would be (2.18) but reduced to the one soliton or breather contribution. The radiation
piece would not arise at all.

Note a particularly simple time evolution of the soliton action-angle variables in the
above

4 =pH;',
H, = (p* + M?)'2, (2.22)
p=0.
breather coordinates obey

Q=PH', P=0=0,
(2.23)

¢=-LHtanb)", H,=(P*+M*@)",

which, in virtue of 4R (mod 32zn), 0 < @ <—72£ implies the periodic motion in the

2 . .
center-of-mass frame (P = Q) with a period T = 7[ g The respective dynamics
results from (2.23) upon equating P to zero in all the formulas, so that {¢,0} = 'S—z
implies

0= 0, ¢ = 16mcos @,
(2.24)

8 3
H,=2Msin#, M=—g’"—.
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Because of
2
=",
g
(2.25)
B =1,
it is rather natural to pass from 6 to I in (2.24)
. . . g
0=0=1, ¢= 16mcos<—71>,
m
(2.26)

16m*
H, = 2Msin (ﬂﬂ) _1om (121),
m g m

where I is the new action coordinate.

3. Some Aspects of the Canonical Quantization for Soliton Bearing Fields

Because of the well-defined symplectic structure, both field theory models of Sec. 2
admit a canonical quantization either with respect to the field or action-angle variables.
Leaving aside the problem of Hilbert space domains for operators and accounting for
the fact that the standard (Dirac) quantization prescription

{9} =k~[f41- =ik, 3.1

cannot be extended to all classical observables,® we use (3.1) to quantize the respective
(symmetry group) Lie algebra generators.

There is however one subtlety which must be kept in mind while comparing the field
or action-angle quantizations of the same classical system. Namely the change of the
local parameterization on the symplectic manifold of the classical model (e.g., (2.3) and
(2.15)) is not quite innocent from the quantal point of view. The problem can be best
exemplified by discussing the nonlinear Schrodinger model, whose quantal features
are better understood® !%!! than those of the sine-Gordon model (sec Refs. 1218,
and Refs. 3, 19 and 20). The reason for this is that the Fock representation of the
canonical commutation relations (CCR) algebra suffices for the quantization of (2.1
and 2.2)

YY)} = id(x — ¥) == W), P* ()1 = d(x — y),
(3.2)
Y(x)|0> =0, VxeR!,

and for the construction of the (Bethe Ansatz) eigenvectors of the quantum Hamil-
tonian for the model.
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If the state space vector |0) is the unique cyclic vector (e.g., Fock vacuum) the
representation (3.2) is irreducible, and its domain is the Hilbert space closure & of the
set of all vectors obtained from |0) by acting upon it with polynomial functions of fields

F = {WEi*)10>}. (3.3)

Each nonzero operator with a domain in # can be expressed as a function of o0
variables, and by virtue of the irreducibility of the representation it does not commute
with the whole of the field (CCR) algebra unless it is a multiple of the operator unit in
F (see Ref. 21).

On the other hand, if to depart from (2.3) and (2.4), the action-angle quantization
of the nonlinear Schrodinger field amounts to representing three sets (q;, p;), (1, m;),
(9(x), *(x)) of kinematically independent canonical variables by (kinematically inde-
pendent again) operators.

However then (we disregard for a while the subtleties connected with the quantiza-
tion of the action-angle coordinates??) the Fock space quantization of the radiation
piece of the problem

[o(x), ¢*(»]- = d(x — y), [&(x),0(y)]- =0,

P(x)10> =0, VxeR'=>F = {W(p*, §)|0>},
M, = uf@*(X)fﬁ(x) dx = ujﬁ(p)dp,

2 34
A= o [or0.05 = [ Zaan, -
u 2u

Py= j@*(—i@)dx = J-pﬁ(p)dp,

Ko = —HJW*(X)@(X)dx,

precludes the existence of any (except for multiples of identity) operators which would
commute with the field algebra.

Hence as long as the (¢*, ¢) algebra is irreducible, there is no room in # for quantum
images of (q;, p)), (t;,m), 1 <1 < N which would be kinematically independent of the
radiation.

Since in & the (Y*, /) and (¢*, ¢) field algebras are related by a unitary transforma-
tion, we realize that the only way to allow for a consistent quantization of nonradiation
coordinates (consistent means: representing operators in the state space of the funda-
mental nﬁ*, J field) is to abandon the irreducibility requirement.
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It is well-known that the reducible representations of the canonical algebras allow
for the existence of operators which cannot be solely expressed in terms of field
generators. Let us mention that the need for reducible representations is suggested by
the quantum analysis?® and has been raised in the more general context?* of the
existence problem for nontrivial quantum field theory models.

Remark: A brute force quantization of (gq;, p;, 1, My, @, *) would amount to the
introduction of the tensor product Hilbert space, each entry corresponding to another
canonical pair. Then the relationship to the (x/;,nﬁ*) generated state space would be
apparently lost.

Since we wish to maintain the relationship of the (¥, ¢*) and (q,, p;, m;, 1, @, ©*)
quantizations on the state space level, it makes sense to exploit the most efficient
approach to establishing the classical-quantum correspondence, namely of studying
the coherent state expectation values of operators in the tree approximation (see
examples in Refs. 24, 25 and 26, and also in Refs. 3, 22, 27 and 28).

In connection with soliton fields, we are most strongly motivated by Ref. 25 and the
heuristic analysis of soliton states presented in Ref. 29 (see also Refs 19 and 1), all of
which can be reconciled only if the field and the action-angle quantizations of the same
classical model are compatible.

The direct integral Hilbert space construction to be used in below seems to be a
slightly forgotten concept>°-31-32-33 albeit the need for its revival was discussed recently
in Ref. 34 (see also Ref. 3). It seems to be a very natural way to encompass families
(fields) of Hilbert spaces which arise in many physical contexts®>*>3¢ but also in
connection with the (translation mode'®) vacuum degeneracy of quantized nonlinear
fields.>*

4. Quantum Nonlinear Schrodinger Field with the Attractive Coupling

The Bethe Ansatz (spectral) solution of the model has been found by directly
quantizing (2.1) with respect to the fundamental field variables

W) = d), e ¥*(»]- = 6(x — ), (4.1)

in Fock space % : lﬁ(x)l0> =0, VxeR! The time instant is chosen equal t = 0.
As is well-known, if f(x) is a square integrable on R! complex function, then the
operator

Uy = exp { f [t/?*(x)f(x) —f(x)&(x)] dx} 42)
maps |0) into a normalized vector (coherent state) in &
If> = U;l0>,
Y)Y = fRIfF, 4.3)

U () Uy = Y(x) + f(x).
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Since there is no operator ordering problems, the representation of the extended
Galilei group in & is generated by operators H, M, P, K of exactly the same functional
form as (2.1) and (2.2).

= _1,**‘ _9ra2,
H'— <2Hl/’xl/’x 2'*// leZ)dx’

R1

M=y f Propx)dx, R= —u f xf* () (x) dx, (4.4)

p= J&*(x)(—izﬁx)dx,

so that by taking the coherent state expectation value of any generator (4.4) we map
it into a c-number expression, like for example,

CFLEWE )1 f> = W) 4.5)

and in particular

| -
SIAIf> = f(z_fxfx - %nfn‘*)dx,
U

SIM|fy = ujlflzdx,
(4.6)

1B = f A~ if.)dx,

SIRIfY = —ujxlflzdx.

The proper classical-quantum relationship arises upon identifying f = f(x) with a
(square integrable on R!) solution of the field equation (2.1) and supplementing the
c-number objects (4.5) and (4.6) with the Poisson bracket operation

. 0A OB 0A OB
4.5} = f & <5f(x) 50 500 af(x))' @

Though we are inspired by the variational idea of Ref. 25, the static solutions are
inappropriate for our purposes, while some inconveniences appear if to admit the time
dependent solutions.

Remark: A well-known property of the familiar harmonic oscillator coherent states
is that
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lo, ) = exp(—ifot) @) = exp(—icot/2){a(t)), 48)

where |a) = exp(aa* — @a)|0)> and a(t) = aexp(— iwt) solves the classical equation of
motion & + w?a = 0.
Consequently

() AR o) = (o, t) Ao, 1),
(4.9)
A(t) = exp(iHyt) A exp(—iH,t),

and the classical motion rule is compatible with the quantum one, since |a(t)) is the
Schrédinger picture vector labeled by the time-dependent classical variable. All that
is not the case for the nonlinear Schrodinger model: |a(¢)) is not a Schrodinger picture
vector if a(t) is supposed to solve the field equation.

To simplify our further arguments, we shall consider the ! soliton solution of (2.1)
(the N-soliton generalization is immediate) which is determined by the scattering data
(p,q,7,m) at time ¢

1 12
bix) = 7(%) mexp {i%[px — me(t) - q(z)pl}

x sech [% mg(x — q(t))] . 4.10)

If to identify f = f(x) of (4.6) with Y/(x,t) the coherent state expectation value of the
operator in & becomes a function of the soliton data (p, g, t,m)

WLAW* ) 1Y) = AW ¥) = (p,q,7,m). (4.11)

It is enough to compute (4.11) at time ¢t = 0 to have determined the classically driven
time development of (i/()] :A(lf/*, ¥): ¥ (t)>. It automatically follows from the knowl-
edge of the classical Hamiltonian (4.6), which upon inserting (4.10) equals

2

2
W) =5 = s’ @4.12)

The symplectic structure (2.5) implies the time evolution (2.7) of the action-angie
variables, and hence of the coherent state expectation values. Since (p, ¢, 7, m) can be
varied and for each (p, g, 7, m) set a corresponding soliton field is generated, we deal
with a four-parameter family of coherent soliton states ) and Y(p, g, 7, m) we have

(W 94>} = F = (W%, Q) 1Y)} 4.13)



Int. J. Mod. Phys. A 1987.02:223-248. Downloaded from www.worldscientific.com
by Prof. dr hab. Piotr Garbaczewski on 10/08/13. For personal use only.

Canonical Action-angle Formalism for Quantized Nonlinear Fields 235

As long as we do not insist on the time dependence of the g, 7 labels (p = 0 = m)
neither coherent state {{> = |p,q,1,m)> can be particularly distinguished among the
others. The situation drastically changes if we would admit g = g(z), (t), since then we
encounter the problem mentioned in the Remark accompanying (4.9). Namely, the time
evolution |p, ¢, 7,m)> — |p, q(¢), ©(t), m) is of the purely classical origin and is not imple-
mented by the Hamiltonian of the quantum model. For clarity of further discussion,
let us consider the 1 soliton solution of (2.1) (see (4.10)) in the form

1 12
Y(x,t) = ——§<%) mexp {i%p(x - cx)}

x sech {%mg(x — ﬂ)} , 4.14)

where we have incorporated the time dependence into the freedom of choice of the two
(independent!) translation parameters a, f € R'. Notice that apart from having allowed
a to run through the whole of R, the effective a-dependence of ¥/(x, t) is periodic with
the period 2am/pu. The expectation value (/| H |y ) is supposed to have something in
common with the tree approximation value of the rest mass of the extended soliton-
type particle.2® At this point the («, f)-degeneracy of states which give rise to the same
classical energy seems to be slightly inconvenient. The standard approach to such
(translation mode) problem is to get rid of the redundant states by any means'® so
that the “classical soliton plus quantum perturbations™ problem is isolated.

Since a priori all |«, ) states can be placed in the Fock space &, the simplest
procedure would be for example, to take an appropriately weighted superposition

|F>=fdafdﬁF(a,ﬂ)loc,ﬁ>e.§’. 4.15)

Then however the CCR algebra representation (¥*, ) would still remain irreducible
and the problem of reconciling (4.1)-(4.4) with the action-angle quantization of the
system would not be solved. There is however another possibility of dealing with the
translation freedom3°733:3 which offers a resolution of these problems. We should
work with a reducible representation of the CCR algebra generated by (Y/*, ) instead
of the irreducible (unique Fock vacuum) one. Let us consider a two parameter family
of Hilbert spaces %,z each one being a copy of the initial Fock space #

Frg = {(W* )0, B>} (4.16)

Instead of picking up the coherent states |a, ) from the same Hilbert space &, we
take each |a, B> from its own Fock space %,;.

According to the recipes of 2°732:2 we shall form the (double) direct integral Hilbert
space with respect to the appropriate measure
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@ @
‘W'——J‘ 'g-'aﬂd.u(a’ﬁ)3¢=J\ f(a,ﬁ)léaa’ﬁ>d#(a’ﬂ)’

16,0, B> € Fy (4.17)

(¢ = Jd#(a,B)If(a,ﬁ)|2<f,ot,ﬂlé’,a,B>,

where (&, a, B| &', o, B) stands for the scalar product of two Hilbert space vectors in &,
{1&,a, B>} is a two parameter family of vectors with the same Fock space coordinates.

For any polynomial function W(J*, ) of the initial field operators (whose domain
was primarily in %) we define the following extension to the whole of #

A~ A @ A A
‘/V(!P*,l//)f=f S yWW*,¥) i, o, ) du(, ),
(4.17")

A A @ A A
W Y*,Y) = I (WE*,¥) ..

So introduced operators do not intertwine between different (a, f) sectors, which is
however the case for operators

&
Vo= f Y.In,a) exp(sV,)<n,al,

&
Vg = J CXp(iEQ)Z‘n,Q> {n,al, (4.18)

a= (aSﬂ)a §Vt_: = Slaa + Szaﬂ,
3= (SUSZ)’ la= tlfx + tzﬁ.

Here {|n,a)>, n=0,1,...} is an orthonormal (Fock space) basis system in Fs
a = («, ) and upon adopting the action rule

®
Vil = J flo, Y In, o, B) exp(s; 0, + 5,95)<m, o, B)| &0, B> dpa(e, B),  (4.19)

and assuming the (translation) invariance of the integration measure, we realize that
V.V = exp(—its) V,V,E, VEe, (4.20)

while for all vectors & from the domain 2 < 3 for # (lf/*, nfz) there holds
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[V # (0 9)]-¢ = 0= [V, W @i*¥)]-¢. (4.21)

The infinitesimal generators associated with (4.18) read

@
q =J “Z‘n’u,ﬂ><n,aaﬁ|’

@
0 =f BY. In o B> <n o, B,

3} .6
ﬁZJ‘ ;In’a,ﬂ>(lb;><n,a’ﬂ,a (422)

® 0
P:J‘ ZIn,a,ﬁ)(ia)("»“’ﬁl,

[q’ﬁ]—§= —1£=[Q,p]_§, éE@C.}f’
[4.0)- =[4,P]- =0=[p0] =[hP1-,

where 4, p are related to the periodic dependence of yr(x, £) on a while 0, P correspond
to translations of the soliton energy center. Obviously the generators 4, p, O, P
commute with all elements of the (*, ) field algebra.

The just constructed operators in J# suffice for the quantization of the action-angle
version of the nonlinear Schrodinger system, since what we have been in need were
the three pairs of mutually independent canonical variables.

Let us restrict considerations to the 1 soliton plus radiation segment of (2.1)

_(P_ 9 1 2

{a.p} ={tm} =1, (4.23)
{o*(x), 0(y)} = i6(x — ).

Upon recalling that (*, ) and (¢*, @) algebras are unitarily equivalent in the Fock
space, the quantization of (¢*, @) is immediate. The (P, Q) pair of variables can be
chosen as the quantization of the pair (p,q) of soliton coordinates. The other pair
should thus be exploited for the quantization of the (m, t) coordinates, where however
some care is necessary:22 the angle t itself should not be quantized, but rather its
functions sint — S, cos7 — C.

We adopt the number-phase quantization pattern of Ref. 22, which is corrected to
avoid the noninvertibility of the operator M
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m—-M=N+1, N=a*a,

4 +ip), 4.24)

=

q —ip).

N

It implies

p? g
- M 24u

p2
M+ fﬂﬁ(p)dp,
(4.25)

A(p) = ¢*(p)&(p).-

Since the eigenvalues of N equal 0, 1, 2, ... we may follow the tradition® and
renormalize A by adding to it the term Mg?(24u®)™* so that the standard soliton
dispersion formula follows (originally it comes out due to the definite choice of the
operator ordering, or due to the demand that the m = 1 excitation is structureless i.c.,
without any internal energy)

2 2

q

= — — 3 -—
E,(n) n 242 (n°—n), nx>1. (4.26)
In the form
p2 2 p2 .
=5 " e -+ fﬂn(p) dp, (427)

we have canonically quantized both the 1 soliton and radiation pieces of the classical
action-angle expression (4.18) in the direct integral Hilbert space #.

The passage to the multi soliton case amounts to rather straightforward generaliza-
tions of the previous procedure with the result

P? MM Py
Z ZMZ 24 2( l)}+J'2_,U— (p)dp,

=1

(4.28)

k

M 1= M + 1, M Z M

=1
Our goal has thus been accomplished: the quantized action-angle version of the model
is shown to co-exist (in the same state space) with the reducible representation of the
CCR algebra used to realize the field quantization. Moreover the radiation modes were

incorporated.
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Remark: We use the coherent state expectation values of relate the quantum and
classical level of the same model. For completeness let us mention that there exists a
procedure of passing from the quantum to classical soliton fields in the nonlinear
Schrédinger model, which amounts to studying matrix elements of the field operator
among n-particle (Bethe Ansatz) bound states in the n — co limit.37-38:3°

5. Quantum sine-Gordon Field

The situation here is more involved than previously. First of all there is no Bethe
Ansatz solution for the model. There are mathematically rigorous arguments for the
existence of the canonically quantized sine-Gordon field, and it is rather well cofirmed
that the non-Fock representations of the CCR algebra enter the game.

On the other hand, although the inverse spectral transform technique allows to
recover the quantized action-angle spectrum of (soliton) excitations, no information
about the soliton states and no information about the quantized radiation is obtained.
Moreover the above-mentioned spectral solution refers to the even soliton numbers.

It seems that the WKB quantization'® of the model accounts for the quantized
radiative perturbation of classical soliton fields, but it does not give any insight into
the state space structure of the system.

The rigorous approach of Ref. 13, albeit involving the notion of coherent soliton
states, does not refer to the problem of the action-angle guantization of the classical
model, and is confined to the analysis of topologically arising state space sectors. The
attempt of Refs. 17 and 18 seems to be incompatible with the correspondence principle,
being incapable of reproducing the classical action-angle Hamiltonian for the sine-
Gordon field. The quantization of the sine-Gordon system with respect to the field
variables, amounts to replacing the Poisson bracket {¢(x),n(y)} = d(x — y) by the
commutator [$(x), FI(»)] = id(x — y) so that

A =1J:{ﬁ2 + §2 +2m4 [1 —cos(ﬁﬁ)]}:dx. 5.1
2 g m

If to remain (for a while) on the Fock space level, then the standard coherent state
analysis would enter the game

|f,9) = expi f dx(g¢ — fIDI0) = U(f,9)|0),

(f914 (119> = f(x), (5.2)
fglfI)| f,9) = g(x).
However as mentioned above, the non-Fock representations of the CCR algebra

are necessary for the description of the classical soliton fields in terms of coherent state
expectation values of the quantized sine-Gordon field. In that case the notation
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U(f,9){0> would be incorrect since U(f,g) does no longer exist as a well defined
operator in the Fock space. Nevertheless we can give the meaning to the generalized
coherent states (see example in Refs. 3 and 26 and references therein). Once non-Fock,
cach state | f, g) obeying f,916 (x){£,9> = ¢(x), <£,9I(A(x)|f,9> = TI(x) can be used
to generate a corresponding Hilbert space via {W(é,11)|f,g>} = #(|f,g)>) in which
the (non-Fock) representation of the CCR algebra is irreducible.

At this point we encounter the very same problem as before in connection with the
nonlinear Schrédinger equation. Namely, in each Hilbert space (| f, g)) in which the
fundamental (sine-Gordon) field is defined, we can pick up a unitary transformation
to the irreducible (non-Fock again) representation of the CCR algebra, which is
generated by the radiation field

[e6(x),2(N)]- = id(x — y). (5.3)

The associated (free field) representation of the Poincare group is given by

A, = %J:(ﬁz + @2 + m*p?).dx,
p—_ f A dx, (5.4)

R, = -jx o(x)dx,

and acts invariantly in each Hilbert space 3#(}f,g>). As in the case of the nonlinear
Schrodinger model, there is no room for quantized soliton coordinates, unless we
abandon the irreducibility requirement. The construction of the Hilbert space, in which
the quantized action-angle variables coexist together with the quantized sine-Gordon
field, follows the previous direct integral pattern.>* The form of the 1 soliton field
clearly indicates that the time variability can be absorbed in the freedom of choice of
the translation parameters q in

® = @(x) = expmy(x + q),

la|* — 1

— 1
————~lalz+l, aeR', |ale[0,0), (5.5)

q= U(t - tO)’ v

v = (sgna)(l — 0?17,

Consistently we shall deal with a one-parameter (a determines the momentum
variable for which p = 0) family of coherent states corresponding to the ath classical
soliton. States {|a, ¢} induce the respective Hilbert spaces {#(|a,q>) = h,}. By using
any standard measure we arrive at the direct integral Hilbert space
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®
h=[ hydu(g),
®

h9|€>=f f@I¢, 9> dug), feL*(RY), (5.6)

ElED = jdu(q)lf(q)lz@qlé’, 9, 1&q9>€h,.

Since each h, has its own orthonormal basis system {(n,q>},-, , .. the unitary in h

operators given by

® d
V, = f Yin g eXp<—s5;1-> {n,qldu(q),

(2]
U = I exp(itq) Y. |n, q> <{n,q|du(q), (5.7)

U VIS = exp(its) VU 1L, VISHeh,

give rise to the CCR algebra generators in h

@
4= f qY.|n,q><{n,qldu(q),

® 0
ﬁ=j Zln,q><—ia—q)<n,qldu(4), (5-8)

[4,01-18 =il&>, e ch,

which by construction commute with mass m free radiation field generators, and the
fundamental sine-Gordon field @(x), #(x) algebra as well. The underlying representa-
tions of the field CCR algebra are thus reducible. Now it is rather straightforward that
in the 1 soliton sector of the sine-Gordon state space the representation of the Poincare
group Lie algebra can be introduced as follows

A=0p*+M»"2 4+ A,
P=p+P,
(5.9)
R = —§[A4+ 4] - K,,

A, = (¢ + My",
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which is an apparent quantization of the action-angle 1 soliton plus radiation piece of
(2.14).
The generalization to the N-soliton case is obvious

[@i’ﬁjj- lé) = iéij]é>’

(B + M*)'V2 + A,

™M=

ﬁ-—“.

1

(5.10)

P=3% p+ b,

1=

N
K=- Zl (Ad4; + ¢,A,) + R, .

N =

Remark: the 1 soliton mass here is the bare form of the (renormalized) mass of Ref.
19. The need for renormalization appears as if to attempt at giving a meaning to the
sum of the 1 soliton and radiation Hamiltonian which describes an infinite number of
harmonic oscillations over the non-Fock (classical) background field.

The breather generated state space is more complicated, and more complicated is
the related action-angle algebra, since the classical phase space is compact.

6. Quantization of Breather Action-angle Coordinates

Let us start from the explicit formula of Ref. 40 for the sine-Gordon 2 solitons
2 2 2
Cos ¢(x’ ‘t) =1— 'rn—z(ax - at )lnf(x’ t)’

f(x,t) = ay; cosh(eg + 2,) + cosh(e; — vy) — (1 ~ ay,),

2
a, —a .
a12=< > ] aiERla I:1329

a1+a2

6.1)

v =mydx — o) + 6, v;=—

= — o2 2sgna, = 2 1E g0

_, sinhi(v; — v,)

=4tan ! ——=—-— - < .
coshi(vy + »,)

We shall make the following manipulation to arrive at breathing solutions. Instead
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of real parametets a,, a, and »,, ©, the complex ones are admitted

a,=a, a,=a* a=ag+ia,

6.2)
vy =wv, vy =¥ w=ug+iy.
Then
1 1 1
a4y, = . ——, f(x,t) = —=cosh2ug + cos2v; — (1 + ~> (6.3)
ag r r r
implies
oix, 1) = 4tan‘1[r ey }(x, 1,
cosh g
a
vR = ﬁmy(x —vt) + Oz,
6.4
ar
vy = —my(t — vx) + &,
lal
- 1 +]a)? 1—]a?
= (1 — p2) 12 = = =1
Y ( D) 2,“' > v 1+|a,2’ ¢

ag . .
Observe that tan 8 of (2.16) turns out to be equal to r = — in the present notation.
a

1

So the introduced #(x,t) obeys the sine-Gordon equation rescaled to the form of
02¢ — 02¢ + m?sing = 0 and is known as its breather solution.

2

. m- .
Remark: The standard form of the equation ¢,, — ¢, + ?sm(gqi) = 0 comes out

1 1 2
from the Hamiltonian H = fdx [5¢,2 + 5¢§ + r;—z{l — cos(g¢)}] (see also (2.11)-

(2.13)).
Let us introduce the following notation

ar drlal

_—— — s = pt _—

R lalm?(x B, B=ovt+ agry
a

v = (0 + &) — Ijlimyvx =g — WUX

a
o=t + J;, a)=—1—'my,
a

’

(6.5)
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which upon accounting for the fact that the a*, a labels are time independent, leads to
the family of breather states {|«, 8>} and the related family of Hilbert spaces induced
by the (a*, a)th classical breather field. The two-parameter family of Hilbert spaces
thus appears, and we can form the direct integral Hilbert space

®
J du()# (|2, B) = #, (6.6)

with which the (internal) quantum variables §, p are automatically associated:
[4,p1- <i.

The translation freedom of the breather motion is finally incorporated in the next
direct integral

®
# = j du(B) #, 6.7)

which carries the representation of the CCR algebra generated by operators §, P,
[0, P]_ < i(the external quantum variables).

Remark: The breather field is periodic with respect to «, hence the Hilbert space
structure (6.6) is too rich for the quantization purpose. Compare for example the
situation in connection with the (m, 7) variables in the nonlinear Schrédinger case.

The (a*, a) parameterization is implicit in the above though irrelevant for the deriva-
tion of the spectrum. Since the related classical phase space variables are Poincare
invariant : p = p’, 8 = 0’, instead of considering the general breather problem, we can
confine attention to the case at rest: v = 0 = |a| = 1, q; = cos 8 when the time develop-
ment of the action-angie coordinates is given by (2.24)—(2.26).

Let us observe that (§ = 0), H = 2M sin 6 implies that 6 should be restricted to the
interval [0,7] mod 27. Since on the other hand ¢ = 2M cos § = w(f) has a frequency

. . . - n .
interpretation, we arrive at the final restriction 96[0, 5} mod 2n or respectively

Ie[0,m?n/2g]. We are thus confronted with the problem of matching the previous
Hilbert space (and related p, 4, P, 0 CCR algebra) construction with the rest frame
quantization of the classical system (2.24). Let us recall that because of

, 1
i=0, {$I}=1, H,= 2Msin%2—,
(6.8)
¢(t) = 16mcos (%)t + ¢,
m
the coordinate I plays the role of the action variable, which is canonically conjugate

to the angle ¢.
If to make one more canonical transformation
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J
e == .9
I TR ¢ = 160, (6.9)
we obtain
{6.1} = {o.J},
6m®* g
Hb = —"8Il 1—6—'"12—.], (610)

g
o(t) = mcos (W‘Ot + o,

2
m
where J e [0,—81:].
g
At this point it is particularly instructive to refer to the harmonic oscillator regime,

1 2
bm 1073 and

when say %VFJ <1073, ie,J <

HyzmlJ, olty=zmt+ ¢. (6.11)

Notice that in the weak coupling g « 1 and (or) large mass regime, the variability range
for J can be relatively large, albeit finite.

Since the breather field is periodic both with respect to J and ¢, we realize that the
effective canonical quantization of (6.10) should result in the direct sum of finite
dimensional quantum problems. In fact, by general arguments* !? it is known that
classical systems with a compact phase space do admit quantization in cases when the
total phase space area (number of states) is a multiple of 2. The formulas (6.10) and
(6.11) prove that the (J, ) quantization is always possible in the weak coupling and
(or) large mass regime, when the allowed phase space volume is not too small. If to
combine the harmonic oscillator regime with the fact that in the Hilbert space 5, the
canonical pair (p,4) is in our disposal, we can expect that the quantization of (6.10)
may have something in common with the action-angle quantization of the harmonic

oscillator.?? Then (6.11) suggests that the proper quantization of J should be a (multiple
2

. . .. m
of) the occupation number operator N = d*4, for which the restriction0 < J < —8=n
g

imposes the upper bound on the allowed eigenvalues of N. It throws up the problem
to the finite dimensional space, in which there is no operator realization for the
canonical commutator (i.., a finite dimensional representation of {¢,J} = 1). Let h be
a carrier Hilbert space for the Fock representation of the CCR algebra, which is given
in the Weyl form

0,V = exp(iaB)V, U,. (6.12)
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Its generators obey [§, ] < i. Let a* = —15((2 —ip),d = —15(4 + ip)and N = 4*a

NG 72

be the occupation number operator. By p, we denote the projection on the finite
dimensional subspace of h spanned by all eigenvectors of N with the property

Nlk> =klk>, k<n (6.13)

Though there is no finite dimensional realization of the commutator [§,p]. < i, it
is not widely known that Weyl commutation relations (6.12) have finite dimensional
representations, (see example in Refs. 41, 42 and 43), which thus provides a framework
for the unambigous quantization of the classical system (6.10). For this purpose it
suffices to pass from the ¢ and J variables to their trigonometric functions (which is
also a proper recipe while quantizing the action-angle variables of the harmonic
oscillator??), especially since such a function explicitly enters the Hamiltonian H,.
Consequently we replace the direct quantization problem for (6.10) by the quantization
problem for functions U = exp(ingp), V = exp(ifJ) of canonical variables. There is an
example of the finite dimensional representation of (6.12) in the odd dimensional
space.*3

Let h, = p,h, dimh, = 2J + 1 = n. Instead of the occupation number operator N
let us consider its translated version

J=N-1J, (6.14)
so that in the occupation number basis of h, matrix elements of J in h,,,, read
G =jsy, —d<j<l. (6.15)

. A . .
Let us introduce an operator ¢ whose matrix elements in h,,,, read

G 1 ) i2ns(j —j")
B> = s & sew| 22D 616

Notice that {j|$|j> = 0.
Let us now investigate the operators (matrices in h,; ;)

0,, = explinad), mn=012,....

6.17)
Vg = exp(imJ).

2
fof = 3.1_1-"1‘ they satisfy the relation

U, Vs = explinomp)V,; U,,, (6.18)
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which is clearly an analog of (6.12) provided the shift parameters «, § appear in the

2n
are fixed
2J +1 ’
we deal with a finite dimensional realization of the Weyl commutation relations, which
is known to provide a unique irreducible representation of (6.18) up to equivalence

and constant multiplication factors.

discrete form o — na, f — mf. Once the shift intervals « and §, aff =

In particular, if we wish to refer to (6.10), the choice of J —» N and f = 1 6ng would
3
amount to the (finite dimensional) quantization of H, = sini6g—sz , provided we
observe that the following matrix identity holds true
exp(imBJ) = exp(imBN)exp(—impBJ), (6.19)

so that, effectively (6.17) provides us with the quantization of exp(ifJ) as required

exp(inagd) exp(imBN) = exp(inamp) exp(imBN) exp(inagd). (6.20)
2nl6m?
The choice of f = ;&5 implies o = &_;T?E’ while the value of J follows from the

obvious restriction

g T
T6n? I+ < 3 (6.21)

8 2
ie,dimh, =2/ + 1< %n.

The energy levels arising from the quantization of H, read

tem*> . g
E,(n) = —
»(1n) sin Tom? n
(6.22)
2
O<n<2/+1<m™
g

where J is a positive integer.

A comparison with the classic WKB result for the sine-Gordon breathers'® shows
that we have obtained the “bare” breather spectrum. Accounting for the radiation
contribution (quantized sea of harmonic oscillations) needs a renormalization of the
coupling constant g {see Ref. 19). It is instructive to mention that the weak coupling
regime is of interest in statistical physics. Quantum corrections are then disregarded
and the “bare” coupling constant is used.**
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